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Symmetric Sequence Subspaces of C(α), II
Denny H. Leung and Wee-Kee Tang

Abstract. If α is an ordinal, then the space of all ordinals less than or equal to α is a compact Hausdorff space
when endowed with the order topology. Let C(α) be the space of all continuous real-valued functions defined
on the ordinal interval [0, α]. We characterize the symmetric sequence spaces which embed into C(α) for
some countable ordinal α. A hierarchy (Eα) of symmetric sequence spaces is constructed so that, for each

countable ordinal α, Eα embeds into C(ωω
α

), but does not embed into C(ωω
β

) for any β < α.

Let α be an ordinal. The ordinal interval [0, α] is a compact Hausdorff space in the
order topology. The space of all continuous real-valued functions on [0, α] is commonly
denoted by C(α). In [4], the symmetric sequence spaces which embed into C(ωω) are
characterized. This paper, which is a continuation of [4], gives a characterization of the
symmetric sequence spaces which embed into C(α) for some countable ordinal α. In [4],
it is shown that any Orlicz sequence space which embeds into C(α) for some countable or-
dinal α already embeds into C(ωω). Here, we construct a hierarchy of symmetric sequence
spaces (Eα)α<ω1 such that, for each countable ordinal α, Eα embeds into C(ωω

α

), but does

not embed into C(ωω
β

) for any β < α. Since, according to Bessaga and Pełczynski [2], if
α < β are countable infinite ordinals, then C(α) and C(β) are isomorphic if and only if
β < αω, (Eα) is a full hierarchy of mutually non-isomorphic symmetric sequence spaces
which embed into C(α) for some countable ordinal α. The authors thank the referee for
pointing out some errors in an earlier version of the paper, and for various suggestions for
improving the exposition.

For terms and notation concerning ordinal numbers and general topology, we refer
to [3]. The first infinite ordinal, respectively, the first uncountable ordinal, is denoted by
ω, respectively, ω1. Any ordinal is either 0, a successor, or a limit. If α is a successor ordi-
nal, denote its immediate predecessor by α − 1. If K is a compact Hausdorff space, C(K)
denotes the space of all continuous real-valued functions on K. It is a Banach space under
the norm ‖ f ‖ = supt∈K | f (t)|. If K is a topological space, its derived set K(1) is the set of
all of its limit points. A transfinite sequence of derived sets may be defined as follows. Let
K(0) = K. If α is an ordinal, let K(α+1) = (K(α))(1). Finally, for a limit ordinal α, we define
K(α) =

⋂
β<α K(β). The cardinality of a set A is denoted by |A|. By P∞(N), respectively,

P<∞(N), we mean the collection of all infinite, respectively, finite, subsets of N. These are
subsets of 2N, and consequently inherit the product topology. If A and B are nonempty
subsets of N, we say that A < B if max A < min B. We also allow that ∅ < A and A < ∅

for any A ⊆ N.
We follow standard Banach space terminology, as may be found in the book [5]. We

say that a Banach space is a sequence space if it is a vector subspace of the space of all real
sequences. Such is the case, for instance, when a Banach space E has a (Schauder) basis (ek),
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310 Symmetric sequence subspaces of C(α), II

i.e., every element x ∈ E has a unique representation x =
∑

akek for some sequence of
scalars (ak). Naturally, we identify every x ∈ E with the sequence (ak) used in its represen-
tation. If (ek) is a basis of a Banach space E, there is a unique sequence of bounded linear
functionals (e ′k) on E such that 〈e j , e ′k〉 = 1 if j = k, and 0 otherwise. The sequence (e ′k) is
called the sequence of biorthogonal functionals to the sequence (ek). It is a well known fact
that every x ′ ∈ E ′, the dual space of E, has a unique representation x ′ =

∑
ake ′k, where

the sum converges in the weak∗ topology on E ′. Therefore, E ′ may also be regarded as a
sequence space. If (e ′k) is a basis of E ′ (so that the foregoing sum actually converges in norm
for every x ′ ∈ E ′), then the basis (ek) is said to be shrinking. If x is an element of a sequence
space, let supp x be the set of all coordinates k at which x is nonzero. The vector space con-
sisting of all finitely supported real sequences is denoted by c00. Given a real null sequence
a = (an), let a∗ = (a∗n ) be the decreasing rearrangement of (|an|). A basis (ek) of a Banach
space is unconditional if

∑
εkakek converges for every choice of signs (εk) whenever

∑
akek

converges. A basis (ek) is subsymmetric if it is unconditional and
∑

a jek j converges for ev-
ery subsequence (ek j ) whenever

∑
akek converges. It is symmetric if

∑
akeπ(k) converges

for every permutation π on N whenever
∑

akek converges. A symmetric basis is necessarily
unconditional [5, Section 3a]. We say that it is 1-symmetric (respectively, 1-subsymmetric)
if ‖
∑
εkakeπ(k)‖ = ‖

∑
akek‖ for every choice of signs (εk), and every permutation π on

N (respectively, every increasing function π : N → N). Examples of Banach spaces with
1-symmetric bases are `p (1 ≤ p <∞), and c0. These norms are defined by

‖(ak)‖p =
(∑

|ak|
p
) 1

p
and ‖(ak)‖∞ = sup |ak|

respectively. A sequence (xk) in a Banach space is normalized if ‖xk‖ = 1 for all k. Given two
sequences (xk) and (yk) in possibly different Banach spaces, we say that they are equivalent
if there is a finite positive constant C such that

C−1
∥∥∥∑ akxk

∥∥∥ ≤ ∥∥∥∑ ak yk

∥∥∥ ≤ C
∥∥∥∑ akxk

∥∥∥
for every finitely supported sequence (ak). Two Banach spaces E and F are said to be iso-
morphic if they are linearly homeomorphic. We say that E embeds into F, E ↪→ F, if E is
isomorphic to a subspace of F.

Throughout the rest of the paper, for each countable limit ordinal α, fix a sequence of

ordinals (αn) which strictly increases to α. In [4], the family (A f
α) of subsets of P<∞(N) is

introduced. If f : N→ N is strictly increasing, let

A
f
0 = {A ⊆ N : max A ≤ f (min A)} ∪ {∅}.

For a countable ordinal α, let

A
f
α+1 = {A =

n⋃
i=1

Ai : A1 < · · · < An, Ai ∈ A f
α, n ≤ f (min A)}.

