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Reynolds number effects in separating and
reattaching flows with passive scalar transport

A. Cimarelli1,†, R. Corsini1 and E. Stalio1

1Dipartimento di Ingegneria ‘Enzo Ferrari’, Università di Modena e Reggio Emilia, 41125 Modena, Italy

(Received 27 July 2023; revised 19 January 2024; accepted 28 February 2024)

A study of the physics of separating and reattaching flows around bodies with sharp edges
is reported. Data from direct numerical simulations of the flow around a rectangular
cylinder with aspect ratio 5 at different Reynolds numbers are used. The flow is
decomposed into multiple interacting flow phenomena such as the laminar boundary
layer in the front face, the separated shear layer, the flow impingement at reattachment,
the reverse boundary layer within the recirculating bubble and the near- and far-wake
flow. A detailed analysis of the physics of these phenomena is provided, including
the slow modulation induced by large-scale instabilities related with vortex shedding.
The entrainment phenomena acting along the separated shear layer and their unbalance
between its inner and outer sides are recognised as fundamental mechanisms determining
the tendency of the flow to reattach and the overall fluxes of momentum and heat. The
behaviour of entrainment is found to be strictly related with the shear-layer velocity
difference that in turn is determined by the behaviour of the reverse boundary layer and
by its strength in counteract adverse pressure gradients. The physical understanding of the
compound role played by these and all the other mechanisms composing the flow, poses
the basis for the formulation of theoretical frameworks able to unify all these interacting
phenomena. Finally, the present work provides access to high-fidelity flow statistics of
relevance for benchmark activities on bluff bodies with sharp edges.

Key words: wakes, separated flows, shear-layer turbulence

1. Introduction

After more than a century of scientific research efforts, the flow around bluff bodies is
still an open problem. Despite the accumulation of a huge amount of empirical data and
of descriptive knowledge, the progress towards a sufficiently general and unified solution
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of the basic problem has been slow. In fact, the advances of the theoretical framework
from the pioneering works of Kirchhoff (1869), von Kármán (1954) and Roshko (1955)
are still limited. Indeed, arriving at a complete theory still requires the understanding
of the interplay between the different phenomena composing the flow. The strongly
inhomogeneous and anisotropic character of the overall flow is related with the non-local
and nonlinear interactions between these flow mechanisms that challenges for a rational
understanding. In fact, a theoretical model able to unify these interacting phenomena is
still lacking. In this context, the access to high-fidelity data is deemed of fundamental
importance, as these can be considered as a fruitful source for ideas, can be used to confirm
or extend the validity of theories and, in some cases, can give rise to new questions. This is
the approach pursued in the present work where high-fidelity numerical simulations of the
flow around a rectangular cylinder with aspect ratio 5 are performed at increasing Reynolds
numbers. The main aim is to address the detailed physics of the different phenomena
composing the flow and to assess their role on the overall behaviour of the flow, thus
allowing us to provide a sufficiently general and self-contained description of the basic
problem.

The case under scrutiny is the object of an international initiative known as BARC
(Benchmark on the Aerodynamics of a Rectangular 5 : 1 Cylinder; http://www.aniv-
iawe.org/barc). Several experimental and numerical studies have been conducted on this
benchmark and, as shown in the review by Bruno, Salvetti & Ricciardelli (2014), a
significant dispersion of the results is observed, thus highlighting how challenging is
the correct description of the fundamental features of the flow. From a numerical point
of view this issue can be faced by adopting a sufficiently high spatial resolution to
avoid the use of turbulence models. Cimarelli, Leonforte & Angeli (2018b) were the first
to perform a direct numerical simulation (DNS) of such flow configuration. The value
of the Reynolds number based on the body thickness and the freestream velocity was
Re = 3000. This value was found to be large enough to study the main self-sustaining
features of turbulence in the separating and reattaching flow but one decade smaller
than that expected to characterise the high-Reynolds-number regime of the flow. Later,
Chiarini & Quadrio (2021) replicated the work by performing an additional DNS at
the same Reynolds number to address the detailed features of production, transport and
dissipation of Reynolds stresses of relevance for turbulence closures. Finally, Corsini
et al. (2022) performed a third DNS, again at Re = 3000, to study the effects of spatial
resolution and numerical schemes on the main statistical features of the flow. In the present
work we extend the Reynolds number achieved by high-fidelity simulations significantly
by performing DNS at three Reynolds numbers, Re = 3000, 8000 and 14 000. The
behaviour of turbulence and of the main flow unsteadiness by increasing Re towards the
high-Reynolds-number regime is addressed. The mechanisms of passive scalar transport
at the basis of the values of heat exchange in bluff bodies are also addressed for the first
time.

The work is organised as follows. The numerical method and the flow settings are
described in § 2. The main flow features are introduced through the analysis of the
instantaneous flow pattern in § 3. The mean flow statistics are addressed in §§ 4 and 5.
The turbulent phenomena and the entrainment mechanisms characterising the shear layer
detaching from the sharp leading edge and the wake are studied in §§ 6 and 7. Finally, the
main flow unsteadiness are analysed in § 7. The work is closed by a final discussion in § 9
and by the validation of the numerical database in Appendix A.
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Figure 1. Flow configuration and computational domain.

2. Numerical method and flow setting

Three DNSs of the flow around a rectangular cylinder with aspect ratio 5 are performed
by varying the Reynolds number and considering the transport and mixing of a passive
scalar. The system of equations solved is

∂ui

∂xi
= 0,

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
,

∂θ

∂t
+ ∂uiθ

∂xi
= 1

RePr
∂2θ

∂xi∂xi
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where (x1, x2, x3) = (x, y, z) are the spatial coordinates in the streamwise, vertical and
spanwise direction, (u1, u2, u3) = (u, v, w) are the corresponding components of the
velocity field, p is pressure and θ is the scalar field. The adopted reference frame is centered
at the upper leading edge of the rectangular cylinder, see figure 1. The thickness of the
rectangular cylinder D, the freestream velocity U0 and the temperature difference between
the cylinder surface and the freestream �θ = θw − θ0 are used for non-dimensionalisation
of the above equations. Accordingly, the Reynolds number is defined as Re = U0D/ν, with
ν the kinematic viscosity, whereas Pr = ν/α denotes the Prandtl number, having in mind
temperature as the passive scalar, with α the scalar diffusivity. Equation (2.1) are solved
by imposing the freestream velocity U0 at the inlet. The outlet boundary condition consists
of a homogeneous Dirichlet condition for the pressure and a homogeneous Neumann
condition for the velocity. These same boundary conditions are imposed in the vertical
direction whereas the no-slip condition is imposed at the cylinder surface. Concerning
the passive scalar field, the inlet and the cylinder surface are held at fixed values θ0 = 0
and θw = 1, respectively. A homogeneous Neumann condition is applied at the outlet and
in the vertical directions. Finally, periodicity is enforced along the spanwise direction for
both the velocity and the scalar fields.

The simulations have been performed using the open-source code Nek5000, developed
by Fischer, Lottes & Kerkemeier (2008) and based on the high-order spectral element
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Re 3000 8000 14 000

Lx × Ly × Lz 80 × 31 × 5 80 × 31 × 5 80 × 31 × 5
nx × ny × nz 351 × 197 × 316 806 × 428 × 701 981 × 568 × 701
Degrees of freedom 177 819 705 1 948 812 600 3 084 343 500
(�xmin, �ymin, �z) (0.0043, 0.0043, 0.016) (0.0029, 0.0029, 0.007) (0.0021, 0.0021, 0.007)

(�x+, �y+
w , �z+)avg (1.7, 0.23, 1.9) (1.7, 0.36, 2.0) (2.3, 0.41, 3.1)

(�x+, �y+
w , �z+)max (4.3, 0.47, 3.9) (3.2, 0.60, 3.4) (4.1, 0.66, 5.1)

(�x/η, �y/η, �z/η)max (3.9, 3.3, 3.4) (3.5, 3.8, 3.7) (4.2, 4.6, 6.3)

Table 1. Numerical details. Here nx, ny and nz are the degrees of freedom adopted in the region above the
cylinder; �x, �y, �z are computed as the distance between N + 1 uniformly spaced points within a spectral
element, except to the near-wall resolution �yw which is expressed as the wall distance of the second GLL
point. The superscript + indicates friction units and η denotes the Kolmogorov scale.

method proposed by Patera (1984). Velocity variables are expanded within the numerical
elements in terms of polynomials of order N that are collocated within each element
following the Gauss–Lobatto–Legendre (GLL) distribution. On the other hand, a
staggered-grid approach based on the use of pressure polynomials of order N − 2
is employed to avoid spurious pressure modes, following the so-called PN − PN−2
formulation. Time advancement is performed by means of an implicit scheme consisting
of a third-order backward differentiation scheme (BDF3) used in combination with a
third-order extrapolation scheme (EXT3) for the explicit treatment of the convective term.
In the DNS at highest Re, the same method but second-order accurate in time is used.
De-aliasing is performed by over-integration of the convective term by a factor of 3/2 in
each direction. For stabilisation, a filtering procedure based on a low-pass explicit filter
built in modal space with a cut-off mode of N − 1 and a weight of 0.02 is applied (Fischer
& Mullen 2001).

