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Abstract

Background. The prefrontal deficits in psychiatric disorders have been investigated using
functional neuroimaging tools; however, no studies have tested the related characteristics
across psychiatric disorders considering various demographic and clinical confounders.
Methods. We analyzed 1558 functional brain measurements using a functional near-infrared
spectroscopy during a verbal fluency task from 1200 participants with three disease spectra
[196 schizophrenia, 189 bipolar disorder (BPD), and 394 major depressive disorder
(MDD)] and 369 healthy controls along with demographic characteristics (age, gender, pre-
morbid IQ, and handedness), task performance during the measurements, clinical assess-
ments, and medication equivalent doses (chlorpromazine, diazepam, biperiden, and
imipramine) in a consistent manner. The association between brain functions and demo-
graphic and clinical variables was tested using a general linear mixed model (GLMM).
Then, the direction of relationship between brain activity and symptom severity, controlling
for any other associations, was estimated using a model comparison of structural equation
models (SEMs).

Results. The GLMM showed a shared functional deficit of brain activity and a schizophrenia-
specific delayed activity timing in the prefrontal cortex (false discovery rate-corrected p <
0.05). Comparison of SEMs showed that brain activity was associated with the global assess-
ment of functioning scores in the left inferior frontal gyrus opercularis (IFGOp) in BPD group
and the bilateral superior temporal gyrus and middle temporal gyrus, and the left superior
frontal gyrus, inferior frontal gyrus triangularis, and IFGOp in MDD group.

Conclusion. This cross-disease large-sample neuroimaging study with high-quality clinical
data reveals a robust relationship between prefrontal function and behavioral outcomes across
three major psychiatric disorders.

Introduction

Mental illness is a common disease that around 20% of the general population encounter
through their lives (Kessler, Chiu, Demler, Merikangas, & Walters, 2005). Cognitive deficits
related to the prefrontal cortex (PFC) are among the most common symptoms and are thought
to be related to symptom severity and clinical outcome (Sawada et al.,, 2017; Velthorst et al.,
2019). Previous neuroimaging studies have reported that cognitive deficits in schizophrenia
were associated with volumetric and functional alterations in the PFC (Koike, Nishimura,
Takizawa, Yahata, & Kasai, 2013; Weinberg et al., 2016). Additionally, these alterations were
seen in other psychiatric disorders including bipolar disorder (BPD) and major depressive dis-
order (MDD), suggesting a shared dysfunction across diseases (Barch & Sheffield, 2014; Kinou
et al,, 2013; Suto, Fukuda, Ito, Uehara, & Mikuni, 2004). It should be noted that these findings
have been mostly derived from case—control studies; therefore, a direct comparison between the
aforementioned diseases may shed some light on the common and disease-specific pathologies
of psychiatric disorders (Hibar et al., 2015; O’Donovan & Owen, 2016; Ohi et al., 2019).
When conducting a cross-disease mega study in brain imaging, brain-related confounding
factors should be considered including age, gender, premorbid intelligence quotient (IQ), clin-
ical severity, and drug treatment. Brain volume and function have been previously associated
with sex (Chou et al., 2015a; Gauthier, Duyme, Zanca, & Capron, 2009; Kameyama, Fukuda,
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Uehara, & Mikuni, 2004; Koike et al.,, 2017), age (Chou et al,
2015a; Gogtay et al., 2004; Koike et al,, 2017), symptom severity
(Iwashiro et al., 2012; Koike et al., 2013a), and medication
doses (Andreasen, Liu, Ziebell, Vora, & Ho, 2013; Tomioka
et al., 2015). However, few studies have considered that these vari-
ables are also correlated. For example, men with schizophrenia
have more severe symptoms compared to women with schizo-
phrenia, but men generally have a larger brain volume compared
to women. Therefore, cautious interpretation is needed when
greater brain volume is associated with better functional out-
comes. Previous mega studies from multi-centers have had diffi-
culty assessing a high-quality clinical dataset using a uniformed
procedure. To maximize the strength of a large sample size,
using a well-structured model to properly investigate the relation-
ship between obtained neuroimaging signals and clinical assess-
ments may provide new insights.