If α < ω1 is a limit ordinal, recall the sequence (αn) chosen above. Set

A f
α = {A : there exists n ≤ f (min A) such that A ∈ A f

αn
}.

The results in [4] yield the following fact.
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Proposition 1 Let E be a Banach space with an unconditional basis (en) such that E embeds
into C(ωω

α

) for some α < ω1. Then there exist an increasing function f : N → N, and a
constant K <∞ such that for all x =

∑
anen ∈ E,

‖x‖ ≤ K sup
{∥∥∥∑

n∈A

anen

∥∥∥ : A ∈ A f
α

}
.

The definition of the family (A f
α) is modelled on the definition of the well known

Schreier family (S f
α ) [1], [7]. The Schreier set S

f
0 = {A ⊆ N : |A| ≤ 1}. The induc-

tive steps defining S
f
α are exactly the same as in the definition for (A f

α) (with A replaced by
S). We will need a slight modification of Proposition 1. The next lemma is easily proved by
induction.

Lemma 2 Let α be a countable ordinal, and let f : N → N be an increasing function. If

h : N→ N is an increasing function such that h(n+1) > f
(
h(n)
)

for all n, then A∩h(N) ∈ S
f
α

for all A ∈ A
f
α.

Proposition 3 Let E be a Banach space with a 1-subsymmetric basis (en) such that E embeds
into C(ωω

α

) for someα < ω1. Then there exist an increasing function f : N→ N, and K <∞
such that for all x =

∑
anen ∈ E,

‖x‖ ≤ K sup
{∥∥∥∑

n∈A

anen

∥∥∥ : A ∈ S f
α

}
.

Proof By Proposition 1, there exist an increasing function f̃ : N → N, and a constant
K <∞ such that for all x =

∑
anen ∈ E,

‖x‖ ≤ K sup
{∥∥∥∑

n∈A

anen

∥∥∥ : A ∈ A f̃
α

}
.

Let h : N → N be an increasing function such that h(n + 1) > f̃
(
h(n)
)

for all n. Define
y =
∑

aneh(n). Then

‖x‖ = ‖y‖ ≤ K sup
{∥∥∥(∑ aneh(n)

)
χA

∥∥∥ : A ∈ A f̃
α

}
= K sup

{∥∥∥(∑ aneh(n)

)
χh(N)∩A

∥∥∥ : A ∈ A f̃
α

}
≤ K sup

{∥∥∥∑
n∈A

anen

∥∥∥ : h(A) ∈ S f̃
α

}
by Lemma 2

≤ K sup
{∥∥∥∑

n∈A

anen

∥∥∥ : A ∈ S f̃◦h
α

}
.

The proposition follows by taking f = f̃ ◦ h.
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1 Norming sets

In this section, we show that if E is a symmetric sequence space which embeds into some
C(ωω

α

), then the norm on E can be isomorphically generated by a norming subset of E ′ of
a particular type. Recall that a subset W of E ′ is isomorphically norming if W is bounded
and there exists K > 0 such that K‖x‖ ≤ supx ′∈W |〈x, x

′〉| for all x ∈ E. We begin with the
following definitions. Let g : N → R+ be a nondecreasing function such that lim

n→∞
g(n) =

∞. Define

C
g
0 = {x ∈ c00 : ‖x‖∞ ≤ 1, | supp x| ≤ 1}.

If α is a successor ordinal, let

Cg
α =
{

x =
n∑

i=1

xi : xi ∈ C
g
α−1, (xi) pairwise disjoint, and g(n)‖x‖∞ ≤ 1

}
,

If α is a limit ordinal, recall the sequence (αn) chosen in the introduction. Define C
g
α =

{x : x ∈ C
g
αn , g(n)‖x‖∞ ≤ 1}. It is easy to see that C

g
α is a symmetric set, i.e., it is invariant

under permutations of the coordinates.
Let E be a sequence space that admits a normalized 1-symmetric shrinking basis which is

not equivalent to the unit vector basis of c0. We represent both E and E ′ naturally as spaces
of real sequences. Denote the (closed) unit balls of E and E ′ by UE and UE ′ respectively.

Lemma 4 Given an increasing function f : N→ N and numbers δ, η such that 0 < δ < 1,
η > 0, there exists a nondecreasing function g : N → R+, lim

n→∞
g(n) = ∞, such that if

a = a∗ = (an) ∈ UE, b = (bn) ∈ UE ′ , |〈a, bχA〉| ≥ η for some A ∈ P<∞(N), there exists c
such that |c| ≤ |bχA|, ‖c‖∞g

(
f (min A)

)
≤ 1 and |〈a, c〉| ≥ δ|〈a, bχA〉|.

Proof Define λ(n) = ‖(

n︷ ︸︸ ︷
1, 1, . . . , 1)‖E and µ(n) = ‖

n︷ ︸︸ ︷
(1, 1, . . . , 1) ‖E ′ . Since the basis for

E is shrinking but not equivalent to the c0-basis, λ(n) → ∞ and µ(n) → ∞ as n → ∞.
Therefore, there exists a nondecreasing function g : N→ R+, lim

n→∞
g(n) =∞, such that for

every k ∈ N,

g
(

f (k)
)
≤

{
1 if b(1− δ)ηλ(k)c = 0
1
2µ
(
b(1− δ)ηλ(k)c

)
otherwise,

where b·c is the greatest integer function. Let a, b and A be given that satisfy the hy-
potheses, and let m = min A. If b(1− δ)ηλ(m)c = 0, let ε = 1; otherwise, let ε =
2/µ
(
b(1− δ)ηλ(m)c

)
. Consider B = {n ∈ A : |bn| > ε}. In the first case, B = ∅. In the

second case,

1 ≥ ‖b‖ ≥ ‖bχB‖ ≥ εµ(|B|),

which implies that

µ(|B|) ≤
1

ε
=

1

2
µ
(
b(1− δ)ηλ(m)c

)
< µ
(
b(1− δ)ηλ(m)c

)
.
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Consequently, |B| < (1− δ)ηλ(m) as µ is nondecreasing. Also,

1 ≥ ‖a‖ ≥ ‖(

m︷ ︸︸ ︷
|am|, . . . , |am|)‖ = |am|λ(m).

Therefore, ‖aχA‖∞ = |am| ≤
1
λ(m) . Let c = bχA\B. Then |c| ≤ |bχA| and

‖c‖∞g
(

f (min A)
)
≤ εg

(
f (m)
)

. If b(1− δ)ηλ(m)c = 0, then ε = 1 and g
(

f (m)
)
≤ 1;

hence εg
(

f (m)
)
≤ 1. Otherwise,

εg
(

f (m)
)
≤

2

µ
(
b(1− δ)ηλ(m)c

) · 1

2
µ
(
b(1− δ)ηλ(m)c

)
= 1.