The computational domain dimensions normalised by the body thickness are
(Lx, Ly, Lz) = (80, 31, 5) and the rectangular cylinder is placed 20 length scales
downstream from the inlet, see figure 1. The investigated Reynolds numbers are
Re = 3000, 8000, and 14 000, whereas the Prandtl number is set to Pr = 0.71. Spatial
discretisation is performed by using a structured mesh composed by hexahedral spectral
elements of order N = 7, corresponding to a seventh order of accuracy. The total degrees
of freedom per time step and per unknown for the flow case at Re = 3000 are almost
178 million, and increase up to over 3 billion at Re = 14 000, see table 1. Although
the spectral elements are uniformly distributed along the spanwise direction, the mesh
is refined through geometric progressions along the vertical direction by approaching
the walls and along the streamwise direction by moving towards the rectangle edges.
Accordingly, the minimum grid spacing (�xmin, �ymin) is achieved at the leading-edge
corner and the corresponding values are reported in table 1, including also the number
of degrees of freedom adopted on the horizontal surface of the rectangular cylinder. As
reported in Corsini et al. (2022), the occurrence of strongly inhomogeneous phenomena
in the flow around the rectangular cylinder requires different spatial discretisation criteria
to be satisfied such as those based on the Kolmogorov length for the free flow and on
the friction units for the boundary layers. The details of the computational grids are
summarised in table 1. The time step is kept fixed during the simulation to ensure that the
condition CFL < 0.5 is satisfied everywhere, resulting in �t = 5.5 × 10−4, 3.0 × 10−4

and 2.6 × 10−4 for the flow cases at Re = 3000, 8000 and 14 000, respectively.
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Statistics are computed by taking advantage of the statistical steadiness and of
the statistical homogeneity in the spanwise direction of the flow. Hence, a spanwise
average is performed together with a temporal average over a collection of at least 51
three-dimensional fields gathered at equal time intervals �T = 5 and after the statistically
steady conditions are reached. Furthermore, the flow exhibits a statistical symmetry
in the vertical direction about the xz mid-plane that is also used for improving the
statistical convergence. The quality of the database in terms of both spatial discretisation
and statistical convergence is reported in Appendix A where a validation is also
performed through a comparison with experimental data. In the following, the Reynolds
decomposition of the flow in a mean and fluctuating field is adopted and indicated using
the customary nomenclature, i.e. ui = Ui + u′

i and p = P + p′. If not stated specifically,
variables are presented as dimensionless by using D for lengths, U0 for velocities, D/U0
for times and �θ for temperatures.

3. Instantaneous flow topology

We start the analysis by addressing the effect of the Reynolds number on the flow topology
visualised by means of the so-called λ2 criterion proposed by Jeong & Hussain (1995) and
reported in figures 2 and 3. We take advantage of these flow visualisations to introduce
and describe the main features of the flow. The picture is as follows.

By impinging to the front of the rectangular cylinder, the incoming flow creates two
ascending/descending laminar boundary layers. By reaching the sharp leading edge of
the cylinder, these boundary layers detach thus forming two shear layers that are initially
laminar as highlighted by the flat shape of the isosurface of λ2, see the left panels of
figures 2 and 3. The separated shear layer is inviscidly unstable (Dovgal, Kozlov &
Michalke 1994) and easily undergoes transition to turbulence. As expected, the transitional
processes are found to occur more rapidly by increasing Re, see the reduced size of the flat
isosurface of λ2. At the early stages of the transition process, almost two-dimensional
spanwise rolls are initiated due to the Kelvin–Helmholtz instability. As apparent from the
perspective and top views shown in the left panels of figures 2 and 3, the diameter of
these rolls significantly reduces by increasing Re and their spanwise distribution becomes
progressively more irregular. As shown in Cimarelli et al. (2018b), the combined presence
of disturbances and strong mean shear leads to a distortion of these spanwise rolls thus
forming hairpin-like vortical structures and quasi-streamwise vortices, see also Kiya &
Sasaki (1985), Hourigan, Thompson & Tan (2001), Yang (2012) and Chiarini et al. (2022).

By moving downstream, the coherent structures populating the shear layer eventually
break down into small irregular vortices thus leading to a fully turbulent regime. By
increasing Re this process occurs in a shorter distance thus making the flow pattern more
irregular and less coherent. As a result, the flow appears to be fully turbulent from the
very beginning of the cylinder at high Re. This scenario is quantitatively confirmed by the
one-dimensional wavenumber spectra E(kz) shown in figure 4(a). Here,

E(kz) = 1
2 (〈ûzû∗

z 〉 + 〈v̂zv̂
∗
z 〉 + 〈ŵzŵ∗

z 〉), (3.1)

where ·̂z denotes the Fourier transform in the periodic spanwise direction, kz is the
spanwise wavenumber and the superscript ∗ denotes the complex conjugate. As expected,
the fully developed region exhibits a wider spectrum of turbulent scales by increasing Re
while almost preserving the same behaviour at the large energy-containing scales. This
generation of progressively smaller scales allows for a net separation of scales for the
highest Reynolds number and, hence, for the realisation of a clear inertial subrange of
scales where the classical k−5/3 scaling more than one decade wide holds.
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(a)
–1.0 –0.5 0 0.5 1.0 1.5 2.0 –1.0 –0.5 0 0.5 1.0 1.5 2.0

(b)

(c) (d)

(e) ( f )

Figure 2. Instantaneous three-dimensional views of the flow cases at Re = 3000 (a,b), Re = 8000 (c,d) and
Re = 14 000 (e, f ). The plots report isosurfaces coloured with streamwise velocity of λ2 = −2, −4 and −5,
respectively, from the lowest to the highest Re. The perspective view is reported in the left column and the
lateral view in the right column.

These turbulent structures are transported by a very large-scale motion associated with
the main flow separation. As a consequence, some of these are convected down towards the
plate wall and follow a recirculating path (hereafter called primary vortex) whereas others
are shed in the wake. The former, after impinging to the downstream part of the plate,
give rise to a reverse boundary layer, see the right panels of figure 3. As shown in § 5, this
reverse boundary layer undergoes an adverse pressure gradient that causes its separation
thus forming a counter-rotating secondary vortex within the primary vortex. By increasing
the Reynolds number, the reverse boundary layer is found to be populated by a wider
range of turbulent structures, see again the right panels of figure 3. As better shown in
§ 5, this feature allows the reverse boundary layer to counter the adverse pressure gradient
over longer distances thus pushing the secondary vortex towards the front of the cylinder
and reducing its size. The fully turbulent feature of the reverse boundary layer for the
highest Reynolds numbers is quantitatively verified by the one-dimensional spectra E(kz)
shown in figure 4(b). A wider spectrum of turbulent scales is found to populate the reverse
boundary layer by increasing Re. In contrast to the free-flow region shown in figure 4(a),
a less evident inertial subrange of scales is generated due to the strong inhomogeneous
character of the boundary layer with respect to the free flow.

Finally, the flow structures that are shed from the primary vortex together with those
shed from the forward boundary layer are convected in the wake where eventually undergo
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(a)

–1.0 –0.5 0 0.5 1.0 1.5 2.0 –1.0 –0.5 0 0.5 1.0 1.5 2.0

(b)

(c) (d )

(e) ( f )

Figure 3. Instantaneous three-dimensional top views of the flow cases at Re = 3000 (a,b), Re = 8000
(c,d) and Re = 14 000 (e, f ). The plots report isosurfaces coloured with streamwise velocity of λ2 = −2, −4
and −5, respectively, from the lowest to the highest Re. To highlight the vortical structures in the reverse flow
region, only isosurfaces with negative streamwise velocity, u < −0.2, are shown in the right column.

(a)

10–2

10–4

E(
k z

)

kz

10–6

10–8

10–2

10–4

10–6

10–8

101 102

kz
101 102

(b)

Figure 4. One-dimensional wavenumber spectra of the turbulent kinetic energy E(kz) evaluated in (a) the
primary vortex shedding region at position (3.90, 0.40) and in (b) the attached reverse boundary layer at
position (3, 0.07): dotted line, Re = 3000; dashed line, Re = 8000; full line, Re = 14 000. The red line displays
the −5/3 slope.

a last very large-scale motion related to the flow separation at the trailing edge of the
rectangular cylinder. As shown by the lateral views of figure 2, this motion consists
in a very large-scale flow oscillation induced by spanwise vortices reminiscent of the
von Kármán instability typical of bluff bodies (Chiarini et al. 2022). This large-scale
unsteadiness appears to be almost unaltered by varying the Reynolds number. In fact,
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Re CD CDp CDf CLrms CH Nu

3000 0.950 0.975 −0.025 0.329 0.00868 18.1
8000 0.995 1.016 −0.021 0.472 0.00635 36.5
14 000 1.038 1.056 −0.018 0.630 0.00531 52.0

Table 2. Summary of the measured aerodynamic and heat coefficients.

the main difference is the number of progressively smaller structures advected by these
large-scale motions by increasing Re.

4. Aerodynamic forces and heat transfer

In wind engineering applications, the aerodynamic and heat exchange coefficients are
useful for the prediction of wind loads on buildings and structures and for their thermal
efficiency. Global quantities such as the drag coefficient CD and the heat transfer
coefficient CH (also known as the Stanton number) are expected to reach asymptotic values
for sufficiently high Reynolds numbers (Frisch 1995), see their definitions reported in
Appendix B. In the present section we address their behaviour.