Functional near-infrared spectroscopy (fNIRS) is a portable
functional neuroimaging instrument that easily and non-
invasively measures hemoglobin changes over the surface of the
cortex (Koike et al.,, 2013a). Near-infrared light (650-1000 nm)
emitted from a source probe on the human scalp is partially
absorbed by hemoglobin in small vessels (<1 mm) and the
remaining light is scattered; then, a detector probe can perceive
the scattered near-infrared light placed 3 cm away from the source
probe in adults (Koike et al., 2013a). The relative advantages of
fNIRS technology compared to other neuroimaging instruments
are its small size that allows it to be used in places such as schools
and care units, low noise levels, and the ability to serve as a can-
didate resource to differentiate diagnoses (Koike et al., 2017; Suto
et al., 2004; Takizawa et al., 2014) and evaluate clinical symptoms
(Koike et al., 2013a, 2016). Also, compared to functional MRI,
fNIRS can measure hemodynamic responses with high temporal
resolution in a non-restricted and natural position.

Previous fNIRS studies in psychiatric disorders have been used
to measure brain activity in the frontal and temporal cortices dur-
ing a block-designed phonological verbal fluency task (VFT)
(Koike et al., 2011, 2013b, 2016, 2017; Satomura et al., 2019;
Takizawa et al., 2008, 2014). The VFT needs continuous word
generation and exercises various cognitive domains involved in
verbal storage, verbal working memory, inhibition, and executive
control to avoid repetition and inappropriate word use. Therefore,
the fNIRS measurement during the VFT can spatio-temporally
measure hemoglobin changes in the PFC and anterior and super-
ior parts of the temporal cortex. Investigating the activity pattern
using a block-designed task, patients with chronic schizophrenia
exhibited smaller activity with inappropriate and delayed
responses in the PFC in Japan (Kinou et al., 2013; Koike et al,,
2013a, 2016; Shimodera et al., 2012; Suto et al., 2004; Takizawa
et al, 2008), China (Li, Wang, Quan, Wu, & Lv, 2015; Quan
et al.,, 2015), and Taiwan (Chou et al., 2015b, 2016; Chou, Lin,
Li, Huang, & Sun, 2017). We also found that patients with various
clinical stages of schizophrenia, such as first-episode psychosis
and ultra-high-risk for psychosis (UHR), had similar characteris-
tics of brain activity to those with chronic schizophrenia, and the
characteristics were still present in 12-month follow-up data
(Koike et al., 2017). In contrast, patients with MDD showed smal-
ler activation but no delayed responses (Kinou et al., 2013; Suto
et al, 2004). Moreover, a multi-center study with more than
1000 participants (153 with MDD, 136 with schizophrenia, 134
with BPD, and 590 healthy controls) replicated the characteristics
of brain activity in a cross-disease comparison (Takizawa et al.,
2014). The sites, however, obtained via different clinical
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assessment, were only tested using cross-sectional measurements
for patients with chronic stages and the detailed relationships
with confounding factors were not tested.

Several fNIRS studies also reported an association between
symptom severity, symptom severity, and brain activity, especially
in the PFC. Patients with schizophrenia have a relationship
between fNIRS brain activity in the rostral part of the PFC and
symptom severity based on cross-sectional (Koike et al.,, 2011,
2013b; Shimodera et al., 2012; Takizawa et al., 2008) and longitu-
dinal investigations (Koike et al., 2016). Patients with MDD also
showed a similar relationship in the right PFC in cross-sectional
(Noda et al,, 2012) and longitudinal studies (Satomura et al.,
2019). These studies suggest a relationship between fNIRS pre-
frontal activity and symptom severity across psychiatric disorders.
However, since we have been unable to determine a common and
disease-specific relationship using case-control studies, a cross-
disease, large-sample study is required.

