
RECONSTRUCTION OF CACTI 

D E N N I S GELLER AND B E N N E T MANVEL 

Following the work of Kelly (8), Harary and Palmer (5), and Bondy (1) 
on the reconstruction of trees, and of Manvel (10) on the reconstruction of 
connected graphs with a single cycle, it was a natural step to attempt to solve 
the reconstruction problem for cacti. The solution of this problem, presented 
here, assumes both Kelly's Theorem and the result of Manvel in (10). 

Any definitions not given here can be found in (2). 

1. Introduction. Let graph G have point set V = {vu z/2, . . . , vp] and 
line set X = {xi, x2, . . . , xq}. For each vt Ç V, d = G — vt is the maximal 
subgraph of G which does not contain vt and is formed by deleting vt and all 
lines incident with it from G. If x = wo is a line of G between the points u and 
v, then the subgraph G — x is formed by deleting x from G. A homeomorph of G 
is obtained by introducing points of degree 2 into the lines of G. 

A block of a graph G is a maximal 2-connected (non-separable) subgraph of 
G. A outpoint of G is a point v such that G — v is disconnected. An endblock of G 
is a block containing only one cutpoint of G. In the case of endblocks which are 
lines or cycles, we will speak of endlines and endcycles. 

A cactus (formerly called Husimi tree (6; 7)) is a connected graph each of 
whose blocks is either a cycle or a line. Clearly, trees and cycles are special 
types of cacti. 

In (11), Ulam posed a now famous conjecture which we will state in the 
stronger form proposed by Harary (3). 

The Reconstruction Conjecture. A graph G with at least three points is uniquely 
determined up to isomorphism by the subgraphs Gt = G — vt. 

A useful heuristic device is to consider that the collection {d} forms a 
deck of cards, one graph to a card, and the problem is to reconstruct the graph G 
from this deck. 

The first attack on the conjecture was made by Kelly (8), who solved 
the problem in the affirmative for trees. Harary and Palmer (5) and Bondy (1) 
showed that it is not in fact necessary to use the entire deck {Gt} to reconstruct 
a tree. In (3), Harary solved the reconstruction problem for disconnected 
graphs, and showed how such parameters as the number of lines, independent 
cycles, blocks and cutpoints, as well as the degree sequence and the con­
nectivity, could be obtained from the Gu Finally, Manvel (10), verified 
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reconstruction for connected graphs with exactly one cycle (see also (4)). Cacti 
appeared to be the next reasonable class of graphs for which the reconstruction 
problem might be solved. 

2. Reconstruction of cacti. The first step in our problem is to find a 
method of determining, for a deck {Gt) which belongs to some graph G, 
whether or not G is a cactus. Since the reconstruction problems for trees and 
cycles have been settled, we may assume that we have found that the deck {d} 
represents neither of these. Then, two criteria will suffice. First, since a cactus 
can be alternately characterized as a connected graph containing no homeo-
morph of K± — x, the unique graph with four points and five lines, it is clear 
that none of the Gt can have such a subgraph. This condition does not dis­
tinguish between cacti and homeomorphs of i£4 — x, so that we must add the 
further observation that if G is a cactus, at least one of the d is disconnected. 
Except for cycles, which have been already handled, these two conditions 
identify when the deck {Gi) belongs to a cactus. 

THEOREM. A cactus G is uniquely determined by the collection {G — vt}. 

Proof. There are two cases to consider. Note first that we know the number 
of endlines of G since we know its degree sequence. 

Case I: G has no endline. In this case, all endblocks of G are cycles and if at 
least one of these endblocks is a triangle, there will be some connected Gj 
which has exactly one endline uv, where deg v = 1. Then, in G, Vj is adjacent 
to exactly the points u and v, so that G can be easily reconstructed. If all 
endblocks are cycles with at least four points, then in some connected Gj we 
can find two paths vu\U2 . . . um-\Um and vu\U<! . . . un'-iun' emanating from 
the same point v, such that um and un' are endpoints and all the rest of the ut 

and uk' have degree 2. Such a Gj results by removing from an endcycle a point 
Vj which is not adjacent to a cutpoint. Then in G, Vj must be adjacent to exactly 
um and Un. 