As shown in figure 5(a), the drag coefficient CD shows an increase with Re thus
suggesting that the asymptotic regime is still not reached. Hence, our data, even at the
highest Reynolds numbers, do not allow us to infer about the exact asymptotic value
of CD. In this respect, it is worth noting that also literature results from experiments at
higher Reynolds numbers do not allow to solve this issue being characterised by a large
scatter, see again figure 5(a) where some of them are reported. As shown in table 2,
the observed increase in drag is driven by an increase in the form drag CDp combined
with a decrease of thrust induced by friction in the reverse boundary layer CDf < 0. The
increase of the former is essentially due to a decrease in the base pressure of the wake that,
in turn, is associated with a slight elongation of the primary vortex with Re as shown
in § 5. In particular, we measure that the local minimum of pressure within the wake
vortex decreases from pwv = −0.142 to −0.163 with Re. On the other hand, the observed
decrease in thrust with the Reynolds number is essentially induced by a decrease in the
friction coefficient cf with Re, again as shown in § 5. This decrease overcome the effect
of a slightly longer flow recirculation that in contrast would lead to an increase in thrust
with Re.

In analogy with the momentum transfer measured with the drag coefficient CD, also
the heat transfer measured with the Stanton number CH is found to have not reached an
asymptotic state. As shown in figure 5(b), the dimensionless heat transfer CH is found
to decrease with Re. The Stanton number is the counterpart of the drag coefficient and
measures the ratio between the heat transferred and the thermal capacity of the undisturbed
flow. It is related with the Nusselt number, CH = Nu/(PrRe), that measures the ratio
of convective to conductive heat transfer. Hence, the Nusselt number is expected to
monotonically increases with Re and does not have an asymptotic value. As shown in
figure 5(c), the scaling followed by the Nusselt number is

Nu ∼ Re2/3. (4.1)

This scaling agrees with the transitional power law reported in Ota & Kon (1974) but it is
slower than the asymptotic linear scaling Nu ∼ Re that would lead to a constant CH .
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(a)
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(b)

(c) (d )

Figure 5. Behaviour of the drag coefficient CD (a), of the Stanton number CH (b), of the Nusselt number Nu
(c) and of the lift coefficient fluctuations CLrms (d) as a function of Re for the present simulations and other
works from the literature: ©, present data; �, DNS data from Cimarelli, Leonforte & Angeli (2018a);

�
,

DNS data from Chiarini & Quadrio (2021); +, wind tunnel (WT) data from Schewe (2013); ∗, WT data from
Mannini et al. (2018); �, WT data from Wu et al. (2020); and �, water channel (WC) data from Kumahor &
Tachie (2022).

In closing this section, let us address the behaviour of the lift coefficient CL. For the
symmetry of the flow, the lift coefficient is null but its fluctuations are not. The intensity of
fluctuations of lift are of relevance for several applications but is found to be particularly
sensitive to the numerical and experimental set-up, as evidenced by the large spread of
results reported in the literature (Bruno et al. 2014). As shown in figure 5(d), CLrms is
found to increase with Re. Forthcoming analysis reported in § 8 demonstrate that such
an increase is essentially related with a strengthen of the vortex shedding phenomena.
Indeed, the fluctuations of lift are generated by the instantaneous imbalance of pressure
between the two sides of the cylinder induced by vortex shedding that alternately shrinks
and enlarges the separation bubble at the top and bottom sides of the body. Accordingly,
the frequency spectrum of lift (not shown) shows a well-defined peak at the frequency of
vortex shedding.

5. Mean flow statistics

5.1. Velocity and pressure fields
In the present section the single-point statistics of the velocity and pressure fields are
reported. By considering first the mean velocity field, it is possible to characterise the
previously mentioned three main flow recirculations. As shown in the left panels of
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(a)

y

1.5
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0.5

0

–0.5

y

1.5
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0.5

0

–0.5

y

x

1.5

1.0

0.5

0

–0.5
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x
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0 2 4 6 0 2 4 6
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(c) (d)
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Figure 6. Mean flow fields for the flow cases at Re = 3000 (a,b), 8000 (c,d) and 14 000 (e, f ). The left panels
report the isocontours of the stream function. The green lines show the primary vortex, the red lines the
secondary vortex and the black lines the wake vortex. The right panels display the mean pressure field. For
statistical symmetry reasons, only the top half of the flow is shown.

Re 3000 8000 14 000

Primary vortex
xr 4.17 4.25 4.39
(xc, yc) (2.67, 0.33) (2.04, 0.32) (2.17, 0.33)

Secondary vortex
xSV

s 1.14 0.11 0.06
xSV

e 1.93 1.03 0.72
(xSV

c , ySV
c ) (1.57, 0.037) (0.38, 0.050) (0.26, 0.052)

Wake vortex
xWV

e 5.9 5.9 5.8
(xWV

c , yWV
c ) (5.38, −0.25) (5.34, −0.24) (5.30, −0.26)

Table 3. Details of the mean flow configuration; xr is the reattachment length; (xc, yc) are the coordinates of
the vortex center; xs and xe indicate the coordinates of the start and end, respectively, of the secondary and
wake vortices.

figure 6, the mean flow circulation related to the primary vortex (green streamlines)
exhibits a significant Reynolds number dependence. It mainly consists in a shaping of
the mean flow pattern rather than in a sizing of its dimensions. Indeed, the primary
vortex streamwise length measured with the reattachment length xr exhibits only a slightly
increase with Re, see table 3 and the behaviour of the friction coefficient in figure 7(a). On
the other hand, the thickness of the primary vortex results to be almost unchanged with Re.

The shaping effect consists in a significant upstream shift of the centre of rotation of
the flow circulation that leads to a significantly different flow pattern, see again the left
panels of figure 6. The behaviour of the centre of rotation xc = (xc, yc) as a function of Re
is presented in table 3. The vertical location is almost Reynolds independent, yc ≈ 0.33,
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Figure 7. Behaviour of the skin friction coefficient (a), of the Nusselt number (b), of the pressure coefficient
(c) and of its standard deviation (d): dotted line, Re = 3000; dashed line, Re = 8000; and full line, Re = 14 000.

whereas a significant upstream shift is observed when comparing its streamwise location
at Re = 3000 with that at Re = 8000 and 14 000, see again table 3.

We argue that the upstream shift of the centre of rotation of the primary vortex is
connected with the Reynolds number behaviour of the reverse boundary layer and of
its separation, the secondary vortex highlighted with red streamlines in the left panels
of figure 6. As shown in the right panels of figure 6, from the flow impingement at xr,
the reverse boundary layer accelerates first towards the front of the cylinder due to a
favourable pressure gradient. This gradient is induced by the near-wall footprint of the low
pressure levels related to the centre of rotation of the primary vortex, see the behaviour
of the pressure coefficient shown in figure 7(c). In contrast, by moving further towards
the front of the cylinder, the reverse boundary layer experiences an adverse pressure
gradient, decelerates and eventually detaches thus forming the secondary vortex (Cimarelli
et al. 2018b), see again the right panels of figure 6 and the pressure coefficient shown in
figure 7(c). By increasing the Reynolds number the reverse boundary layer is populated by
a wider spectrum of turbulent fluctuations. As a result, it turns out to be able to counter
the adverse pressure gradient more efficiently for increasing Re thus leading to a wider
region of the plate where the reverse boundary layer remains attached to the wall, see
the extension of the region of negative friction coefficient shown in figure 7(a). As a
consequence, its separation, the secondary vortex, is found to significantly move upstream
and to shrink by increasing the Reynolds number, see again the left panels of figure 6
and the corresponding positive region of friction coefficient in figure 7(a). As indicated
quantitatively in table 3 by xSV

c , this trend does not appear to saturate, xSV
c = 1.57, 0.38 and
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0.26 by increasing Re, thus suggesting the possibility of a disappearance of the secondary
vortex at higher Reynolds numbers.

This upstream shift of the secondary vortex is here conjectured to be at the basis of
the observed upstream shift of the centre of rotation of the primary vortex. Indeed, the
upstream behaviour of the mean flow paths of the primary vortex are increasingly free
from the fluid dynamic obstacle imposed by the secondary vortex. This occurrence allows
for the development of a more symmetric primary vortex flow circulation and, hence, for
the upstream shift of its centre of rotation towards central streamwise locations, xc ∼ xr/2.
It is worth noting that this upstream shift of the centre of rotation of the primary vortex
is in turn related to an upstream shift of the associated low-pressure region, see again the
right panels of figure 6. This phenomenon further promotes the stability of the reverse
boundary layer by extending the region of favourable pressure gradient. In summary, the
higher turbulence levels in the reverse boundary layer with Re lead to a shift towards the
front of the plate of both the secondary vortex and of the primary vortex low-pressure
levels with the latter further promoting the stability of the reverse boundary layer itself
thus forming a self-amplifying mechanism.