Finally,

|〈a, c〉| ≥ |〈a, bχA〉| − |〈a, bχB〉|

≥ |〈a, bχA〉| − ‖aχB‖∞ |B|

≥ |〈a, bχA〉| − ‖aχA‖∞ |B|

≥ |〈a, bχA〉| −
1

λ(m)
· (1− δ)ηλ(m)

≥ δ|〈a, bχA〉|.

Lemma 5 Let h, and gn, n ∈ N, be nondecreasing functions from N into R+ such that
lim

k→∞
h(k) = lim

k→∞
gn(k) = ∞ for all n. There exists a nondecreasing function g : N → R+,

limk→∞ g(k) = ∞, such that g ≤ h, and d ∈ C
g
α whenever α < ω1, and d ∈ C

gn
α for some n

satisfying ‖d‖∞h(n) ≤ 1.

Proof There exist 0 = m0 < m1 < m2 < · · · ∈ N and a nondecreasing function g ′ : N →
R+ such that lim

k→∞
g ′(k) = ∞, and g ′(k) ≤ min{g1(k), . . . , gi(k)} whenever mi−1 < k ≤

mi , i ∈ N. Now choose a nondecreasing function g : N → R+ such that lim
k→∞

g(k) = ∞,

g ≤ g ′, and g(mi) ≤ h(i) for all i ∈ N. Clearly, g ≤ h.
We claim that the function g satisfies the remaining condition of the lemma. The proof

is by induction on α. If α = 0, there is nothing to prove. Suppose the claim is true for some
α < ω1. Assume that d ∈ C

gn

α+1, and ‖d‖∞h(n) ≤ 1. We can write d = d1 + · · · + dl, where
d1, . . . , dl are pairwise disjoint elements of C

gn
α , and ‖d‖∞gn(l) ≤ 1. Since ‖d j‖∞h(n) ≤

‖d‖∞h(n) ≤ 1, d j ∈ C
g
α by the inductive hypothesis. Choose i so that mi−1 < l ≤ mi , then

g(l) ≤ min{g1(l), . . . , gi(l)}. If n ≤ i, then ‖d‖∞g(l) ≤ ‖d‖∞gn(l) ≤ 1. Otherwise, i < n;
hence ‖d‖∞g(l) ≤ ‖d‖∞g(mi) ≤ ‖d‖∞h(i) ≤ ‖d‖∞h(n) ≤ 1. Therefore d ∈ C

g
α+1.

Finally, suppose that α is a limit ordinal and that the claim holds for all ordinals β < α.
Assume that d ∈ C

gn
α , and ‖d‖∞h(n) ≤ 1. Let (α j) be the sequence used to define C

gn
α and

C
g
α. By definition, d ∈ C

gn
α implies d ∈ C

gn
α j for some j such that ‖d‖∞gn( j) ≤ 1. By the

inductive hypothesis, d ∈ C
g
α j . Choose i such that mi−1 < j ≤ mi . If n ≤ i, then

‖d‖∞g( j) ≤ ‖d‖∞g ′( j) ≤ ‖d‖∞gn( j) ≤ 1.
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On the other hand, if i < n, then

‖d‖∞g( j) ≤ ‖d‖∞g(mi) ≤ ‖d‖∞h(i) ≤ ‖d‖∞h(n) ≤ 1.

Hence d ∈ C
g
α j , and ‖d‖∞g( j) ≤ 1. Consequently, d ∈ C

g
α. This completes the proof of

the claim.

Proposition 6 Given an increasing function f : N→ N, 0 < δ < 1, η > 0, and a countable
ordinal α, there exists a nondecreasing function g : N → R+, lim

n→∞
g(n) = ∞, such that if

a = a∗ = (an) ∈ UE, b = (bn) ∈ UE ′ , A ∈ S
f
α , and |〈a, bχA〉| ≥ η, then there is a c ∈ C

g
α,

|c| ≤ |bχA|, ‖c‖∞g
(

f (min A)
)
≤ 1 and |〈a, c〉| ≥ δ|〈a, bχA〉|.

Proof We will prove the proposition by induction on α. Consider first the case when
α = 0. Choose g by Lemma 4. If a, b and A are given as in the hypothesis, there exists c

such that |c| ≤ |bχA|, ‖c‖∞g
(

f (min A)
)
≤ 1 and |〈a, c〉| ≥ δ|〈a, bχA〉|. Since A ∈ S

f
0 ,

|A| ≤ 1. Thus, it follows from the fact that |c| ≤ |bχA| that | supp c| ≤ 1. As ‖b‖∞ ≤ 1,
the same inequality also shows that ‖c‖∞ ≤ 1. Therefore, c ∈ C

g
0, as desired.

Suppose the proposition holds for some α < ω1. Choose a function h by Lemma 4
corresponding to f , 3

√
δ, and η. For each n ∈ N, choose a function gn by the inductive

hypothesis (for the ordinal α) corresponding to f , 3
√
δ, and η 3

√
δ (1 − 3

√
δ )/n. Finally,

apply Lemma 5 with the functions h and (gn) to obtain a function g. Let a = a∗ ∈ UE,

b ∈ UE ′ and A ∈ S
f
α+1 be given so that |〈a, bχA〉| ≥ η. There exists c, |c| ≤ |bχA|,

‖c‖∞h
(

f (min A)
)
≤ 1, such that |〈a, c〉| ≥ 3

√
δ |〈a, bχA〉|. Let n = f (min A). Since

A ∈ S
f
α+1, A = A1 ∪ · · · ∪ Ak, where A1 < · · · < Ak, A1, . . . ,Ak ∈ S

f
α , and k ≤ n. Let I be

the set of the indices i such that |〈a, cχAi〉| ≥ η
3
√
δ (1− 3

√
δ )/n, and let B =

⋃
i∈I Ai . Then

|〈a, cχB〉| ≥ |〈a, cχA〉| − (k− |I|)η
3
√
δ (1−

3
√
δ )/n

≥
3
√
δ |〈a, bχA〉| −

3
√
δ (1−

3
√
δ )η ≥ δ2/3|〈a, bχA〉|.