After more than 12 years of fNIRS measurements acquired
using a single instrument and procedure, we now have an oppor-
tunity to explore generalizable shared and disease-specific altera-
tions in prefrontal function and the relationship with symptom
severity among psychiatric disorders. To the best of our knowl-
edge, no neuroimaging studies have tested the relationship
between brain function and various demographic and clinical
assessments for three major psychiatric diseases with longitudinal
measurements. In the present study, we tested whether brain
function would be associated with these disease spectra (schizo-
phrenia, BPD, and MDD) considering the effect of demographic
and clinical variables on brain function. Further, we wanted to
observe whether brain functions measured using fNIRS would
be associated with global clinical severity, after controlling for a
variety of covariates, and whether the relationship would be com-
mon or disease-specific. To utilize a large and high-quality sample
dataset from one long-lasting fNIRS project, we applied epidemio-
logical approaches to properly analyze repeated measures and
multiple variables using a general linear mixed model (GLMM)
and a structural equation model (SEM) (Fig. 1).

Methods
Participants

A total of 1772 fronto-temporal brain activity measurements from
1390 participants were measured during a phonological VFT
using an fNIRS instrument from April 2004 to August 2018.
After the exclusion of poor measurements (see the fNIRS signal
treatment section), 1558 measurements were analyzed from
1200 participants [369 controls, 52 UHR, 196 with schizophrenia
(51 first-episode psychosis or schizophrenia, and 145 with chronic
schizophrenia), 189 with BPD (86 type I and 103 type II), and 394
with MDD; online Supplementary Table S1]. The participants in
the patient groups were mainly recruited in the outpatient and
inpatient units of the University of Tokyo Hospital. All patients
were diagnosed by trained psychiatrists and/or using structured
interviews and all healthy controls were screened using structured
interviews (see Supplementary materials). A part of the recruit-
ment process was conducted via the integrative neuroimaging
studies in schizophrenia targeting for early intervention and pre-
vention (IN-STEP) (Koike et al., 2013b) project, the 4-day psychi-
atric assessment program for depressive symptoms (Satomura
et al,, 2019), and a population-based survey [the Japanese Study
of Stratification, Health, Income, and Neighborhood (J-SHINE)]
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Fig. 1. The analysis procedure. (a) We applied a model comparison from general linear mixed models (GLMMs) to explore the fixed effect of demographic variables
(B) and random effect of participants (y) on brain signals. For example, five independent variables (main effects of sex, age, agez, and age3, and sex x age inter-
action) were included in an initial model, 32 ( =2°) possible models were compared. (b) The model where all the coefficients were significant (p <0.05) and that had
the smallest Akaike information criterion (AIC) was defined as the best-fitted model. In this example, the model with the smallest AIC included main effects of age
(B1) and sex (B,) and sex x age interaction (8s), but 5; or s were not significant. Therefore, the second smallest AIC model was applied. (c) After testing for all brain
signals, we next tested the effect of other variables. (d) These model comparisons showed that age, symptom severity, and medication doses were associated with
brain activity, but these variables were also correlated with each other. (e) Therefore, we applied the structured equation model (SEM) to find the relationships
between demographic and clinical variables and task performance. This model included no fNIRS variables and was determined one model for each group. (f)
Then, we added fNIRS variables to the models. Since the directions of the relationships between brain activity and symptom severity as well as between brain
activity and task performance were unable to be determined (pink lines), we performed a model comparison in the SEMs. (g) One relationship contained four
possible paths: (1) no relationship, (2) path from task or symptom assessment to brain activity, (3) path from brain activity to the assessment, and (4) correlation
between them. Therefore, we compared 16 (4 x 4) models for each fNIRS variable in each group. CP, chlorpromazine; IMP, imipramine.

(Kawasaki et al., 2015). The first two projects assessed brain activ-
ity and clinical assessment longitudinally, and we therefore ana-
lyzed the longitudinal dataset using a mixed model (see
Statistical analysis section). Inclusion and exclusion criteria,
evaluation, clinical assessments, and fNIRS measurements were
conducted at the University of Tokyo Hospital. This study was
approved by the ethics committee of the Department of
Medicine, The University of Tokyo [No. 630-(14), 2226-(12),
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and 3202-(11)]. Written informed consent was obtained from
each study participant.