We consider now the behaviour of the flow in the wake. Together with the primary
vortex, the wake of the flow is the site of very large unsteadinesses in the form of shedding
of very large vortical motions, see Chiarini et al. (2022) and § 3. The shape of the flow
recirculation in the wake is reported with black streamlines in the left panels of figure 6.
In contrast to the primary vortex recirculation, the size of the wake vortex is found to
slightly decrease with Reynolds. In particular, as reported in table 3, the extension of
the wake vortex moves from xWV

e = 5.9 to 5.8 from the lowest to the highest Reynolds
number. An upstream shift of its centre of rotation is also observed, xWV

c = 5.38 at
Re = 3000 and xWV

c = 5.3 at Re = 14 000. It is important to highlight that the values of
pressure associated with the wake vortex decrease by increasing Re. As shown in § 4,
this phenomenon is the main responsible for the observed increase in the drag coefficient
with Re. We argue that the decrease in the wake vortex pressure can be attributed to two
distinct reasons. The first is the slight downstream shift of the reattachment length of the
primary vortex with Re. Indeed, the increasing length of the primary vortex leads to an
elongation of the related low pressure levels towards the trailing edge thus reducing the
base pressure, see again the right panels of figure 6. The second reason is in contrast
related with the observed upstream shift of the centre of rotation of the primary vortex
with Re. A consequence of this upstream shift is a more symmetric pattern taken by
the mean recirculating flow that conforms with lower level of curvature of the mean
streamlines in the downstream part of the primary vortex, see left panels of figure 6.
Such reduction in curvature of the mean flow can be related to a lower pressure recovery
(∂p/∂n ∼ 1/R in laminar conditions, with n the streamline normal direction and R the
curvature radius). In conclusion, we conjecture that the combination of a slightly longer
primary vortex with lower streamline curvature by increasing Re is at the basis of a weaker
pressure recovery thus leading to lower values of base pressure in the wake, see also the
behaviour of the pressure coefficient shown in figure 7(c).

To close this section, we address the behaviour of the pressure fluctuations at the
body surface. This quantity is of relevance in wind engineering, being responsible for
the so-called wind loads in civil applications. As shown in figure 7(d), the standard
deviation of the pressure coefficient exhibits a distributed increase by augmenting the
Reynolds number. Accordingly, the shape of the distribution appears to be almost
unaltered especially considering the two highest Re. Indeed, it is recognised that the
peak of pressure fluctuations is located in the reattachment region of the primary vortex
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(Lunghi et al. 2022). There, the periodic shedding of large-scale structures from the
primary vortex leads to a continuous enlargement and shrinking of its size. Hence, a
periodic upstream and downstream oscillation around the mean reattachment position
of the related low pressure levels occurs (Cimarelli et al. 2018b) thus leading to a peak
value of the wall pressure fluctuations. The reattachment length of the primary vortex is
almost unchanged by the Reynolds number, thus explaining the invariance of the shape of
the standard deviation of the pressure coefficient with Re. On the other hand, the larger
magnitude with Re can be attributed to the increased intensity of the shedding phenomena
from the primary vortex. The origin of such an increased intensity of the von Kármán
instability is addressed in § 8.

5.2. Turbulent kinetic energy and pressure fluctuations
The distribution of turbulent kinetic energy 〈k〉 = 〈u′

iu
′
i〉/2 around the rectangular cylinder

is shown in the left panels of figure 8. The pattern of turbulence activity follows first the
development of the shear layer along which the turbulence production processes occur
and, by moving downstream, eventually evolves through the wake. Turbulence is triggered
at a shorter distance from the leading edge by increasing the Reynolds number being the
shear-layer transitional processes faster. From the plane mixing layer theory (Konrad 1977;
Slessor, Bond & Dimotakis 1998), it is widely recognised that the transition from the
coherent structures of the Kelvin–Helmholtz instability to the fully turbulent state occurs
at a Reynolds number (based on the local shear-layer thickness δsl and velocity difference
�Uτ ) of the order of Resl = O(104). In plane mixing layers, the shear-layer thickness
increases linearly with the distance δsl ∼ x while the velocity difference is constant, say
�Uτ ∼ U0. By considering valid these assumptions for the shear layer developing around
the rectangular cylinder, we might expect that the position of the peaks of turbulent kinetic
energy moves upstream with the Reynolds number as xkmax ∼ 104Re−1. Here, we measure
xkmax = 3.09, 1.31 and 0.78 from the lowest to the highest Re, that better fits with

xkmax ∼ 103Re−0.9. (5.1)

Hence, curvature, pressure gradients and the inhomogeneous distribution of the reverse
flow within the recirculating bubble modify the evolution of the shear layer from that of
plane mixing layers. As shown in § 6, the main difference with respect to plane mixing
layer is indeed related to the non-uniform behaviour of �Uτ and, hence, is associated with
the non-homogeneous behaviour of the reverse flow in the primary vortex.

The peak value of turbulent kinetic energy is found to decrease from 〈k〉max = 0.145
at Re = 3000 to an almost constant value at higher Reynolds number, i.e. 〈k〉max =
0.129 and 0.130 for Re = 8000 and 14 000, respectively. The reason for such a decrease
can be found again in the upstream shift of the turbulent processes. Indeed, for
the high-Reynolds-number cases, the peak of turbulent kinetic energy takes place at
streamwise positions located well ahead the shedding region of the primary vortex. In
contrast, for the low-Reynolds-number case, the peak activity of turbulence occurs at
streamwise positions where shedding of large-scale vortices from the primary vortex
also occurs. Hence, the higher value of kmax for the case at Re = 3000 is the result of a
superposition of small-scale turbulence generated by the breakup of the Kelvin–Helmholtz
structures with the large-scale motion generated by the shedding unsteadiness. This
separation between the two main unsteadiness of the flow is a distinctive feature of high
Reynolds numbers and is further addressed in § 8.

The same phenomenon of separation is remarkably evident in the pressure fluctuations
〈p′2〉 shown in the right panels of figure 8. The upstream pressure fluctuations, related to

984 A20-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

21
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.215


A. Cimarelli, R. Corsini and E. Stalio

(a)

y

0

1.5

0.5

–0.5

0

1.0

y

1.5

0.5

–0.5

0

1.0

y

1.5

0.5

–0.5
0 2 4

x
6 0 2 4

x
6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0

1.0

1.5

0.5

–0.5

0

1.0

1.5

0.5

–0.5

0

1.0

1.5

0.5

–0.5

0

1.0

0.05 0.10 0.15 0 0.01 0.02 0.040.03

(b)

(c) (d )

(e) ( f )

Figure 8. Distribution of the turbulent kinetic energy field 〈k〉 (a,c,e) and of the pressure variance field 〈p′2〉
(b,d, f ) superimposed to the mean velocity paths for the flow cases at Re = 3000 (a,b), 8000 (c,d) and 14 000
(e, f ). For statistical symmetry reasons, only the top half of the flow is shown.

small-scale turbulence created along the shear layer, are distinctly separated from those
occurring downstream, related with the vortex shedding from the primary vortex at high
Reynolds numbers. Such a separation is otherwise shadowed at low Reynolds numbers
by the overlapping of the regions involved by both phenomena. To be noted that an
accompanying feature of such a separation is the eventual increase in the intensity of the
shedding phenomena, that is particularly evident in the wake. Indeed, the second weaker
peak of turbulence kinetic energy that occurs in the wake region increases with Re, as
shown in the left panels of figure 8. In particular, we measure 〈k〉max = 0.0742, 0.0755
and 0.0934 from the lowest to the highest Re. This second peak of 〈k〉 is related with the
main unsteadiness of vortex shedding in the wake and is further analysed in § 8.

5.3. Scalar field
We address now the statistical behaviour of the passive scalar field. The distribution of the
mean scalar field is shown in the left panels of figure 9 with isocontours superimposed
to the streamlines of the mean velocity field for reference. From these figures, it appears
that the mean scalar concentration remains almost entirely confined within the motions
related to the primary vortex and its wake. As expected, the highest scalar gradients are
concentrated near the wall especially in the regions of the flow located downstream the
secondary vortex, see also the corresponding high levels of the Nusselt number shown
in figure 7(b). Indeed, these regions of the flow are those characterised by the highest
levels of entrainment from the free flow thus leading to an enhancement of scalar mixing,
see the study of the entrainment velocity reported in § 6.4. These entrainment phenomena
are essentially due to the shedding of large-scale vortices from the primary vortex that
are known to induce strong engulfment events (Cimarelli & Boga 2021). In contrast, the
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Figure 9. Distribution of the mean scalar field Θ (a,c,e) and of the scalar variance 〈θ ′θ ′〉 (b,d, f ) at Pr = 0.71
and Re = 3000 (a,b), 8000 (c,d) and 14 000 (e, f ). For statistical symmetry reasons, only the top half of the
flow is shown.

region of the primary vortex located in correspondence of and upstream the secondary
vortex exhibits a more homogeneous scalar concentration and, hence, lower values of
scalar gradients, see again the left panels of figure 9 and also the corresponding low levels
of the Nusselt number shown in figure 7(b). Indeed, this region of the flow is essentially
not affected by large-scale entrainment mechanisms such as those related with shedding
as demonstrated in § 6.4.

This scenario appears to be affected by the increase of the Reynolds number. Indeed,
it has been already shown that the secondary vortex moves upstream and the flow is
characterised by a larger variety of turbulent scales by increasing Re. Accordingly, we
observe that the region of the flow where the scalar mixing is less effective shrinks and
moves upstream with Re nicely following the behaviour of the secondary vortex. It is then
clear that the portion of the plate characterised by high scalar gradients increases with Re
thus promoting the overall heat transfer. This scenario is confirmed by the behaviour of the
Nusselt number reported in figure 7(b) where an upstream shift of the region of the flow
characterised by high Nu values is observed together with an overall distributed increase
in the heat exchange.