By choice of gn, for each i ∈ I, there exists di ∈ C
gn
α , |di| ≤ |cχAi |, ‖di‖∞gn

(
f (min Ai)

)
≤ 1,

and |〈a, di〉| ≥
3
√
δ |〈a, cχAi 〉|. Define d =

∑
i∈I sgn〈a, di〉di . Now sgn〈a, di〉di ∈ C

gn
α , and

‖ sgn〈a, di〉di‖∞h(n) ≤ ‖c‖∞h(n) ≤ 1.

Hence sgn〈a, di〉di ∈ C
g
α by the choice of the function g. Note that

‖d‖∞g(k) ≤ ‖d‖∞g(n) ≤ ‖c‖∞g(n) ≤ ‖c‖∞h(n) ≤ 1.

In particular, d ∈ C
g
α+1. Clearly, |d| ≤ |bχA|. Also,

|〈a, d〉| =
∑
i∈I

|〈a, di〉|

≥
3
√
δ
∑
i∈I

|〈a, cχAi 〉|

≥
3
√
δ |〈a, cχB〉|

≥ δ|〈a, bχA〉|.
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Finally, suppose that α < ω1 is a limit ordinal and the proposition holds for all β < α.

Let (αn) be the sequence used in defining C
g
α and S

f
α . Apply Lemma 4 with f ,

√
δ, and η

to obtain a function h. Then, for each n, apply the inductive hypothesis with f ,
√
δ,
√
δ η,

and the ordinal αn to obtain a function gn. Again, choose a function g corresponding to h
and (gn) by Lemma 5.

Let a, b, and A be given satisfying the hypothesis of the proposition for the ordinal α.

By definition, A ∈ S
f
α implies that A ∈ S

f
αn for some n ≤ f (min A). By the choice of the

function h, we can find a c such that |c| ≤ |bχA|, ‖c‖∞h
(

f (min A)
)
≤ 1 and |〈a, c〉| ≥

√
δ |〈a, bχA〉|. Similarly, because of the choice of the function gn, there exists d such that
|d| ≤ |cχA|, ‖d‖∞gn

(
f (min A)

)
≤ 1, d ∈ C

gn
αn and |〈a, d〉| ≥

√
δ |〈a, cχA〉| ≥ δ|〈a, bχA〉|.

Then |d| ≤ |cχA| ≤ |bχA|. Since d ∈ C
gn
αn , and ‖d‖∞h(n) ≤ ‖c‖∞h

(
f (min A)

)
≤ 1, it

follows from the choice of g that d ∈ C
g
αn . Observe that

‖d‖∞g(n) ≤ ‖d‖∞h(n) ≤ ‖c‖∞h
(

f (min A)
)
≤ 1.

Therefore, d ∈ C
g
α. Finally,

‖d‖∞g
(

f (min A)
)
≤ ‖d‖∞h

(
f (min A)

)
≤ 1.

This proves the proposition.

Theorem 7 Let E be a Banach space with a normalized 1-symmetric basis. Suppose E em-
beds into C(ωω

α

) for some α < ω1. Then there exists a nondecreasing function g : N → R+,
lim

n→∞
g(n) =∞ such that UE ′ ∩ C

g
α is an isomorphically norming subset of E ′.

Proof If E = c0, the result is obvious; hence we may assume that E 6= c0. Since E em-
beds into C(ωω

α

), any normalized 1-symmetric basis of E must be shrinking. According to
Proposition 3, there exist an increasing function f : N → N, and a finite constant K such
that for all x ∈ E,

‖x‖E ≤ K sup{‖xχA‖E : A ∈ S f
α}.

Given x ∈ E ∩ c00, ‖x‖E = 1, pick A ∈ S
f
α such that

1 = ‖x‖E = ‖x
∗‖E ≤ K‖x∗χA‖E.

Now choose x ′ ∈ UE ′ such that 1 ≤ K|〈x∗, x ′χA〉|. Let g be the function given by applying
Proposition 6 with the function f , δ = 1/2, and η = 1/K. It follows that there exists a y ′,
y ′ ∈ C

g
α, |y ′| ≤ |x ′χA|, and

|〈x∗, y ′〉| ≥
1

2
|〈x∗, x ′χA〉| ≥

1

2K
.

Since x ′ ∈ UE ′ and |y ′| ≤ |x ′χA|, we see that y ′ ∈ UE ′ . Thus y ′ ∈ UE ′ ∩ C
g
α. Since

UE ′ ∩C
g
α is a symmetric set, this proves that UE ′ ∩C

g
α is an isomorphically norming subset

of E ′, as desired.
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2 A characterization theorem

In this section, we prove the converse of Theorem 7 (see Theorem 16). Given a nondecreas-
ing function g : N → R+ such that lim

n→∞
g(n) = ∞, and a pointwise compact subset F of

c00 such that |x|χA ∈ F whenever x ∈ F and A ∈ P<∞(N), define

g(F) =
{

x =
n∑

i=1

xi : xi ∈ F, (xi) pairwise disjoint, and g(n)‖x‖∞ ≤ 1
}
.

If x =
∑n

i=1 xi as in the foregoing definition, we say that
∑n

i=1 xi is an admissible represen-
tation of x.

Lemma 8 The set G = g(F) is pointwise compact.

Proof It suffices to show that G is pointwise closed. Let (x j) be a sequence in G converging
pointwise to some nonzero x. By the definition of g(F), for each j, there exists a pairwise
disjoint sequence (x j,i)

n j

i=1 in F such that x j =
∑n j

i=1 x j,i , and g(n j)‖x j‖∞ ≤ 1. Now
lim inf ‖x j‖∞ ≥ ‖x‖∞. Therefore, lim sup g(n j) ≤ 1/‖x‖∞. In particular, it follows that
(n j) is a bounded sequence. By using a subsequence, we may assume that there is a constant
n such that n j = n for all j. As a result, we may represent x j as

x j =

n∑
i=1

x j,i .

Since x j,i ∈ F and F is compact, we may assume that lim
j→∞

x j,i = zi ∈ F exists. Then

x =
∑n

i=1 zi . It is clear that (zi)n
i=1 is a pairwise disjoint sequence. It follows from the above

that g(n)‖x‖∞ ≤ 1. Hence x ∈ G, as required.

The proof of Lemma 8 shows the following:

Lemma 9 Let (x j) be a sequence in G converging to a nonzero vector x. Suppose each x j has
an admissible representation

∑n j

i=1 x j,i . Then there exist M ∈ P∞(N) and n ∈ N such that
n j = n for all j ∈ M, zi = lim

j∈M
x j,i exists for 1 ≤ i ≤ n, and x =

∑n
i=1 zi is an admissible

representation of x.