Case II : G has endlines. If Z is a cycle of G such that at most one component 
of G — X(Z) has cycles, then Z has level 1, or is a level-1 cycle. Recursively, if 
Z is a cycle such that G — X(Z) has at least two components each of which 
contains a cycle having level i — 1 but no cycle of higher level, then Z has 
level i. 

Analogous to the well-known result that every tree is either centred or 
bicentred (9, p. 65), it is clear that G has either one or two cycles of maximum 
level. Such cycles are central, and the set of all central cycles will be called the 
centre of G. Since G has endlines, among all connected Gi there will be a Gj 
resulting from the removal of an endpoint Vj which will exhibit the cycle struc­
ture of G ; in particular, G and Gj have the same centre. Let C be the centre of 
G, and define the level of C to be the level of its cycles. The components of 
G — X{C) are appendages of G. If we indicate for each appendage of G its inter-
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section with C, then each appendage will be either a rooted cactus or, in the 
case of the appendage between the central cycles in a bicentred G, a doubly 
rooted tree. 

For any graph H let e (H) be the number of endlines in H. Note that e = e (G) 
is known, since we know the degree sequence of G ; it is also clear that e is the 
number of connected Gt with the same cycle structure as G. 

We proceed to reconstruct the set of appendages of G from the Gf. To this 
end, we first determine whether the number k(G) of appendages of G with 
endlines is 1 or greater than 1. This can be determined quite easily if e = 1 or if 
€ ^ 3. The first case is trivial, while, in the second, we consider all Gj resulting 
from deletion of an endpoint, and note that k(G) = 1 if and only if for each 
Gj, k(Gj) = 1. 

Suppose that e = 2. We wish to decide whether or not both endlines belong 
to the same appendage. Let © be the statement that both endlines lie in the 
same appendage. Usually the truth of © can be determined by one of the 
following two tests: 

T l . If there is a connected Gj with e(Gy) = 2 for which © fails, then © 
fails for G; 

T2. If © is true for some connected Gj with e(Gj) = 2, then © is true for G. 
If none of the Gt satisfy either test, then when either endline of G is deleted, 

the resulting Gj has only one endline. In this case, suppose that © holds. If 
the endlines lie in an appendage which contains a cycle Z, then either some 
connected Gi has at least two endlines, all of which lie in the same appendage, 
or some Gi with exactly one isolated point contains only one appendage 
with an endline. The latter case occurs when the length of Z is equal to 3 and 
the endlines are at different points. Note that once the two tests have failed, 
neither of the above possibilities is consistent with ©. However, when the two 
endlines belong to an appendage with no cycle, they must have a common 
point, for otherwise, if ukvk are the endlines and vk endpoints, for k = 1,2, then 
for at least one k, G — vk has uk as an endpoint and hence G — vk has two end-
lines on the same appendage, a situation covered by T2. However, the two 
endlines have a common point if and only if some Gj has two isolated points. 
Thus we can always identify when © or, by elimination, © holds. 

Now among all the connected Gt there will be a non-empty subcollection 
{Gi} each of whose members results from the deletion of an endpoint from G. 
Then each of the G* will have the same centre as G. Let A be the collection of 
appendages (with roots) of these G/. We know that A is non-empty since G 
has endlines. 

If at least two appendages of G have endlines, then each appendage A will 
appear k[e — e(A)] times in A, where k is the number of copies of A which are 
appendages of G. However, some elements of A will be false appendages, which 
result from the removal of endpoints from true appendages to form some of the 
G/. These extraneous members of A can easily be eliminated. Choose any 
A G A with the largest number of points, and for each endpoint ut £ A remove 
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A — ut from A. Proceed to the next largest appendage which remains in A and 
repeat the process. At each step the appendage under consideration must be an 
appendage of G, since there is no larger A from which it could have been 
formed by endpoint deletion. When the procedure terminates, A will consist of 
all appendages of G in the proper multiplicity. 