As shown in the right panels of figure 9, the highest levels of fluctuations of the scalar
field are mainly concentrated in three flow regions: the downstream turbulent part of
the leading-edge shear layer, the near-wall region (including the rear side of the plate)
and the portion of the recirculating region in correspondence with the secondary vortex.
Interestingly, the two latter regions of high scalar fluctuations do not overlap with the
regions of high turbulent kinetic energy reported in the left panels of figure 8. From
the comparison of 〈θ ′θ ′〉 with 〈k〉, it is possible to appreciate that the high turbulence
intensity in the shedding region of the primary vortex is associated with low fluctuations
of scalar concentration. On the other hand, the high levels of scalar variance in the
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near-wall region and, particularly, in the secondary vortex flow region are associated
with low turbulence intensities. This simple observation suggests that there is not a direct
connection between velocity and scalar fluctuations. The reason is the combination of the
velocity and scalar fluctuations with the mean scalar gradient. Indeed, the production of
scalar fluctuations is given by −〈θ ′u′

j〉(∂Θ/∂xj). Evidently, the very low levels of gradient
achieved by the mean scalar field in the shedding region of the primary vortex shadow
the production effects related with the high level of velocity fluctuations. In other words,
the scalar advection performed by velocity fluctuations mostly occurs within a flow region
of almost homogeneous mean scalar concentration thus not leading to fluctuations in the
scalar field. In contrast, in the near-plate and secondary vortex regions the smaller scalar
advection performed by weaker velocity fluctuations is overcome by significantly higher
scalar concentration gradients thus leading to intense fluctuations in the scalar field. This
behaviour for the scalar fluctuations is influenced by the Reynolds number through the
upstream shift of the secondary vortex and through the upstream shift of the region of
high turbulent intensities in the leading-edge shear layer.

6. Leading-edge shear layer and turbulent entrainment

The separating and reattaching flow over blunt bodies with sharp edges is expected to
reach an asymptotic state for high Reynolds numbers. This is merely due to the observed
fact that fluxes in all turbulent flows (mass, momentum and energy) are independent of
fluid viscosity and diffusivity for sufficiently high Reynolds numbers (Frisch 1995). An
important consequence for applications is that the drag coefficient CD and the Stanton
number CH take asymptotic values at high Reynolds numbers. It is, however, worth
questioning how this ultimate state is reached starting from the flow realisations at low
Reynolds numbers.

At very low Reynolds numbers, a laminar separation is followed by a laminar flow
reattachment. In these laminar conditions, an increase in the Reynolds number leads to
an increase in the primary vortex length due to the ever increasing role played by inertial
mechanisms with respect to viscous mechanisms (Lane & Loehrke 1980; Ota et al. 1981;
Sasaki & Kiya 1991; Smith, Pisetta & Viola 2021), see figure 10. By further increasing the
Reynolds number, Re ≥ 300, transition to turbulence takes place in the shear layer. Hence,
the laminar flow separation is followed by a turbulent reattachment. In this regime, a fast
decrease in the primary vortex extension occurs by increasing the Reynolds number, see
again figure 10. Indeed, the phenomenon of turbulent entrainment enters the flow system
contrasting the inertial mechanisms through an enhancement of the momentum transfer
towards the plate wall thus balancing the ever-decreasing role of viscous diffusion with
Re and causing the separation bubble to shrink. For sufficiently high Reynolds numbers,
Re ≥ 104, the turbulent entrainment and inertial mechanisms compensate each other thus
reaching an asymptotic state where the primary vortex length does not vary anymore with
Re, see the behaviour of the reattachment length for Re > 104 in figure 10. This is the
range of Reynolds numbers considered in the present work, i.e. at the transition to the
high-Reynolds-number regime.

In accordance with this reasoning, the mechanisms of turbulent entrainment are of
extreme relevance for the momentum transport and scalar mixing in bluff bodies thus
determining the levels of drag and heat transfer. The location of these entrainment
phenomena is the shear layer detaching from the leading edge and developing in the
downstream direction along the plate side and the wake. Accordingly, a detailed analysis
of the shear-layer dynamics is reported in the following.
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Figure 10. Mean reattachment length as a function of the Reynolds number for rectangular cylinders of
different aspect ratios (c/D = 5 if not specified): ©, present data; �, DNS data from Cimarelli et al. (2018a);�

, DNS data from Chiarini & Quadrio (2021); ∗, water channel (WC) data from Lane & Loehrke (1980)
(c/D = 8 ÷ 16); +, WC data from Ota, Asano & Okawa (1981) (c/D = 22); •, WC data from Sasaki & Kiya
(1991) (c/D = 24 ÷ 96); �, wind tunnel (WT) data from Cherry, Hillier & Latour (1983) (c/D = 34); �, WT
data from Kiya & Sasaki (1983) (c/D = 25); ×, WT data from Moore, Letchford & Amitay (2019); and �, WC
data from Kumahor & Tachie (2022).
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Figure 11. Streamwise evolution of the position of the shear-layer centreline ysl: dotted line, Re = 3000;
dashed line, Re = 8000; and full line, Re = 14 000.

6.1. Streamwise evolution of the shear-layer position
As shown in figure 11, the vertical displacement of the shear-layer centreline ysl is almost
unaltered for the three Reynolds numbers here considered. The centreline of the shear
layer ysl is here computed as the vertical location of the local maxima of mean spanwise
vorticity, i.e. |Ωz|(x, ysl) = |Ωz|max(x). The behaviour of the shear-layer displacement ysl
is the following. From the flow separation at the leading edge, the shear layer moves
away from the body. The rate of displacement is initially fast but saturate around x ≈ 2
where the shear-layer location reaches its maximum displacement of the order of half the
plate thickness, ysl ≈ 1/2, in accordance with predictions from the free streamline theory
(Kirchhoff 1869; Roshko 1955; Smith et al. 2021). Indeed, the clear matching with mean
flow paths suggests that this behaviour is mainly due to the mean flow advection performed
by the recirculating bubble. For x > 2, a slight decrease in the shear-layer displacement
is observed up to the reattachment region for x ≈ 4 where an almost flat behaviour is
eventually attained. This final behaviour does not conform with the paths of the mean flow
solution thus suggesting that also turbulent fluxes become relevant in this final part of the
body side thus leading to an almost constant displacement of the shear layer for x > 4.
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Figure 12. (a) Streamwise evolution of the shear-layer thickness δsl(x). The dash-dotted lines mark the two
linear growths of the shear layer. (b) Streamwise evolution of the velocity difference �Uτ . Key: dotted line,
Re = 3000; dashed line, Re = 8000; and full line, Re = 14 000.

6.2. Initial linear growth of the shear-layer thickness
The entrainment phenomena mainly act on the shear layer detaching from the leading edge
of the body. These entrainment phenomena have a diffusive and turbulent nature and are
responsible for the growth of the initially very small shear-layer thickness δsl(0) 
 1. The
shear-layer thickness is here computed as the vorticity thickness,

δsl(x) = �Uτ

∂Uτ /∂η
, (6.1)

where (τ, η) is the curvilinear coordinate system aligned with the shear-layer centreline,
Uτ is the mean velocity field aligned with shear-layer centreline direction τ , �Uτ =
Umax

τ − Umin
τ is the maximum tangential velocity difference measured along the normal

to the shear-layer direction η and ∂Uτ /∂η is the mean shear evaluated at the shear-layer
centreline. As shown in figure 12(a), the shear-layer thickness exhibits first a classical
laminar viscous diffusion

δsl ∼
(

ντ

�Uτ

)1/2

. (6.2)

This behaviour is attained for a very short distance x < 0.1 in accordance with the
very small value of the critical Reynolds number for the onset of the Kelvin–Helmholtz
instability Resl = δsl�Uτ /ν ≈ 30 (Bhattacharya et al. 2006). Then, two piecewise
linear growths characterised by different growth rates are observed. In particular, we
measure a first weaker growth associated with the development of turbulence transitional
mechanisms where dδsl/dx ≈ 0.05 that is followed by a faster growth associated with
a fully turbulent shear layer where dδsl/dx ≈ 0.3. These values are found to be almost
Reynolds invariant.

It is important to note that these linear growths suggest a degree of similarity with
plane mixing layers. The linear growth of mixing layers is commonly associated with their
self-similar behaviour that in turn is related to the presence of a single velocity and length
scale in the problem, i.e. the velocity ratio λ = �Uτ /(Umax

τ + Umin
τ ) and the streamwise

position τ . Hence, the shear-layer thickness should behaves as

δsl ∼ λτ, (6.3)
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Reynolds number effects in separating and reattaching flows

and the linear growth of δsl is a direct consequence of the constant value of λ in
plane mixing layers (Townsend 1956; Brown & Roshko 1974; Browand & Troutt 1985;
Dimotakis 1986). However, the shear layer in bluff bodies is subjected to curvature and
pressure gradient that lead to a streamwise modulation of the velocity ratio λ = λ(τ ). As
an example, the instability mechanisms at the basis of the shear-layer growth change at
x ≈ xSV

e . Indeed, for x < xSV
e the velocity ratio is λ < 1.315 and the shear-layer instability

develops spatially as a convective instability. In contrast, for x > xSV
e , the velocity ratio

exceeds this threshold, λ > 1.315, and the shear layer becomes absolutely unstable (Huerre
& Monkewitz 1985).

As shown in figure 12(b), the presence of two linear growth rates of δsl is indeed induced
by the velocity ratio λ through the behaviour of the velocity difference �Uτ , see (6.1). In
particular, the velocity difference is found to be almost constant �Uτ ≈ 1.4 for streamwise
locations that extend to the end of the secondary vortex x < xSV

e . Indeed, for x > xSV
e an

increase in the velocity difference is observed up to the centre of rotation of the primary
vortex at x ≈ xc where �Uτ reaches its maximum before decreasing up to the end of the
rectangular cylinder.