Exclusion criteria for all groups were as follows: (1) previous
and/or present severe brain injury and/or neurological illness,
(2) previous history of electroconvulsive therapy, (3) a premorbid
IQ of 70 or less, (4) previous and/or present alcohol addiction, (5)
previous and/or present continuous substance use, and (6) clear
comorbidity with autism spectrum disorders.
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Demographic and clinical assessments

For all participants, we assessed handedness (Oldfield, 1971) and
estimated their (premorbid) IQ using the 25-item version of the
Japanese Adult Reading Test (Hirata-Mogi et al, 2016;
Matsuoka & Kim, 2006; Matsuoka, Uno, Kasai, Koyama, &
Kim, 2006). For all patient groups, we obtained symptom severity
using the global assessment of functioning (GAF) scale, which is
able to determine the severity of symptoms and functions across
psychiatric disorders (American Psychiatric Association, 1994).
We also assessed medication doses for antipsychotic (chlorpro-
mazine), anticholinergic (biperiden), anxiolytic (diazepam), and
antidepressant (imipramine) equivalent doses (Inada & Inagaki,
2015). For the schizophrenia and UHR groups, we assessed
schizophrenia-related symptom severity using the Positive and
Negative Syndrome Scale (PANSS) (Kay, Opler, & Fiszbein,
1991). For the BPD group, we assessed depressive symptom sever-
ity using the 17-item Hamilton Depression Rating Scale
(HAM-D) scale (Hamilton, 1960) and manic symptoms using
the Young Mania Rating Scale (YMRS) scale (Hamilton, 1960).
For the MDD group, we assessed depressive symptoms using
the HAM-D scale. The number of missing values for the demo-
graphic and clinical assessments is shown in online
Supplementary Table S2.

Brain function measurement

The same instrument (ETG-4000; Hitachi Ltd., Tokyo, Japan) and
measurement procedures were used throughout the study period
(Supplementary materials) (Koike et al., 2011, 2013a, 2016, 2017;
Satomura et al., 2019; Takizawa et al., 2008, 2014). We used a
160-s block-designed phonological VFT that is well adapted as
an activation task during fNIRS measurements (see Cognitive
task section in Supplementary materials), and the number of
words generated during the task period was assessed as task per-
formance. After the measurement, we assessed subjective sleepi-
ness during the task using the Stanford Sleepiness Scale
(Hoddes, Zarcone, Smythe, Phillips, & Dement, 1973).

We used automatic rejection software revised from our previ-
ous study for visible artifacts derived from body and head move-
ments (Supplementary materials) (Sakakibara et al., 2016). After
treating fNIRS signals, we obtained two variables: brain activity
and activity timing (Koike et al., 2017; Takizawa et al., 2014).
Brain activity was defined as relative hemoglobin changes during
the task period compared to pre- and post-task periods (nM-mm)
(online Supplementary Fig. S1). Activity timing (C) is defined by
the following formula:

1251 Spos(t) ot

C=0.1==1
125 Spos(1)
S| + S(¢
where Spo(t) = w

where t is time during the analyzed period (time resolution of
0.1 s) (see fNIRS signal treatment section in Supplementary mate-
rials). When we see the positive values of fNIRS signal as a fre-
quency distribution graph, activity timing (C) is the ‘mean’
value of the frequency distribution graph throughout the analyzed
period (s) (online Supplementary Fig. S1).

The location of fNIRS measurements for each channel was
estimated using a probabilistic location by a virtual registration
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from MRI measurements with an fNIRS probe attachment (see
Calculating fNIRS variables in the prefrontal and temporal corti-
ces section in Supplementary materials) (Tsuzuki et al., 2007;
Tsuzuki & Dan, 2014). The virtual registration for the 52-channel
probe covered 12 brain regions in the front-temporal hemisphere
using Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer
et al., 2002). To obtain reliable fNIRS signals in the brain regions
within 25-35cm of the T3-FPz-T4 segment according to the
international 10-20 system used in electroencephalogram, we
used eight regions per hemisphere for further analyses [superior
frontal gyrus (SFG), superior frontal medial cortex (SFGM), mid-
dle frontal gyrus (MFG), inferior frontal gyrus triangularis
(IFGTr), inferior frontal gyrus opercularis (IFGOp), inferior
frontal gyrus orbital (IFGOr), superior temporal gyrus (STG),
and middle temporal gyrus (MTG)].

