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COMPUTATION OF CRITICAL PARAMETERS FOR
A PROBLEM IN COMBUSTION THEORY

K. K. TAM1
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Abstract

An iteration scheme previously obtained by the author is used to study the dependence of
criticality on initial data and the parameters in a combustion problem. Numerical results
are presented for a slab, a cylinder and a sphere. These are compared with the results of
previous workers.

1. Introduction

A central equation in the study of auto-catalytic reactions is

inZ),

subject to

0(x,O) = /i(x); 9 = 0ondD,

where F(d) — exp(a0/(a + 8)),6 is the temperature, x, t are the spatial and time
variables respectively and 5 and a are positive parameters.

Recently, Tam [3], [4] considered the role of the initial data in a problem in
combustion theory, for the special geometries of an infinite slab, an infinite
circular cylinder, and a sphere; and the disappearance of criticality was examined
using the upper and lower solutions constructed in [5].

In this note, we use the iteration scheme obtained in [3] and [4] to study more
extensively the dependence of criticality on the initial data as well as the
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[2 J Critical parameters in combustion 41

parameters. Since the treatment is numerical, some of the approximations used in
[3] and [4] in order to give analytic results are obviated. The improvement thus
achieved is especially significant when a is close to 4. In the next section, we
quote the iteration scheme, then we present the numerical results in tables for the
case of the slab, the cylinder and the sphere.

2. Criticality dependence on initial data and parameters

We have from [3] and [4] the result

4,-MO-. 0 ~ 8ux(r)f^xV[-\](t - *)]«,(*) • F(dnU, s)) ds

where r denotes the only spatial variable, A2, and «,(/•) the first eigenvalue and
normalized eigenfunction of the eigenvalue problem

V2uk + X\uk = 0
uk = 0 on 3.D,

and

„(!, s)) = / «,(€ W-+I(€, s)) di,
JD

with D denoting the region under consideration. If, for t > T, we have u,( |) •
F(On(l-, s)) ~ Kn for some n, where Kn is independent of s, then for t » T we have

Using the above, we consider, for s large,

and from which we have, for t large,

Thus, the steady state reached is deduced by comparing Kn+X with Kn. In [3] and
[4] we made approximations in the evaluation of Kn+X. In this note, we obtain
Kn+X numerically, from which we determine all other critical parameters. Critical-
ity disappears when a < a, which depends on geometry, but in all cases is slightly
larger than 4. When a> a, there is a unique steady state when S < 8e(a) or when
8 > 8cr(a). For 8e < 8 < 8cr, there are two stable steady states, the one with the
larger maximum referred to as super-critical, and the one with the smaller
maximum referred to as sub-critical. In this range, we determine v*(8, a) such
that for Kn > 8~'u*, the super-critical state is reached while for Kn < 8~lv*, the
sub-critical state is reached. The limiting values of Kn, namely Kx and Kx axe,
also determined. These quantities are presented in tables.
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42 K. K. Tam

TABLE 1

Values of K , and K for some values of a and 8 for the slab.

[3]

a

100

70

40

20

15

8

4.5

d = 4.069

8

8e= 1 .02£-38
0.1
1.0
2.0

8cr = 3.546

8e = 5.33E - 26
0.1
1.0
2.0

8cr = 3.5633

8e = 1.837E - 13
0.1
1.0
2.0

8cr = 3.6

8e = 2.164£ - 5
0.1
1.0
2.0

8cr = 3.708

8e = 1.77E - 3
0.5
1.6
2.5

5 c r =3 .77

8e = 0.51
1.0
2.0
3.0

8cr = 4.06

Se = 4.457
4.7

8cr = 4.88

8e = 5.227 = Scr

Kx

.920E - 38
0.091
1.01
2.35
8.51

0.48£ - 25
0.091
1.01
2.35
8.61

0.1656£- 12
0.09
1.01
2.35
8.81

0.1948£ - 4
0.91
1.01
2.34
9.34

0.1593£-2
0.475
1.75
3.22
9.74

0.4846
1.01
2.33
4.25
11.6

9.875
12.52
19.8

34

V*

83260
54.0
29.5
20.9
8.51

40429
56.2
30.3
21.3
8.61

12892
62.2
32.2
22.4
8.81

3039
84.0
37.9
25.5
9.34

1639
59.6
33.1
23.3
9.74

390
96.6
46.8
28.5
11.6

73
35.15
19.8

34

83260
0.243£43
0.242 £44
0.484£44
0.858£44

40429
0.2265£30
0.226£31
0.4529£31
0.806£31

12892
0.212£17
0.2119£18
0.4238£18
0.764£18

3039
0.4367£8
0.4368£9
0.8790£9
0.162£10

1639
0.1469£7
0.4706£7
0.7355£7
0.11£8

390
1970
4678
7366
10220

73
126
148

34
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TABLE 2

Values of K , v*, and KM for some values of a and 8 for a sphere.