Definition 10 For x ∈ F, define the degree of x by

deg(x) = sup{β : x ∈ F(β)}.

Ifα is an ordinal, it can be expressed uniquely in its Cantor canonical formα = ωα1 ·m1+
· · ·+ωαk ·mk, whereα1 > · · · > αk, and m1, . . . ,mk ∈ N. We say that the αi-th component
of α is mi , 1 ≤ i ≤ k; whereas the γ-th component of α is 0 if γ /∈ {α1, . . . , αk}. If α and
β are two ordinals, let α ⊕ β be the unique ordinal each of whose γ-th component is the
sum of the γ-th components of α and β. The operation ‘⊕’ may be extended to any finite
number of ordinals in an obvious fashion. It is clear that α ⊕ β < ω1 if both α and β are
countable. The proof of the next proposition is left to the reader.
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Proposition 11 Let (αi)n
i=1 and (βi)n

i=1 be two sequences of ordinals. If αi ≥ βi for each i,
and
⊕n

i=1 βi ≥
⊕n

i=1 αi , then αi = βi for every i.

Proposition 12 Suppose that x is a nonzero vector in G(α) for some α < ω1. If x =
∑n

i=1 zi

is an admissible representation of x, then
⊕n

i=1 deg(zi) ≥ α.

Proof If α = 0, there is nothing to prove. Suppose that the proposition is true for all
ordinals less than some α < ω1. First consider the case when α is a successor ordinal. Let x
be a nonzero vector in G(α). There exists a sequence (x j) ⊆ G(α−1) \ {x} that converges to
x. By Lemma 9, we may assume that there exists n ∈ N such that each x j has an admissible
representation x j =

∑n
i=1 x j,i , that lim

j
x j,i = zi for each i, and x =

∑n
i=1 zi is an admissible

representation of x. By taking a subsequence if necessary, we may further assume that
lim

j
deg(x j,i) = αi exists for each i, and deg(x j,i) ≤ αi for all j. Since x j,i → zi , deg(zi) ≥

αi . Now
⊕n

i=1 deg(x j,i) ≥ α − 1 by the inductive hypothesis. Of course,
⊕n

i=1 deg(zi) ≥⊕n
i=1 αi ≥ α−1. Suppose that

⊕n
i=1 deg(zi) = α−1 ≤

⊕n
i=1 deg(x j,i). By Proposition 11,

deg(zi) = deg(x j,i) for all i, j. But since lim
j

x j,i = zi , deg(x j,i) = deg(zi) would imply that

x j,i = zi for all large j. Consequently, x j = x for all large j, which is a contradiction.
Therefore

⊕n
i=1 deg(zi) ≥ α.

Finally, consider the case when α is a limit ordinal. Let x ∈ G(α) =
⋂
β<α G(β). Sup-

pose x =
∑n

i=1 zi is an admissible representation of x. Since x ∈ G(β) for all β < α,⊕n
i=1 deg(zi) ≥ β for all β < α by the inductive hypothesis. Consequently,

⊕n
i=1 deg(zi) ≥

α.

We now proceed to apply the foregoing analysis to the sets C
g
α defined in Section 1.

Lemma 13 Let α < ω1, then C
g
α is pointwise compact.

Proof The assertion is clear for α = 0. Suppose that the lemma has been proved for all
ordinals less than some α < ω1. If α is a successor ordinal, a glance at the definitions shows
that C

g
α = g(Cg

α−1). It follows from Lemma 8 that C
g
α is pointwise compact.

Suppose that α is a limit ordinal, and let (αn) be the sequence of ordinals used in defin-
ing C

g
α. Let (xk) be a sequence in C

g
α converging pointwise to a vector x. If x = 0, then

certainly x ∈ C
g
α. Thus we may assume that x 6= 0. For each k, let nk ∈ N be such that xk ∈

C
g
αnk

, and g(nk)‖xk‖∞ ≤ 1. Since lim infk ‖xk‖∞ ≥ ‖x‖∞, lim supk g(nk) ≤ 1/‖x‖∞.
This implies that (nk) is bounded. By taking a subsequence if necessary, we may assume

that nk = n for all k. Then xk ∈ C
g
αn for all k. Since C

g
αn is compact, x ∈ C

g
αn . Moreover, as

g(n)‖x‖∞ = g(nk)‖x‖∞ ≤ 1, we conclude that x ∈ C
g
α.

Lemma 14 Suppose α < ω1 is a limit ordinal, and let (αn) be the sequence of ordinals used
to define C

g
α. Then for any ordinal β < ω1,

(Cg
α)(β) ⊆ {x : x ∈ (Cg

αn
)(β) for some n such that g(n)‖x‖∞ ≤ 1} ∪ {0}.
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Proof The proof is by induction on β. If β = 0, there is nothing to prove. Suppose the
lemma is true for some ordinal β < ω1. Let x ∈ (Cg

α)(β+1), x 6= 0. Then there exists
a sequence (xk) ⊆ (Cg

α)(β) \ {x} converging pointwise to x. By the inductive hypothesis,
xk ∈ (Cg

αnk
)(β) for some nk such that g(nk)‖xk‖∞ ≤ 1. Now lim inf ‖xk‖∞ ≥ ‖x‖∞.

Therefore,

1 ≥ lim sup
k

g(nk)‖xk‖∞ ≥ lim sup
k

g(nk)‖x‖∞.

Hence (nk) is bounded. By going to a subsequence, we may assume that nk = n for all k,
and g(n)‖x‖ ≤ 1. Since (xk) ⊆ (Cg

αn )(β) \ {x} and (xk) converges to x, x ∈ (Cg
αn )(β+1).

Suppose β < ω1 is a limit ordinal and the lemma holds for all β ′ < β. Let x ∈ (Cg
α)(β),

x 6= 0, and let (βn) be a sequence of ordinals strictly increasing to β. Choose a sequence
(xn) such that xn ∈ (Cg

α)(βn) for each n, and lim
n→∞

xn = x in the topology of pointwise

convergence. By the inductive hypothesis, xn ∈ (Cg
αkn

)(βn), where g(kn)‖xn‖∞ ≤ 1. As
before, we may assume without loss of generality that kn = k and g(k)‖x‖∞ ≤ 1. Then
xn ∈ (Cg

αk )(βn) for all n. Since lim
n→∞

xn = x and (βn)↗ β, x ∈ (Cg
αk )(β). This completes the

induction.