From a physical point of view, the behaviour of the velocity difference �Uτ can be
attributed to the behaviour of the reverse boundary layer. From the flow reattachment
at x = xr the reverse boundary layer accelerates first up to the centre of rotation of the
primary vortex for x ≈ xc due to favourable pressure gradients induced by low pressure
levels related to the primary vortex circulation centred at x ≈ xc. Then, the reverse
boundary layer experiences an adverse pressure gradient thus decelerating before its
separation for xSV

e < x < xc. It is then clear that this behaviour of the reverse boundary
layer is responsible, through Umin

τ , for the shape of the velocity difference �Uτ = Umax
τ −

Umin
τ with a maximum at the centre of rotation of the primary vortex for x ≈ xc. When

the reverse boundary layer detaches forming the secondary vortex for x < xSV
e , the rate

of deceleration of the reverse flow drastically reduces. There, the deceleration imposed
by the adverse pressure gradient is balanced by the acceleration induced by the need
of circumventing the secondary vortex thus leading to an almost constant reverse flow.
Hence, the almost constant behaviour of the velocity difference �Uτ for x < xSV

e can also
be related to the evolution of Umin

τ induced by the reverse flow on top of the secondary
vortex. To note that downstream the reattachment, the velocity difference �Uτ is not
anymore influenced by the reverse flow being Umin

τ constant and equal to zero for x > xr
thus explaining its change of slope.

To summarise, the presence of two linear growths for the shear-layer thickness δsl is a
direct consequence of the behaviour of the velocity difference �Uτ induced by the reverse
flow and by its separation. Indeed, the cross-over between these two linear growths is
determined by the end location of secondary vortex x = xSV

e . The behaviour of �Uτ is
compatible with the self-similar assumption of plane mixing layers only in the very first
part of plate for x < xSV

e where the velocity difference and, hence, the velocity ratio are
constants, �Uτ ≈ 1.4 and λ ≈ 1.1. From the self-similar relation (6.3), the growth rate
is modelled as dδsl/dτ = Cλ. By inserting the measured values of dδsl/dτ and λ for x <

xSV
e , we obtain a value of the constant C ≈ 0.045 that is smaller than the value C = 0.17

commonly measured in free plane mixing layers (Brown & Roshko 1974; Browand &
Troutt 1985). Despite this quantitative difference, the overall behaviour of the shear layer
in this region of the flow is consistent with self-similarity being λ = const. and ∂Uτ /∂η ∼
1/τ . Hence, we might conclude that the initial development of the shear layer behaves like
plane-mixing layers (Eaton & Johnston 1981; Browand & Troutt 1985; Stella, Mazellier &
Kourta 2017).
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The effect of the Reynolds number on these two piecewise linear growths of the shear
layer can be essentially associated with its effect on the position and size of the secondary
vortex. In particular, the upstream shift of the secondary vortex and its shrink by increasing
the Reynolds number leads to a contraction of the extension of the first self-similar linear
growth of the shear layer. The consequent upstream shift of the higher growth rates related
to the second linear growth of the shear layer leads to a faster increase of the shear-layer
thickness by increasing the Reynolds number. For sufficiently high Reynolds numbers, the
increase in the shear-layer thickness should approach an asymptotic behaviour conforming
with the fate of the secondary vortex at high Re. In agreement with the saturation of the
secondary vortex upstream shift reported in § 5.1, the two higher Reynolds numbers here
investigated show almost the same shear-layer growth.

6.3. Shear-layer growth saturation and flow reattachment
The increase in the shear-layer thickness is found to saturate to an almost constant
value for x > xc, see again figure 12(a). Similar behaviours have been already
observed, see Dandois, Garnier & Sagaut (2007), Stella et al. (2017) for the case of
separating/reattaching flow over a descending ramp. We argue that this phenomenon is
related to a wall-induced constraint on the shear-layer development. Indeed, by increasing
its thickness, the shear layer becomes thick enough to feel the no-slip and impermeable
boundary conditions of the plate wall. This condition is reached when δsl = O( ysl) and
corresponds to the streamwise location where the centre of rotation of the primary vortex
occurs. Accordingly, for x > xc, the growth of the shear layer is limited from below by
the presence of the wall thus explaining the almost flat behaviour attained by δsl. We try
now to give an explanation to the relation between the streamwise location of the primary
vortex centre of rotation xc and the condition δsl = O( ysl).

The growth of the shear layer is determined by phenomena of entrainment. For obvious
reasons of mean flow asymmetry, the shear layer actually experiences an unbalance of
the entrainment processes of momentum from its outer and inner sides that is responsible
for a preferential spreading towards the low-momentum side, i.e. towards the plate wall.
This asymmetry of entrainment is enhanced by the increasing thickness of the shear layer.
In particular, when δsl = O( ysl) the shear layer becomes thick enough to interact with
the no-slip and impermeable boundary conditions of the plate wall. In these conditions,
the unbalance of entrainment from the outer and inner sides of the shear layer reaches
its maximum since momentum can no longer be drawn from below. Instead, momentum
flows down towards the wall thus enabling the process of flow reattachment (in some
cases also known as Coanda effect). Hence, the streamwise location where the shear-layer
thickness approaches the wall, determines the location where the mean flow paths start to
deflect towards the body that indeed corresponds to the primary vortex centre of rotation.
Accordingly, the centre of rotation can be alternatively defined as the streamwise location
satisfying the condition,

δsl(xc) = ysl(xc). (6.4)

In accordance with these arguments, the tendency of the flow to deviates towards the wall
and to reattach is directly related with the intensity of the entrainment mechanisms in the
shear layer and, hence, with its growth rate.

In order to quantitatively address these asymmetric phenomena, we evaluate the uneven
growth of the shear layer by separately addressing its inner and outer thickness,

δinn = �Uinn
τ

∂Uτ /∂η
δout = �Uout

τ

∂Uτ /∂η
, (6.5a,b)
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Figure 13. Streamwise evolution of (a) the inner shear-layer thickness δinn and of (b) the outer shear-layer
thickness δout: dotted line, Re = 3000; dashed line, Re = 8000; and full line, Re = 14 000.

where �Uinn
τ = Uc

τ − Umin
τ and �Uout

τ = Umax
τ − Uc

τ are the inner and outer velocity
difference and Uc

τ is the mean tangential velocity at shear-layer centreline. As shown in
figure 13, the expected uneven growth of the inner and outer side of the shear layer is
evident. It consists of more intense spreading of the shear layer in its inner side where
the growth rates are significantly larger than those in the outer side. As expected, the
previously observed saturation of the shear-layer growth rate for xc < x < xr is found to
be essentially determined by the limit imposed by the plate wall on the shear-layer growth
from below, i.e. on δinn. In contrast, the outer thickness δout is found to attain a continuous,
although weaker, increasing behaviour.

It is possible now to provide an estimate of the streamwise evolution of the shear-layer
boundaries by evaluating its inner and outer interfaces as

ysl,out = ysl + δout, ysl,inn = ysl − δinn. (6.6a,b)

As shown in figure 14, both the uneven behaviour of the shear layer and the Reynolds
number effects are evident. At high Reynolds numbers, the higher rate of inner spreading
of the shear layer is active earlier because of the significant upstream shift of the secondary
vortex and of transition to turbulence. As a result, the shear layer interaction with the wall
becomes important at significantly more upstream locations thus leading to an upstream
shift of the primary vortex centre of rotation xc. Also the outer boundary of the shear
layer is found to exhibit an higher growth rate at high Reynolds numbers. To note again
the almost saturated Reynolds number effect for the cases Re = 8000 and 14 000. This
increased thickness is related to higher levels of entrainment as quantitatively addressed in
§ 6.4.

It is important to note that, although occurring significantly downstream for the
low-Reynolds-number case, the inner thickness of the shear layer in the saturated region for
xc < x < xr is almost the same for all the Reynolds numbers thus highlighting a possible
limiting value. Here, we measure ysl,inn ≈ 0.125. For x > xr the outer boundary of the
shear layer is almost flat and all the Reynolds numbers considered converges towards the
value ysl,out ≈ 0.69. On the other hand, the inner boundary of the shear layer approaches
the wall plate. In this case, the Reynolds number effect is such that the inner boundary
converges slower towards the wall in agreement with the slightly longer reattachment
length measured by increasing Re, see figure 10. It is then confirmed that the reattachment
length xr can be interpreted as the streamwise scale of the shear-layer development (Smith
et al. 2021). Finally, the relation between reattachment length and base pressure shown in
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Figure 14. Streamwise evolution of the position of the shear-layer centreline ysl (black lines) and of its inner
ysl,inn (blue lines) and outer ysl,out (red lines) boundaries: dotted line, Re = 3000; dashed line, Re = 8000; and
full line, Re = 14 000.

§ 5.1 make possible to associate the streamwise scale of the shear-layer development also
to the drag coefficient that indeed is found to slightly increase with Re as shown in § 4.