Statistical analysis

Overall statistical flow is shown in Fig. 1. We first compared the
models to see the effects of demographic and clinical variables
on fNIRS brain activity and activity timing using a GLMM
(Fig. la-d). Then, we explored causal estimation related to
brain activity using an SEM (Fig. le-g).

Model comparison

To test the effects of demographic variables on fNIRS brain activ-
ity and activity timing, we used a GLMM with the participant as a
random effect of intercept and slope (Fig. 1a and Supplementary
materials). We first compared the models to see the effects of
demographic variables on fNIRS brain activity and activity timing
in the control group. The model where all the coefficients were
significant (two-tailed p<0.05) and that had the smallest
Akaike information criterion (AIC) was defined as the best-fitted
model in each brain region (Fig. 1b). For multiple testing of the 16
brain regions, we applied a false discovery rate (FDR, g <0.05)
approach to increase the sensitivity and specificity of the analyses
using neuroimaging variables that correlated with each other
(Singh & Dan, 2006). All analyses were conducted using R version
3.5.1 (The R Foundation for Statistical Computing, Vienna,
Austria), ‘Imer’, and ‘MuMIn’ packages (Bates, Machler, Bolker,
& Walker, 2015; Burnham & Anderson, 2002; R Core Team,
2018). Then, we added other demographic variables and assess-
ments of fNIRS measurements (handedness, IQ, task perform-
ance, and sleepiness) as independent variables to the best-fitted
model and compared all possible models (Fig. 1c). We tested
the main effect of diagnosis and diagnosis interaction by sex
and age, as well as repeated fNIRS measurements in the same
manner for all available data. We also added the effect of clinical
assessment and medication equivalent dose on fNIRS variables
for the patient groups controlling for demographic variables
using the same model comparison method (see Cross disease
comparisons and the effect of clinical variable section in
Supplementary materials).

Causal estimation of brain activity

We applied the SEM to find the relationship with brain activity
(Fig. le-g). Considering the correlations between demographic
variables, symptom severity, and medication dose (online
Supplementary Tables S3-6), we set a model in the schizophrenia,
BPD, and MDD groups. We first determined the relationship irre-
spective of brain activity since the direction of the relationships
was deterministic (Fig. 1e). After identifying the best model, we
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added brain activity for each fNIRS variable (Fig. 1f). As causality
could be estimated for the relationships between fNIRS signals
and symptom severity, and between fNIRS signals and task per-
formance, we performed a model comparison in an SEM model
to determine the relationship statistically (pink lines in Fig. 1f).
One relationship had four possible paths: (1) no relationship,
(2) path from task or symptom assessment to brain activity, (3)
path from brain activity to the assessment, and (4) a correlation
between the brain activity and the assessment (Fig. 1g).
Therefore, we compared 16 models (4 x4 models) for each
fNIRS wvariable in each group. We applied the smallest AIC
model to the best fit. SEM analyses were conducted using a
‘lavaan’ package within R software (Rosseel, 2012). The estimation
of the model was conducted using a robust maximum likelihood
estimation, and missing values were handled using a full informa-
tion maximum likelihood method. Indices of a good-fit model
were p values of 0.05 or greater from a y’ test, a confirmatory
fit index value of 0.90 or greater, or a root mean square error of
approximation value of 0.10 or smaller.

Results

Effect of demographic variables on fNIRS data in the
control group

A GLMM showed that male participants had greater brain activity
during the task period compared to female participants in 12
brain regions over the PFC and right temporal cortex
(FDR-corrected p <0.05, online Supplementary Tables S7 and
S8). Linear or quadratic age effects were found in brain activity
of the bilateral STG, right IFGTr, and left MTG (Fig. 2a, and
online Supplementary Tables S7 and S8). For activity timing
across the task, a significant main effect of age was seen in the
left STG. No cubic age effect or age and sex interaction was found.

The comparison adding the other demographic variables
showed a significant positive effect of IQ on brain activity in
the right MFG and IFGOr (online Supplementary Tables S7
and S9), and a negative effect of task performance on activity tim-
ing in the bilateral SFG, SFGM, and MFG, as well as the left
IFGTr, IFGOp, and IFGOr (Fig. 2b, online Supplementary
Table S10). There was a non-significant effect of handedness
and sleepiness on brain activity and timing in all regions.