43

a

100

70

40

20

15

8

4.5

a = 4.192

8

8e = 1.08£ - 38
0.1
1.0
2.0

8cr = 3.33

8e = 5.63E - 26
0.1
1.0
2.0

8cr = 3.352

8e = \.94E - 13
0.1
1.0
2.0

8cr = 3.395

8e = 2.215E - 5
0.1
1.0
2.0

8cr = 3.5033

8e = 1.856£ - 3
0.1
1.0
2.0

Scr = 3.5813

8e = 0.5296
1.2
2.2

8cr = 3.902

8e = 4.509
4.62

8cr = 4.767

8e = 5.034 = 8cr

0.1685£ - 37
0.161
1.79
4.197
13.5

0.899£ - 25
0.16
1.79
4.195
13.6

0.3099£ - 12
0.16
1.79
4.19
14.0

O.363£ - 4
0.16
1.79
4.18
14.9

0.296£ - 2
0.16
1.79
4.16
15.6

0.895
2.2
4.7
19

19.8
22.63
35.2

57

V*

138080
74.19
42.13
30.01
13.5

66989
77.3
43.2
30.74
13.6

21326
86.4
46.2
32.4
14.0

5005
119.6
55.1
37.3
14.9

2690
162.2
63.4
41.5
15.6

632
123.8
64.2
19

107
64.04
35.2

57

138080
0.429£43
0.4290£44
0.8579£44
0.1430£45

66989
0.4001£30
0.4014£31
0.8025£31
0.1345£32

21326
0.3756£17
0.3760£18
0.7512£18
0.1275£19

5005
0.7750£8
0.7708E9
0.1549£10
0.271£10

2690
O.516OE6
0.5210£7
0.1043£8
0.187£8

632
0.421 £ 4
0.896£4
0.1703£5

107
162.9
1986

57
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TABLE 3

Values of Kx, v* and Kx for some values of a and 8 for the cylinder.

[s]

a

100

70

40

20

15

8

4.5

a = 4.002

8

Se = 8.376£
0.1
1.0

8cr = 2.01

8e = 4.365£
0.1
1.0

8cr = 2.0194

8e = 1.502£
0.1
1.0

8cr = 2.045

8e = \.12\E
0.1
1.0

8cr = 2.1092

8e = 1.361E
0.1
1.0

8cr = 2.1552

8e = 0.3578
0.8
1.6

8cr = 2.3456

8e = 2.8077
8cr = 2.8625

8e = 3.205 =

- 3 9

- 2 6

- 13

- 5

- 3

0 . 1 2 4 £ -
0.1503
1.838
7.71

0.6445£ •
0.1503
1.837
7.79

0.22 HE -
0.1503
1.836
7.96

0.254J5" -
0.1503
1.833
8.57

0.202 £ -
0.1503
1.83
8.9

0.564
1.39
3.53
10.6

14
17.9

33

37

- 2 5

- 12

4

-2

V*

105791
41.06
19.80
7.71

51450
42.56
20.25
7.79

16457
46.95
21.42
7.96

3826
62.23
24.8
8.57

2021
80.45
27.8
8.9

448
65.8
29.5
10.6

77.5
17.9

33

105791
0.3148£43
0.3148£44
0.633£44

51450
0.2946£30
0.2946£31
0.595£31

16457
0.2759£17
0.2759£18
0.564£18

3826
0.5767£8
0.5767£9
0.1216£10

2021
0.3920£6
0.3944£7
0.8506£7

448
0.2260£4
0.5290£4
0.811 £ 4

77.5
91

33

3. Results for the slab, the sphere and the cylinder

For the slab, we have 0 < r < 1, A, = ir and «,(r) = y/2~ sin nr. Results are
presented in Table I. We start with a = 100, giving the values of 8e and 8cr. At
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8 = 8e, v* coincides with Kx and at 8 = 8cr, Kx coincides with v*. For 8e < 8 <
Scr, v* is the threshold parameter. We decrease the value of a until we reach a at
which 8e and 8cr coincide.

For the sphere, we have 0 < r < 1, X, = -n, and «,(r) = sin<nr/{rjlm\ Results
are presented in Table 2.

For the cylinder, we have 0 *£ r < 1, X, = 2.405 and «,(/•) = J0(\xr)/Jx(\xyfiF.
Results are presented in Table 3.

4. Concluding remarks

Using a method proposed by Kordylewski [2], Fenaughty et al. [1] recently
obtained numerical critical values for the parameters 8 and a for the three simple
geometries. Their treatment is also numerical. Table 4 shows a comparison of the
present result with theirs.

TABLE 4

Critical parameters as determined by the two methods

Infinite slab
(after adjusting for
different scaling)

Infinite cylinder

Sphere

Present result

8cr = 5.227

d = 4.069

8cr = 3.205

a = 4.002

8cr = 5.034

d = 4.192

Fenaughty et al.

8cr = 5.2294

a = 4.0687

8cr = 3.00617

d = 4.1304

8cr = 5.04081

a = 4.1876

Despite the slight discrepancy, it must be emphasized that the present integral
equation approach produces not just d and 8cr, but 8e as well. For any given
a> a, and 8e < 8 < 8cr, it also produces the number v*, which is used to
determine whether an arbitrarily given initial 8(r, 0) leads to the super-critical or
sub-critical steady state.

Another observation that is perhaps worth making is that if one starts with the
elliptic equation obtained from the governing equation by dropping the dd/dt
term and think of its multiple solutions as possible steady states, then since there
may be more than two "steady state" solutions, it is difficult to attach the label
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46 K. K. Tarn [71

"super-critical" or "sub-critical" to them. There is no such difficulty if one starts
with the parabolic equation. Since the initial value problem has a unique solution,
the steady state is either super-critical or sub-critical, depending on the initial
data 0(r, 0). The present work does in fact provide estimates on these two steady
states, and the criterion on 6(r,Q) that determines which one is reached.
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