Proposition 15 If α < ω1, then (Cg
α)(ωα) ⊆ {0}.

Proof It is easy to verify that the proposition is true for α = 0. We now suppose the
proposition has been proved for all α < β, where β < ω1. Consider first the case when

β is a successor. Let x ∈ (Cg
β)(ωβ ) =

(
g(Cg

β−1)
)(ωβ )

, x 6= 0. Applying Proposition 12 with

F = C
g
β−1, x has an admissible representation x =

∑n
i=1 zi such that

⊕n
i=1 deg(zi) ≥ ωβ .

But by the inductive hypothesis, (Cg
β−1)(ωβ−1) ⊆ {0}; hence deg(zi) ≤ ωβ−1 for all i.

Consequently,

ωβ ≤
n⊕

i=1

deg(zi) ≤ ω
β−1 · n,

which is a contradiction.
Suppose that β is a limit ordinal. Let (βn) be the sequence used to define C

g
β . By

Lemma 14,

(Cg
β)(ωβ ) ⊆ {x : x ∈ (Cg

βn
)(ωβ ) for some n such that g(n)‖x‖∞ ≤ 1} ∪ {0}.

But (Cg
βn

)(ωβ ) = ∅ by the inductive hypothesis. Hence (Cg
β)(ωβ ) ⊆ {0}.

Theorem 16 Let E be a Banach space with a normalized 1-symmetric basis. Then E embeds
into C(ωω

α

) for some α < ω1 if and only if there exists a nondecreasing function g : N→ R+,
lim

n→∞
g(n) =∞, such that UE ′ ∩ C

g
α is an isomorphically norming subset of E ′.
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Proof Suppose that such a function g exists. Since UE ′ ∩ C
g
α is pointwise compact, and

(UE ′ ∩ C
g
α)(ωα) ⊆ (Cg

α)(ωα) ⊆ {0} by Proposition 15, UE ′ ∩ C
g
α is homeomorphic to an

ordinal interval [0, β] for some β ≤ ωω
α

. Now UE ′ ∩ C
g
α is isomorphically norming.

Therefore,

E ↪→ C(UE ′ ∩ Cg
α) ↪→ C(β) ↪→ C(ωω

α

).

The converse is precisely Theorem 7 in Section 1.

3 A family of examples

The aim of this section is to construct a full complement of mutually non-isomorphic 1-
symmetric sequence spaces which embed into C(α) for some α < ω1. Let us define the fol-
lowing terms and operations on finite sequences of natural numbers. If m = (m1, . . . ,mi)
and n = (n1, . . . , n j) are finite sequences of natural numbers, let

1. ϕ(m) = m1 (the leading term of the sequence),
2. m^ n = (m1, . . . ,mi , n1, . . . , n j) (the concatenation of m and n).

Also, we say that m � n if 2mi ≤ n1, and that m is at least doubling if 2ml ≤ ml+1,
1 ≤ l < i. Now define M1 = {(m) : m ∈ N}. For 1 ≤ α < ω1, let

Mα+1 = {m1 ^ · · ·^ mk : m1, . . . ,mk ∈Mα, m1 � · · · � mk, and k ≤ ϕ(m1)}.

If α < ω1 and α is a limit ordinal, recall the sequence (αn) chosen in the introduction.
Define

Mα = {m : there exists n ∈ N, n ≤ ϕ(m) such that m ∈Mαn}.

It is easily verified that any m ∈Mα, 1 ≤ α < ω1, is at least doubling.

Definition 17 Let 1 ≤ α < ω1, if m = (m1, . . . ,ml) is a finite sequence of integers, we
let Xm be the set of all x ∈ c00 such that there exist pairwise disjoint sets A1, . . . ,Al ⊆ N,
|Ai| = mi , 1 ≤ i ≤ l, and

x =
l∑

i=1

1
√

mi
χAi .

Moreover, define Gα = ∪{Xm : m ∈Mα}.

Lemma 18 Let g : N→ R+ be defined by g(n) =
√

n. Then Gα ⊆ C
g
α for 1 ≤ α < ω1.

Proof The proof is by induction on α. Suppose x ∈ G1. There exist (m) ∈ M1, A ⊆ N,
|A| = m such that x = 1√

m
χA. Let xi =

1√
m
χ{ni}, 1 ≤ i ≤ m, where A = {n1, . . . , nm}.

Then x =
∑m

i=1 xi and xi ∈ C
g
0. Moreover, g(m)‖x‖∞ =

√
m 1√

m
= 1. Hence x ∈ C

g
1.
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Suppose now that Gα ⊆ C
g
α for some 1 ≤ α < ω1. Let x ∈ Gα+1. There exist m =

(m1, . . . ,ml) ∈Mα+1, and pairwise disjoint sets A1, . . . ,Al ⊆ N, |Ai | = mi , such that

x =
l∑

i=1

1
√

mi
χAi

Since m ∈ Mα+1, we may write m = r1 ^ · · · ^ rn for some r1, . . . , rn ∈ Mα such
that n ≤ ϕ(r1) = m1. Let I j = {i : mi is a coordinate of r j}. Then since r j ∈ Mα,
x j =

∑
i∈I j

1√
mi
χAi ∈ Gα. Now (x j)n

j=1 is pairwise disjoint and x j ∈ C
g
α by the inductive

hypothesis. Note that x =
∑n

i=1 x j and ‖x‖∞ =
1√
m1

. Therefore, g(n)‖x‖∞ =
g(n)√

m1
≤

g(n)√
n
= 1. Hence x ∈ C

g
α+1.

Finally, suppose that α < ω1 is a limit ordinal and Gβ ⊆ C
g
β for all β < α. Let (αn)

be the sequence used in defining Gα and C
g
α. Suppose x ∈ Gα, then there exists m =

(m1, . . . ,ml) ∈ Mα such that x ∈ Xm. Since m ∈Mα, there exists n ≤ ϕ(m) such that
m ∈ Mαn . Thus x ∈ Gαn and consequently, x ∈ C

g
αn . As n ≤ ϕ(m) = m1, we see that

g(n)‖x‖∞ ≤ g(m1) 1√
m1
= 1. Hence x ∈ C

g
α, as required

Lemma 19 Given 1 ≤ α < ω1, define a norm on c00 by

‖y‖α = sup{〈|y|, x〉 : x ∈ Gα}.