Cross-disease comparisons

The difference in demographic, clinical, and fNIRS variables
between patients with first-episode psychosis and chronic schizo-
phrenia (online Supplementary Tables S11 and 12), and patients
with type I and II BPD (online Supplementary Tables S13 and 14)
are shown in Supplementary materials.

A model comparison analysis showed that the patient groups
had smaller brain activity in all regions compared to the controls
(FDR-corrected p <0.05; Fig. 3a and b, online Supplementary
Fig. S2, and online Supplementary Tables S15 and S16). UHR
individuals and patients with schizophrenia had more delayed
activity timing in the bilateral SFGM and left MFG compared
to controls (Fig. 3c). Activity timing in the right MFG and left
SFG was more delayed in the UHR individuals compared to con-
trols. No diagnosis interactions between sex and age were
significant.

Within patient groups, UHR individuals had larger activity in
the 10 regions of the bilateral PFC compared to the other three
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disease groups (online Supplementary Table S17). Activity timing
in the right SFG was more delayed in the UHR group
(FDR-corrected p =0.0028). Activity timing in the bilateral SFG,
SEGM, and MEFG, as well as in the left IFGTr and IFGOr and
right MTG was more delayed in the schizophrenia spectrum
group (UHR and schizophrenia groups) (FDR-corrected p < 0.05).

Effect of repeated fNIRS measurements on fNIRS signals

There was no main effect of either the intervals between measure-
ments or intervals from the baseline measurement, nor any inter-
action by group for longitudinal measurements of brain activity or
activity timing in any group (online Supplementary Fig. S3).

Association between symptom severity and fNIRS signals

The GAF score in the patient group was positively associated with
brain activity in the right IFGOp (Fig. 4) and left MTG, as well as
activity timing in the right MTG (FDR-corrected p < 0.05, online
Supplementary Tables S18 and S19). The UHR group showed a
positive association between the PANSS-positive score and brain
activity in the right STG, and the general psychopathology score
in 14 regions (online Supplementary Fig. S4 and Table S20),
while no other correlation with any clinical severity score was
found in the other patient groups (Supplementary materials).

Association between medication and fNIRS signals

A summary of the effect of medication doses on fNIRS signals in
the patient group is shown in online Supplementary Table S18
and details are shown in Supplementary materials. Briefly, biper-
iden equivalent dose was negatively associated with brain activity
in six regions (online Supplementary Table S21), especially in the
schizophrenia group where the negative association was seen in all
regions (online Supplementary Fig. S4 and Table S22). Diazepam
equivalent dose was negatively associated with brain activity in 14
regions (online Supplementary Fig. S5 and Table S$23).
Imipramine equivalent dose was negatively associated with brain
activity in the MDD group (online Supplementary Fig. S4 and
Table S25) but not in the patient group (online Supplementary
Table S24).

Structural equation model for symptom severity, medication,
and brain activity

Base models for three groups are shown in online Supplementary
Figs. S6-S8. Based on these models, 16 possible models, including
brain activity in each region for each group, were compared
(online Supplementary Tables S26-S28). All models including
the relationship between brain activity and GAF score had a
path from brain activity to the GAF score. Of these, relationships
from brain activity to the GAF score were seen in the left IFGOp
for the BPD group (8=0.136, s.e. = 0.061, z =2.22, p = 0.027), and
the bilateral STG (right: #=0.112, s.e. = 0.054, z=2.09, p = 0.037;
left: f=0.162, s..=0.051, z=3.20, p=0.001) and MTG (right:
B=0.111, sk = 0.050, z=2.21, p = 0.027; left: B=0.168, s.E. = 0.045,
z=3.75, p<0.001), and the left SFG (8=0.100, s.t.=0.049, z=
2.06, p=0.039), IFGTr (#=0.109, s.t.=0.048, z=2.27, p=0.023),
and IFGOp (8=0.099, s =0.048, z=2.05 p=0.040) for the
MDD group (Fig. 5). For the relationship between brain activity
and task performance, the schizophrenia group had a path from
brain activity to task performance in 10 regions while the MDD
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SFGM. A thick line and shaded area indicate the fix effect of the relationship in each group and the standard error of the slope. Thin lines show trajectories of