On the other hand, if only one appendage A of G has endlines, then, if there 
is some u £ A such that A — u has endlines, we claim that we find all append­
ages of G except A from G — u. This is certainly clear if removing u does not 
change the centre. Assume that G is centred. The bicentred case is similar 
and will be omitted. If G — u is centred, then clearly the centres are the same. 
Thus we investigate when there is no point u of A such that G — u is centred 
and has endlines. In particular, for any point u of any level-1 cycle of A, if 
G — u is connected, then it is bicentred. But then, if the centre has level t, 
G has two appendages with cycles of level t — 1. Thus we can remove a non-
cutpoint u from a level-1 cycle of A and note that of the two central cycles in 
G — u, the one containing the root of the unique appendage with endlines is 
the centre of G. Thus, if A is the only appendage of G with endlines, we can 
find all other appendages from G — u. We then find A by deleting a point from 
a level-1 cycle in some other appendage. 

Finally, if no point u may be deleted from A such that A — u has endlines, 
then A itself is an endline, and the other appendages can be easily found from 
the unique connected Gt with no endlines. Hence, we have determined in 
every case the collection A of rooted appendages of G with the proper multi­
plicities. 

If A is a singly rooted (and hence non-central) appendage of G, and u is a 
point of A such that the component of A — u containing the root is not itself 
an appendage of G, then, since we know the appendages of G, we can tell 
exactly which point has been deleted from G to obtain G — u, and hence we 
can reconstruct G. We thus suppose that for every appendage A Ç A and any 
u 6 A, the rooted component of A — u is in A. We now proceed to reconstruct 
G. 

(1) G is bicentral. Let the centre C consist of cycles C\ and C2, and let Hx be 
the subgraph of G consisting of Ci and all singly rooted appendages with roots 
on Cu and with the root of the doubly rooted appendage indicated. Let the 
doubly rooted appendage be denoted K. An appendage consisting of only a 
root will be called trivial. 

If K has an endpoint Vj which is not a root, then the corresponding Gj will 
display the entire structure of G except for the location of one endline. Further­
more, we know K, so that we have only to decide how it is oriented between 
Hi and H2. Without loss of generality, suppose that | V(Hi)\ ^ | V(H2)\. If we 
can delete a point from H± which leaves G bicentred, our proof is complete. 
Also, if we can delete a point v from H2 which leaves G bicentred, our proof is 
complete unless Hi = H2 — v. Suppose, therefore, that each of these possi-
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bilities fails. Then Hi is a "chain" of cycles, perhaps connected by paths, and 
H2 is just Hi with an extra endline. But then we can delete a point from the 
level-1 cycle of H2 to obtain a centred Gj with endlines in only one appendage, 
and since that appendage will contain both K and C2 (except in the trivial case 
where C2 has level 1), the orientation of K with respect to the centre of G will 
be clear. 

If K has no endline, there are two possibilities. Suppose first that both 
central cycles have appendages with endlines. This can be recognized as 
follows: For any bicentred Gj let Hitj and H2J be the subgraphs each consisting 
of a central cycle and all singly rooted appendages on that cycle; recall that Hi 
and H2 have been similarly defined for G. Then both central cycles have end-
lines if and only if there are graphs Gj and Gk such that, with proper labeling, 
Hitj and Hitk each have endlines, and H2>j = Hi>k — u and H2tk ^ Hitj — u' 
for judicious choice of u and u'. Then Hitj and Hitk are, with possible reorder­
ing, Hi and H2, and their placement with respect to K is clear. 