6.4. Shear-layer entrainment
In accordance with the previous arguments, the tendency of the flow to deviates towards
the wall and to reattach is directly related with the intensity of the entrainment mechanisms
in the shear layer. These entrainment phenomena are related to the continuous deformation
and folding of the shear-layer interface by turbulent motions and, hence, with high rates of
momentum transport and scalar mixing. To quantitatively address these phenomena, we
consider the entrainment velocity defined as

Ve = dQx

dx
, (6.7)

where

Qx(x) =
∫ yΩ(x)

0
U(x, y) dy, (6.8)

is the volumetric flow rate and yΩ(x) is the streamwise evolving position of the
flow interface measured as the location where the mean vorticity reduces to small
negligible values, i.e. |Ωz|(x, yΩ) = 0.01|Ωz|max(x). As shown in figure 15(a), the rate
of displacement of the interface is initially fast and reduces by reaching the primary
vortex center. As shown in the following analysis of flow rate Qx, this saturation of
the rate of displacement for x > xc is not induced by a reduction of the entrainment
processes but, rather, by the deviation towards the wall of the mean flow paths associated
with the downstream part of the primary vortex in accordance with previous arguments
on the shear-layer dynamics. Indeed, by comparing figures 15(a) and 14, it is possible
to appreciate that the behaviour of the flow interface along the body side yΩ(x) is
qualitatively consistent with the estimate given by ysl,out thus confirming that the behaviour
of the interface and of the related entrainment processes are essentially driven by the
dynamics of the shear layer. Finally, the effect of the Reynolds number is evident only
for the case Re = 3000 where lower spreading rates are measured in the central part
of the body. The two higher-Reynolds-number cases are, in contrast, almost perfectly
superimposed.

The flow rate along the body side is reported in figure 15(b). A monotonic increase in
the flow rate is observed that is related with entrainment processes. Analogously to the
shear layer spreading, the flow rate growth exhibits a first weaker behaviour for x < xSV

e
where the entrainment velocity is of the order of Ve ≈ 0.1 for all the Reynolds numbers. In
accordance with the entrainment hypothesis (Turner 1986), the entrainment velocity across
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Figure 15. Streamwise evolution of the interface position yΩ(x) (a) and of the volumetric flow rate Qx(x)
(b): dotted line, Re = 3000; dashed line, Re = 8000; and full line, Re = 14 000.

the edge of a turbulent flow can be assumed to be proportional to a characteristic velocity.
This assumption allows us to measure the effectiveness of the entrainment processes
under diverse contexts and over a wide range of scales. In the context of shear layers,
the characteristic velocity is the velocity difference �Uτ and the resulting entrainment
parameter can be defined as β = Ve/�Uτ . In the secondary vortex region, the velocity
difference is almost constant �Uτ ≈ 1.4 and, hence, we measure

β ≈ 0.07 for x < xSV
e , (6.9)

that is significantly smaller than 0.15 that is the common value obtained in plane mixing
layers (Sreenivasan, Ramshankar & Meneveau 1989). This weakness of entrainment in the
secondary vortex region 0 < x < xSV

e can be ascribed to the transitional character of this
region of the flow and, hence, to the attained low levels of turbulence intensity; see figure 8.
Indeed, only for x > xSV

e , the increase in the velocity difference �Uτ associated with the
end of the secondary vortex is responsible for a drastic increase of the shear-layer Reynolds
number, Resl = δsl�Uτ /ν and, hence, for the development of a fully turbulent condition,
see again figure 8. Accordingly, the entrainment processes are drastically increased by
turbulence for x > xSV

e , see figure 15(b). In particular we measure, Ve ≈ 0.2 for Re = 3000
and Ve ≈ 0.15 for Re = 14 000 and 8000 in the range xSV

e < x < xr. The delay in turbulent
transition for the low-Reynolds-number case is then balanced by stronger entrainment
phenomena such that all the Reynolds numbers considered have the same flow rate Qx
at the streamwise location of reattachment x = xr. When considering the entrainment
parameter, we have

Re = 3000 : β ≈ 0.16 for xSV
e < x < xr

Re = 8000 and Re = 14 000 : β ≈ 0.12 for xSV
e < x < xr

}
, (6.10)

thus confirming the higher rates of entrainment in the fully turbulent region of the flow
recirculation. The measured value of the entrainment parameter for Re = 3000 allows us to
speculate about the origin of its higher value with respect to that measured for Re = 8000
and 14 000. By observing that β = 0.16 is very close to the common value 0.15 reported
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in plane mixing layers (Sreenivasan et al. 1989), we can conjecture that this higher value is
associated with a less effective role played by the presence of the wall that is indeed absent
in classical plane mixing layers. Accordingly, the inner boundary of the shear layer ysl,inn
is located further away from the wall plate with respect to the higher-Reynolds-number
cases as shown in figure 14.

In the final part of the body side xr < x < L, a slight increase in the rate of entrainment
is eventually observed. This phenomenon can be ascribed to the increased relevance
of engulfment mechanisms associated with the shedding of large-scale motions from
the primary vortex. The shedding mechanisms are indeed known to be related to high
entrainment parameters that in wake flows are of the order of 0.46 (Sreenivasan et al.
1989). Here, we measure

β ≈ 0.25 for xr < x < L, (6.11)

with no significant Reynolds numbers dependence.

7. Self-similarity and entrainment in the wake

A distinctive feature of spatially evolving boundary-free turbulent flows is the development
of self-similar solutions. This behaviour is expected to hold in the wake of the rectangular
cylinder and, as shown in § 6, in the very first part of the leading-edge shear layer for
x < xSV

e . As far as it concerns the former, self-similarity requires that the streamwise
scaling of the characteristic wake velocity defect U0 − Uc(x) and of the characteristic
wake half-width yΩ(x) satisfies the following constraint:

Cu = ỹΩ(U0 − Uc) = const., (7.1)

where Uc is the wake centerline mean velocity and ỹΩ is the interface position in a
shifted reference system, ỹΩ = yΩ + 1/2. In particular, a self-preserving mean solution
is possible only in the very far-wake where (U0 − Uc)/U0 
 1 and if the wake velocity
defect and the wake half-width respectively decrease and increase parabolically,

(U0 − Uc) ∼ x−1/2, ỹΩ ∼ x1/2, (7.2a,b)

see Tennekes & Lumley (1972). These variations also show that the wake Reynolds number
Rew = (U0 − Uc)ỹΩ/ν is constant in the self-similar regime. The same reasoning applies
also for the scalar field

Cθ = ỹΘ(Θ0 − Θc) = const., (7.3)

with
(Θ0 − Θc) ∼ x−1/2, ỹΘ ∼ x1/2, (7.4a,b)

where Θc(x) is the wake centerline mean scalar and ỹΘ is the scalar interface position
computed as the location where the mean scalar field reduces to small negligible values,
i.e. Θ(x, ỹΘ) = 0.01Θc(x). The scaling (7.2a,b) and (7.4a,b) are self-similar solutions
based on classical high- Re scaling of turbulent dissipation (George 1989). Let us note
that alternative self-similar solutions can also be obtained by considering different scaling
laws for dissipation (Dairay, Obligado & Vassilicos 2015).

As shown in figure 16(a), the velocity field in the wake is found to approach a self-similar
condition, Cu ≈ const., for streamwise distances of the order of 15 body thickness. The
effect of the Reynolds number is evident and consists in a more rapid transition to
self-similarity, for x > 17, 15 and 14 from the lowest to highest Reynolds number. The
slightly decrease in the constant Cu with Reynolds is found to be essentially induced
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Figure 16. Streamwise evolution of the self-similarity constant (a) Cu and (b) Cθ : dotted line, Re = 3000;
dashed line, Re = 8000; and full line, Re = 14 000.
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Figure 17. Streamwise evolution of the interface ỹΩ(x) (a) and of the volumetric flow rate Qx(x) (b) along the

wake development: dotted line, Re = 3000; dashed line, Re = 8000; and full line, Re = 14 000.

by a far-wake shrinking of the wake width with Re as shown in figure 17(a). Also the
scalar field is found to approach the self-similarity condition. As shown in figure 16(b),
such a condition appears to be reached more rapidly with respect to the velocity field.
In particular, we measure Cθ ≈ const. for streamwise distances x > 16, 14 and 12 from
the lowest to highest Reynolds number. Hence, a more rapid transition to the far-wake
regime is observed for the scalar field by increasing the Reynolds number. A reduction of
the constant Cθ with Re is found also for the scalar field by moving from Re = 3000 to
8000. This reduction is essentially induced by a decrease in the average scalar difference
Θ0 − Θc (not shown) with Re. This reduction appears to saturate for the two highest
Reynolds numbers.

The self-similar behaviour of the wake can be related to a constant behaviour of the
entrainment parameter (Townsend 1970). As for the shear layer developing along the body
side, the entrainment processes in the wake are associated with the continuous deformation
and folding of the interface wake by turbulent structures thus causing its spreading. As
shown in figure 17(a), the growth of the interface position ỹΩ in the near-wake region
is initially fast and exhibit a transition towards lower rates around x ≈ 30, 24 and 20
from the lowest to the highest Reynolds number, see Chen & Buxton (2023) where an
analogous phenomenon is observed for the wake of a circular cylinder under different
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levels of ambient turbulence. This more rapid transition towards slower growth rates leads
to a shrinking of the wake width with Reynolds and it is at the basis of the already observed
decrease in the self-similarity constant Cu. Both the slower and faster growth rates are
compatible with the self-similar scaling ỹΩ ∼ x1/2 but indicate a transition from high to
low entrainment rates. Indeed, as shown in figure 17(b) the flow rate Qx show a change
in its growth rate in the corresponding regions. In particular, we measure Ve ≈ 0.18 in
the near-wake region and Ve ≈ 0.04 in the far-wake. These values are almost unvaried
by the Reynolds numbers considered. The higher rates of entrainment in the near-wake
region can be associated with intense events of engulfment induced by the large-scale
and strongly coherent pattern taken by the shedding of near-wake vortices, see figure 2.
The amplitude of the interface folding is indeed closely correlated with the entrainment
rate (Townsend 1970). Accordingly, the measured entrainment parameter in the near-wake
region is β = Ve/(U0 − Uc) ≈ 0.7 thus largely exceeding the values obtained for the
shear-layer along the body side shown in § 6.4. Along the wake development, the
large-scale intermittent nature of the near-wake shedding motion is eventually smoothed by
the mixing action of turbulence thus recovering lower rates of entrainment. In particular,
in the far-wake we measure β ≈ 0.25 that is indeed very close to the common value
0.23 expected for wakes (this value is half the value reported in Sreenivasan et al. (1989)
because here we are considering the entrainment performed only by top half of the wake).