repeated measurements for each participant.
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Fig. 5. Structural equation models for symptom severity, medication, and brain activity in the schizophrenia, bipolar disorder, and major depressive disorder
groups. The best fit models including brain activity in the left inferior frontal gyrus opercularis (L-IFGOp) are illustrated in (a) the schizophrenia, (b) bipolar disorder
(BPD), and (c) major depressive disorder (MDD) groups (*p <0.05, **p <0.01). To illustrate the models simply, the paths from age, gender, and 1Q were included but
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to task performance was a trend (p =0.088); although a model comparison showed this was the best model compared to the model including no association
between them. GAF, global assessment of functioning; CP, chlorpromazine; IMP, imipramine.

group had a path from task performance to brain activity in seven
regions out of eight. The results of model comparisons for the other
symptom severity scales are shown in online Supplementary Figs.
$9-S14 and Tables S29-S34.

Discussion

The present study investigated the relationship between the charac-
teristics of hemoglobin changes during a phonological VFT using
fNIRS and a wide range of demographic and clinical variables in
a large sample size including multiple disease spectra. Our results
showed that brain activity was affected by gender and age in a
curvilinear model and decreased over the prefrontal and temporal
cortical regions in the patient groups. However, activity timing was
not affected by demographic variables, medication dose, or symp-
tom severity, except for task performance. Within patients, the
schizophrenia spectrum group (UHR and schizophrenia groups)
had more delayed activity timing in the bilateral PFC.
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Considering the relationships between demographic variables
(age, gender, and premorbid 1Q) and medication dose in the
SEMs, significant relationships from brain activity to GAF score
were seen in the left IFGOp for the BPD group, and the bilateral
STG and MTG and the left SFG, IFGTr, and IFGOp for the
MDD group. To the best of our knowledge, this is the first study
to find a disease-specific relationship between brain signals and glo-
bal clinical severity in a large-scale sample considering the potential
effect of demographic variables and medication doses.

Among group comparisons, the patient groups had a shared
decrease of brain activity compared to the control group over
the measurement area. Previous fNIRS studies repeatedly reported
task-dependent activity over the prefrontal and temporal cortical
area in healthy participants that decreased in patients with psychi-
atric disorders (Chou et al., 2015a, 2015b; Koike et al., 2011, 2016;
Ohi et al, 2017; Takizawa et al.,, 2014). Comparable to studies
comparing two or more disease groups (Ohi et al., 2017; Suto
et al., 2004; Takizawa et al., 2014), the present findings showed
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similar decreases in brain activity in psychiatric diseases, suggest-
ing shared functional deficits in the PFC. We showed little
disease-specific differences in brain function; in fact, the variabil-
ity within a group was greater than the differences between dis-
ease groups. This pattern has also been observed in a
cross-disease comparison using resting-state functional MRI
(Nakamura et al, 2020). Neuroimaging case—control studies
have mostly relied on existing clinical categories that are consid-
ered to include the heterogeneity within a disease spectrum. In
the future, neuroimaging-based classification may shed some
light on new disease categories that may be more reliable in iden-
tifying brain pathologies.

The GLMMs showed that brain activity in the PFC is associated
with diazepam equivalent dose in the patient group as well as
biperiden in the schizophrenia group and imipramine in the
MDD group. These results are in line with previous studies show-
ing a negative correlation between brain activity and antidepressant
dose in MDD (Noda et al., 2012; Takamiya et al., 2017; Tomioka
et al, 2015), but not antipsychotic dose in schizophrenia (Koike
et al, 2011, 2013a, 2016). Since the medication dose was greater
in the schizophrenia, BPD, and MDD groups compared to the con-
trol and UHR, the reduced brain activity might be explained by
medication. However, the coefficients for medication in the
GLMMs and group differences in medication doses only partly
explain the group differences in the GLMM. We previously showed
that UHR individuals on medication had no difference in brain
activity compared to those without (Koike et al., 2011). In addition,
the prescription pattern was determined by diagnosis in a natural-
istic study and the medication dose in their stable conditions
reflects clinical severity. Thus, the effect of medication on brain
activity may not simply figure out.