Then ‖ · ‖α is a 1-symmetric norm on c00, and ‖(1, 0, 0, . . . )‖α = 1.

Proof By definition, Gα is invariant under permutation of the coordinates. Therefore,
‖ · ‖α is 1-symmetric. Also, every element of Gα has `∞-norm at most 1. Hence
‖(1, 0, 0, . . . )‖α ≤ 1. On the other hand, the singleton (1) lies in Mα for every 1 ≤ α < ω1.
Thus (1, 0, 0, . . . ) ∈ Gα. Consequently,

‖(1, 0, 0, . . . )‖α ≥ 〈(1, 0, 0, . . . ), (1, 0, 0, . . . )〉 = 1.

Lemma 20 Given n ∈ N, let 1n = (

n︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . . ). Then for every 1 ≤ α < ω1,

‖1n‖α ≤ 5
√

n.

Proof Suppose x ∈ Gα. There exist m = (m1, . . . ,ml) ∈Mα, and pairwise disjoint sets
A1, . . . ,Al ⊆ N, |Ai| = mi , such that

x =
l∑

i=1

1
√

mi
χAi .

Choose l1 such that m1 +· · ·+ml1−1 < n ≤ m1 +· · ·+ml1 , and let k = n−(m1 +· · ·+ml1−1).
Then

〈1n, x〉 ≤ 〈1n, x
∗〉 ≤

√
m1 +

√
m2 + · · · +

√
ml1−1 +

k
√

ml1

.
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Since m is at least doubling,

〈1n, x〉 ≤
√

ml1−1

(
1 +

1
√

2
+

1
√

22
+ · · ·

)
+

k
√

ml1

≤

√
2n

√
2− 1

+

√
kn
√

ml1

.

Hence,

〈1n, x〉√
n
≤

√
2

√
2− 1

+

√
k

ml1

≤

√
2

√
2− 1

+ 1 ≤ 5.

As a result, ‖1n‖α = sup{〈1n, x〉 : x ∈ Gα} ≤ 5
√

n.

The next proposition is due to Odell, Tomczak-Jaegermann, and Wagner [7, Proposi-
tion 3.2a].

Proposition 21 Given β ≤ α < ω1, and an increasing function f : N → N, there exists

i ∈ N such that A ∈ S
f
α whenever A ∈ S

f
β and min A ≥ i.

Proposition 22 Let f : N → N be an increasing function. Given any k ≥ 2, and 1 ≤ β <
α < ω1, there exist m ∈ Mα, ϕ(m) ≥ k, x ∈ Xm, min(supp x) ≥ k, and y ∈ c00 such that
min(supp y) ≥ k, 〈y, x〉 ≥ k, ‖y‖γ ≤ 5〈y, x〉, and ‖yχA‖γ ≤ 10 for 1 ≤ γ < ω1 and all

A ∈ S
f
β .

Proof The proof is by induction on α. Consider α = 2 and β = 1. Pick m1, . . . ,mk such
that m1 ≥ k and mi+1 ≥ max{2mi , f (k + m1 + m2 + · · · + mi)} for 1 ≤ i < k. Then
m = (m1, . . . ,mk) ∈M2, and ϕ(m) ≥ k. Furthermore,

x =

( k︷ ︸︸ ︷
0, . . . , 0,

m1︷ ︸︸ ︷
1
√

m1
, . . . ,

1
√

m1
, . . . ,

mk︷ ︸︸ ︷
1
√

mk
, . . . ,

1
√

mk

)
∈ Xm.

Now let y = x. Then y ∈ c00 and min(supp x) = min(supp y) ≥ k. Computing directly,
we have 〈y, x〉 = k. Applying Lemma 20,

‖y‖γ ≤

∥∥∥∥
( m1︷ ︸︸ ︷

1
√

m1
, . . . ,

1
√

m1

)∥∥∥∥
γ

+ · · · +

∥∥∥∥
( mk︷ ︸︸ ︷

1
√

mk
, . . . ,

1
√

mk

)∥∥∥∥
γ

≤ 5k = 5〈y, x〉.
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If A ∈ S
f

1 , choose i such that k + m1 + · · · + mi−1 < min A ≤ k + m1 + · · · + mi , then

|A| ≤ f (min A) ≤ f (k + m1 + · · · + mi) ≤ mi+1.

Hence

‖yχA‖γ ≤

∥∥∥∥
( mi︷ ︸︸ ︷

1
√

mi
, . . . ,

1
√

mi

)∥∥∥∥
γ

+

∥∥∥∥
( |A|︷ ︸︸ ︷

1
√

mi+1
, . . . ,

1
√

mi+1

)∥∥∥∥
γ

≤ 5 + 5

√
|A|

mi+1
≤ 5 + 5 = 10.

Suppose the proposition holds for all ordinals less than or equal to some α ≥ 2; let
us prove it for α + 1. Say 1 ≤ β < α + 1. If β < α, there is nothing to prove since
Mα ⊆ Mα+1. So we may assume without loss of generality that β = α. If α is a successor
ordinal, apply the inductive hypothesis repeatedly to pick sequences (mp)k

p=1 ⊆ Mα, and

(xp)k
p=1, (yp)k

p=1 ⊆ c00 such that

1. ϕ(m1) ≥ k, and m1 � · · · � mk,
2. xp ∈ Xmp , 1 ≤ p ≤ k,
3. {k} ≤ supp x1 ∪ supp y1 < · · · < supp xk ∪ supp yk,
4. 〈yp, xp〉 ≥ k, and ‖yp‖γ ≤ 5〈yp, xp〉, 1 ≤ p ≤ k,

5. ‖ypχA‖γ ≤ 10 for 1 ≤ γ < ω1 and all A ∈ S
f
α−1,

6.

10 f
(
max(supp yp)

) k∑
q=p+1

1

〈yq, xq〉
≤ 5 for 1 ≤ p < k.

Let m = m1 ^ · · · ^ mk. Because of condition (3), m ∈ Mα+1, and ϕ(m) ≥ k. Also,
x = x1 + · · · + xk ∈ Xm, min(supp x) ≥ k. Define

y =
y1

〈y1, x1〉
+ · · · +

yk

〈yk, xk〉
.