Finally, if only Ci, say, has an appendage with an endline, then each of the 
d which has been obtained by deleting an endpoint will clearly display H2. 
If we can find a point Vj such that Gj is connected and bicentral, but neither 
Hij nor H2J is H2, then, unless Hi = H2 — u, the proof is complete. If for 
some point u, Hi = H2 — u, then some bicentred Gj will have Hijj~H2,j~HiJ 

and the proof is complete. 
However, it may be impossible to find any connected bicentral Gt which is 

not the result of deleting a point of Hi. In this case, C2 can have only one 
appendage A, and this appendage can have only one cycle of each level, so that 
it must be a "chain" of cycles, perhaps connected by paths. When we delete a 
point Vj from a level-1 cycle of A, we will have Gj centred at Ci and displaying 
jffi, and an appendage A* consisting of K and H2 — Vj. Confusion can occur 
only if some appendages of G are isomorphic to ^4*. If A* appears k times as 
an appendage of G, then each connected bicentred Gt containing k — 1 
copies of A* results from deletion of a point of one of these appendages of C\. 
We already have a picture of G which is complete up to distinguishing the point 
at which Hi attaches to the central appendage, and any one of these latter Gt 

will suffice to complete the picture, and hence reconstruct G. 

(2) G is central. We define a map / assigning integers to all appendages of 
G*, including the trivial ones, so that for any two appendages Ai and A2: 

(i) f(Ai) =f(A2) if and only if Ax^ A2, 
(ii) if A i is isomorphic to the rooted component of A2 — v, then 

f{Aà<f(At), 
(iii) if Ai is trivial and A2 is an endline, t hen / (A i) = 0 a n d / (A2) = 1, and 
(iv) if A i has a cycle of level s, but not 5 + 1 , and A2 has a cycle of level 

t > s, t h e n / ( 4 2 ) > f(Ai). 
Let /* be the largest integer assigned to any appendage of G, plus 1. 

Consider an arbitrary orientation of C and choose any appendage Ai on C. 
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If A2, Az, . . . , A t are the other appendages on C in cyclic order, proceeding in 
one direction from Ai, then we can associate with this choice of orientation 
and appendage the number/(A i ) f (A2) . . . f (At) in the base/*. Among all 
numbers which can be assigned to C there will be a maximum, ix. Since we have 
assumed that for any point u of any appendage A £ A, the rooted component 
of A — u is also in A, it is clear that numbers can be assigned in a similar 
fashion to the centres of the connected central Gt. 

The connected central Gj, if one exists, with the largest assigned number 
must be the result of removing a point from the appendage A^ corresponding 
to the last non-zero digit of JJL. (Such a Gj will exist unless G has exactly two 
non-trivial appendages.) To see this, it is necessary only to note that if 
/x = d±d2 . . . dt, then dt ^ d2, for otherwise d\dt. . . d2 is a larger number. Of 
course, the two appendages with the largest values under / have cycles with 
level one less than that of C. Thus, unless these are the only two non-trivial 
appendages, the removal of a non-cutpoint vù from A^ leaves G centred. 
However, from Gj and A it is easy to reconstruct G, unless AM is an endline 
and fi ends with 00, 01, or 10. For then the number associated with Gj ends 
in all zeros, and we cannot be sure exactly which digit should be a 1 in /JL. 

Thus there are two problem cases. If G has only two non-trivial appendages 
A i and A 2, wi th/ (A i) ^ / (A 2), then for any non-cutpoint^ £ Ai, A± — u £ A, 
and hence A i — u is trivial. Thus A i must be an endline and, since G is centred, 
A 2 is either an endline or a path of length 2. Since G is unicyclic, the proof is 
complete. 

In the final case, AM is an endline and we must decide just which of the several 
terminal zeros was produced by deletion of A^. To do this we look at the con­
nected central Gk with the next largest number. The sequence of appendages 
around the centre of this graph will correspond to that around the centre of 
the Gj with the largest assigned number except directly before the string of 
zeros ending the largest number and one place within that string. The place­
ment of the endline within that string in Gk will show us where to replace 
appendage A^ in Gk, and complete our picture of G. 
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