Brain activity was positively associated with global functioning
using a comparison of SEMs while considering an association
between demographic and clinical variables. These results are in
line with previous investigations showing the negative association
between brain activity in the right PFC and HAM-D depressive
symptom (Fu et al, 2018) and the positive association with
YMRS mania symptom in BPD (Nishimura et al., 2015). Further,
previous studies have identified the negative association between
brain activity and the HAM-D depression score in MDD (Noda
et al,, 2012; Satomura et al., 2019). Since our findings using the
HAM-D and YMRS replicated the negative relationship between
brain activity in the right IFGOr and depressive symptom in the
BPD group, the fNIRS measurement during the VFT may be
more useful in identifying the severity of depression in BPD.
Although previous studies have observed an association between
GAF score and brain activity in the bilateral SFG and SFGM
(Koike et al., 2011, 2013a; Shimodera et al., 2012; Takizawa et al.,
2008), the patients with schizophrenia in our SEMs had no rela-
tionship in any region based on the GAF or PANSS scores. This
may be because the path from brain activity to the task perform-
ance, which was not seen in previous correlational analyses,
might ameliorate the relationship between brain activity and symp-
tom severity. Furthermore, we previously reported that patients
with first-episode psychosis exhibited an association between
brain activity and GAF scores at the 12-month follow-up measure-
ment but not at baseline (Koike et al., 2016), suggesting that the
patients with first-episode psychosis in the schizophrenia group
in this study may have ameliorated the association.

Several limitations should be stated. First, although we tested the
effect of medication in mixed model and SEM comparisons and
found a correlation between brain activity and clinical symptoms
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while considering the effect of medication, a causal relationship
should be confirmed using longitudinal measurements in a double-
blinded placebo-controlled trial. In addition, we were unable to test
drug-specific effects on brain activity in this naturalistic study. A pre-
vious study showed that antidepressant administration for
drug-naive patients with MDD had little effect on fNIRS brain activ-
ity; however, that study was unable to control the types of medica-
tion or use a placebo (Tomioka et al., 2015). Even in a naturalistic
setting, it is possible to estimate the effect of specific drug adminis-
tration (e.g. conventional antipsychotics, benzodiazepine, and lith-
ium) on brain activity, which in future studies may help clarify
the effect of a specific drug on cortical function. Second, since
most of the previous neuroimaging studies measured brain activity
for people in relatively stable conditions, it is unclear whether the
findings were from the characteristics or course of the illness. We
previously reported via a longitudinal measurement that fNIRS sig-
nals were relatively stable and did not change according to clinical
severity in schizophrenia (Koike et al., 2016) and MDD (Satomura
et al,, 2019). However, the signals could be affected by aging; future
studies should include longer follow-up periods.

Third, as discussed above, we did not observe a difference
between the disease spectra, and the variability within a group
and the overlap between groups was more pronounced compared
with the differences between the disease groups. This limitation is
still considered in psychiatric neuroimaging and genetic studies,
and the development of more sophisticated modalities for the
measurements of the human brain and neural activity, as well
as multimodal investigations to combine and control the charac-
teristics, is needed.

An analysis of this large and high-quality sample dataset
demonstrated that alterations in prefrontal brain activity were a
shared pathophysiology between schizophrenia, BPD, and
MDD, while delayed activity timing was seen only in the schizo-
phrenia spectrum. Even after controlling for various demographic
and clinical variables, a relationship between brain activity in the
PFC and symptom severity in the BPD and MDD groups was
revealed. The results suggest what characteristics affect brain
activity in the PFC and which set of demographic, clinical, and
biological variables might predict symptom severity in patients
with psychiatric disorders. Cross-disease mega neuroimaging
studies with optimal and high-quality clinical data may offer
new insights into finding common and disease-specific brain
pathologies and lead to a brain function-based recategorization
of disease spectra and treatment response.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/S0033291720004742.
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