Then y ∈ c00, min(supp y) ≥ k, and 〈y, x〉 ≥ k. Furthermore,

‖y‖γ ≤
‖y1‖γ
〈y1, x1〉

+ · · · +
‖yk‖γ
〈yk, xk〉

≤ 5k ≤ 5〈y, x〉

for 1 ≤ γ < ω1. Suppose A ∈ S
f
α. Then A = A1 ∪ · · · ∪ Al, where A1 < · · · < Al,

A1, . . . ,Al ∈ S
f
α−1 and l ≤ f (min A). Choose i so that

max(supp yi−1) < min A ≤ max(supp yi).
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For 1 ≤ γ < ω1,

‖yχA‖γ ≤
‖yi‖γ
〈yi , xi〉

+
k∑

q=i+1

l∑
p=1

‖yqχAp‖γ
〈yq, xq〉

≤ 5 +
k∑

q=i+1

l∑
p=1

10

〈yq, xq〉
by conditions (3) and (3)

= 5 + 10l
k∑

q=i+1

1

〈yq, xq〉

≤ 5 + 10 f
(
max(supp yi)

) k∑
q=i+1

1

〈yq, xq〉

≤ 10 by condition (3).

Let us turn to the case when α is a limit ordinal. Let (αn) be the sequence used to define

S
f
α and Gα. Suppose k ∈ N is given. Pick sequences (i p)k

p=1, (mp)k
p=1, (xp)k

p=1, and (yp)k
p=1

as follows. Let i1 = 2. By the inductive hypothesis, there exist m1 ∈ Mα2 , ϕ(m1) ≥ k,
x1 ∈ Xm1 , min(supp x1) ≥ k, and y1 ∈ c00 such that min(supp y1) ≥ k, 〈y1, x1〉 ≥ k,

‖y1‖γ ≤ 5〈y1, x1〉, and ‖y1χA‖γ ≤ 10 for 1 ≤ γ < ω1 and all A ∈ S
f
α1 . Suppose all

four sequences have been chosen up to p, where 1 ≤ p < k. By Proposition 21, there

exists i p+1 > f
(

max(supp xp)
)

such that A ∈ S
f
α f (max(supp xp )) whenever A ∈ S

f
α j for some

j ≤ f
(
max(supp xp)

)
and min A ≥ i p+1. By the inductive hypothesis (applied to the

ordinals α f (max(supp xp)) < αi p+1 ), pick

1. mp+1 ∈Mαi p+1
, mp � mp+1, ϕ(mp+1) ≥ i p+1,

2. xp+1 ∈ Xmp+1 , min(supp xp+1) ≥ i p+1, and
3. yp+1 ∈ c00,

such that 〈yp+1, xp+1〉 ≥ 2k, ‖yp+1‖γ ≤ 5〈yp+1, xp+1〉, and ‖yp+1χA‖γ ≤ 10 for 1 ≤ γ < ω1

and all A ∈ S
f
α f (max(supp xp )) . Since mp ∈ Mαi p

, and ϕ(mp) ≥ i p, mp ∈ Mα, 1 ≤ p ≤ k.
Now m1 � · · · � mk, and k ≤ ϕ(m1). Hence m = m1 ^ · · · ^ mk ∈ Mα+1. Define
x = x1 + · · · + xk. Then x ∈ Xm and min(supp x) ≥ k. Let

y =
y1χsupp x1

〈y1, x1〉
+ · · · +

ykχsupp xk

〈yk, xk〉
.

Then y ∈ c00, min(supp y) ≥ k, and 〈y, x〉 = k. Furthermore,

‖y‖γ ≤
‖y1‖γ
〈y1, x1〉

+ · · · +
‖yk‖γ
〈yk, xk〉

≤ 5k = 5〈y, x〉

for 1 ≤ γ < ω1. Suppose A ∈ S
f
α . Then A ∈ S

f
αr for some r ≤ f (min A). Choose p such

that

max(supp xp−1) < min A ≤ max(supp xp).
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If p < q ≤ k, let Aq = A ∩ supp xq ∩ supp yq. Then Aq ∈ S
f
αr . Note that

r ≤ f (min A) ≤ f
(

max(supp xp)
)
≤ f
(
max(supp xq−1)

)
and min Aq ≥ min(supp xq) ≥ iq. By the choice of iq, we see that Aq ∈ S

f
α f (max(supp xq−1)) .

Hence ‖yqχAq‖γ ≤ 10 for 1 ≤ γ < ω1. Therefore,

‖yχA‖γ ≤
‖yp‖γ
〈yp, xp〉

+
k∑

q=p+1

‖yqχAq‖γ
〈yq, xq〉

≤ 5 +
k∑

q=p+1

10

〈yq, xq〉
≤ 10

since 〈yq, xq〉 ≥ 2k for 1 < q ≤ k.
Finally, suppose α0 < ω1 is a limit ordinal and the proposition holds for all α < α0.

Let (αn) be the sequence used to define Mα0 . Let k ∈ N, and 1 ≤ β < α0 < ω1 be given.
Choose n0 such that β < αn0 . There exist m ∈ Mαn0

, ϕ(m) ≥ k, x ∈ Xm, min(supp x) ≥
max{k, n0}, and y ∈ c00 with min(supp y) ≥ k such that 〈y, x〉 ≥ k, ‖y‖γ ≤ 5〈y, x〉,

‖yχA‖γ ≤ 10 for 1 ≤ γ < ω1 and all A ∈ S
f
β . Since n0 ≤ ϕ(m), m ∈Mα0 .

Theorem 23 For 1 ≤ α < ω1, let Eα be the completion of c00 with respect to the norm ‖ · ‖α.

Then Eα has a 1-symmetric basis, Eα embeds into C(ωω
α

), but Eα does not embed into C(ωω
β

)
for any β < α.

Proof By Lemma 19, the coordinate unit vectors form a 1-symmetric basis of Eα. Note
that Gα ⊆ UE ′α is a norming subset of E ′α. By Lemma 18, Gα ⊆ C

g
α, where g(n) =

√
n.

Therefore, Eα embeds into C(ωω
α

) by Theorem 16. Suppose β < α and Eα embeds into

C(ωω
β

). By Proposition 3, there exist an increasing function f : N → N, and K < ∞ such
that for all y ∈ Eα,

‖y‖α ≤ K sup{‖yχA‖α : A ∈ S
f
β }.(1)

By Proposition 22, there exist m ∈ Mα, x ∈ Xm, and y ∈ c00 such that 〈y, x〉 > 10K, and

‖yχA‖α ≤ 10 for all A ∈ S
f
β . Since x ∈ Gα,

‖y‖α ≥ 〈y, x〉 > 10K ≥ K sup{‖yχA‖α : A ∈ S
f
β },

contrary to (1).
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