8. Main flow unsteadiness

The flow is characterised by two main sources of flow unsteadiness: the large-scale motion
that embraces the entire flow related with vortex shedding and the small-scale motion
related with the leading-edge shear-layer instability. The latter mechanisms governs the
transition to turbulence in the shear layer and consists of the amplification of disturbances,
the formation of Kelvin–Helmholtz vortices, vortex pairing and, finally, the breakdown of
the organised structures to small-scale turbulence (Cimarelli et al. 2018b). In addition to
these two main unsteadiness, the flow is characterised by the presence of a third weaker
instability related with a very slow modulation of the degree of shrinkage and enlargement
of the primary vortex induced by vortex shedding commonly named as low-frequency
unsteadiness (Kiya & Sasaki 1983, 1985; Cimarelli et al. 2018b). These three instabilities
of the flow are addressed separately in the following by analysing frequency spectra that
for a generic quantity γ reads

Eγ γ ( f ) = 〈γ̂f γ̂
∗
f 〉, (8.1)

where ·̂f denotes the Fourier transform in time, f is the frequency and ∗ denotes complex
conjugate.

8.1. Vortex shedding and von Kármán instability
The large-scale instability related to vortex shedding has an effect on the entire flow
field including the time behaviour of global quantities such as the aerodynamic forces.
Accordingly, a way to measure the frequency of vortex shedding fvk is to consider the
location of the peak of the lift coefficient spectrum. The vortex shedding frequency fvk
is expected to increase linearly with U0/D, thus leading to an asymptotic high Re value
for the Strouhal number Stvk = fvkD/U0. As shown in figure 18(a), the Strouhal number
of vortex shedding is, in contrast, found to decrease with Re. In particular, we measure
Stvk = 0.125, 0.112 and 0.111 by increasing Re. Experimental data from Schewe (2013)
and Moore et al. (2019) actually show that, in the range 16 700 < Re < 675 600, a possible
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Figure 18. (a) Strouhal number of vortex shedding Stvk as a function of Re for the present simulations and
other works from the literature: ©, present data; �, DNS data from Cimarelli et al. (2018a);

�
, DNS data

from Chiarini & Quadrio (2021); +, wind tunnel (WT) data from Schewe (2013); ×, WT data from Moore
et al. (2019); ∗, WT data from Mannini et al. (2018); �, WT data from Wu et al. (2020); and �, WT data from
Pasqualetto et al. (2022). (b) Frequency spectra of streamwise velocity fluctuations Euu(St) evaluated along the
shear layer at x = 0.5, for the case at Re = 3000, and at x = 0.1 for the cases at 8000 and 14 000. The spectra
are offset along the y-axis for the sake of clarity. Circles identify the peaks related to the von Kármán instability
(A), the Kelvin–Helmholtz instability (B) and the low-frequency unsteadiness (C).

asymptotic high Re value is Stvk = 0.116. As shown in figure 18(a), the observed decrease
of Stvk appears to saturate for the two higher Reynolds numbers towards Stvk = 0.11 that
is indeed very close to this high Re value.

The von Kármán shedding instability affects all the regions of the flow up to the front
face of the body. Suggestive is the behaviour of the shear layer at the leading edge. Here,
the influence of the large-scale shedding motion manifests as a lateral low-frequency
flapping of the shear layer (Kiya & Sasaki 1983). As shown in figure 18(b), the frequency
spectrum of streamwise velocity Euu(St) exhibits a well-defined peak at the frequency of
vortex shedding Stvk. In other words, the position of the shear layer undergoes a slow
flapping motion around its mean position at the frequency of the von Kármán instability
(Lyn & Rodi 1994).

The behaviour of the vortex shedding mechanisms can be associated with the observed
behaviour of the fluctuations of pressure at the body side cprms described in § 5.1 and of
the lift coefficient CLrms described in § 4. It consists in a significant increase of both cprms
and CLrms with Re, see figures 7 and 5, respectively. The behaviour of these two quantities
is of remarkable interest for applications and we argue that is significantly determined by
the features of the von Kármán instability. Indeed, as already shown in § 5.1, a wider
separation between the regions dominated by the Kelvin–Helmholtz unsteadiness and
those dominated by the von Kármán instability occurs by increasing the Reynolds number,
see again the right panels of figure 8. As shown by the frequency spectra of pressure
Epp(St) reported in figure 19, an accompanying feature of this separation of regions is
the increase intensity of the vortex shedding phenomena. In other words, the observed
increase in the pressure fluctuations at the body side and in the lift coefficient fluctuations
with the Reynolds number can be essentially ascribed to a net increase of the intensity of
the vortex shedding phenomena that, in turn, can be related with an increase separation of
the underlying von Kármán instability from that of Kelvin–Helmholtz as better shown in
the following.
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Figure 19. Frequency spectra of pressure fluctuations Epp(St) normalised with pressure variance evaluated in
the primary vortex shedding region around the point (3.90, 0.40): dotted, Re = 3000; dashed, Re = 8000; and
full line, Re = 14 000. The inset panel shows the magnitude of the peaks at different Reynolds numbers.

8.2. Shear-layer and Kelvin–Helmholtz instability
The Kelvin–Helmholtz instability can be thought as the triggering mechanism of
turbulence in bluff bodies with laminar separation. Indeed, the Kelvin–Helmholtz
frequency is the one most amplified along the shear-layer development, thus leading
to transition to turbulence. The picture is the following. The critical Reynolds number
for the onset of the Kelvin–Helmholtz instability is very small Resl = δsl�Uτ /ν ≈ 30
(Bhattacharya et al. 2006). Hence, the shear layer quickly rolls up thus forming laminar
spanwise vortex structures. Further downstream of the vortex formation, vortex pairing
can be detected, followed by a breakdown of the organised structures to smaller turbulent
eddies (Cimarelli et al. 2018b).

A distinctive feature of the Kelvin–Helmholtz instability in bluff bodies is that the
related spectral peaks Stkh(x) exhibit a continuous shift to lower frequencies along the
shear layer development, see figure 20(a). Here, the Kelvin–Helmholtz frequency Stkh =
fkhD/U0 is computed as the high-frequency peak of the streamwise velocity frequency
spectra Euu( f ) evaluated along the shear layer, see, e.g., figure 18(b). This continuous
shift contrasts with the behaviour in plane mixing layers where a stepwise shift to lower
frequencies due to vortex pairing is otherwise expected. This difference with respect to
plane mixing layer can be related to the inhomogeneous behaviour of the velocity ratio
λ induced by the reverse flow features of the recirculating bubble as pointed out in the
previous section.

As shown in figure 20(a), the frequency of the Kelvin–Helmholtz instability increases
with Re. By following scaling arguments proposed by Bloor (1964), the origin of such
behaviour is the linear decrease of the time scale of the shear-layer structures with the
initial shear-layer thickness δbl, i.e.

Stkh(Re) ∼ 1
δbl(Re)

. (8.2)

In accordance with these arguments, by rescaling the Strouhal number of the
Kelvin–Helmholtz instability with the initial shear-layer thickness, a drastic reduction
of the Reynolds number dependence is observed as shown in the inset of figure 20(a).
Indeed, as shown in figure 20(b), the initial shear-layer thickness is found to decrease
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Figure 20. (a) Streamwise distribution of the Strouhal number of the Kelvin–Helmholtz instability Stkh
evaluated along the shear layer:

�
, Re = 3000; �, Re = 8000; and ©, Re = 14 000. The inset panel shows the

same quantity scaled with the initial shear-layer thickness Stkhδbl/D. (b) Momentum thickness of the front-face
boundary layer δbl evaluated at the leading edge as a function of the Reynolds number, where the dashed line
denotes the Re−1/2 scaling.

with Re thus compensating the corresponding increase of Kelvin–Helmholtz frequency. It
is worth noting that the strong dependence of the frequency spectrum on the coordinate
orthogonal to the shear-layer makes the extraction of a well-defined scaling very difficult.
This is because also small variations in the vertical locations of time signal probes lead
to substantially different frequency spectrum shapes, especially at the early stages of
the shear layer development where the shear-layer thickness is very small thus making
comparisons between different streamwise locations and Reynolds numbers very difficult.

The initial shear-layer thickness δbl is related with the boundary layer developing along
the front face of the body. For this reason, it is here computed as the momentum thickness
of the front-face boundary layer evaluated at the leading edge,

δbl =
∫ 0

xmax

V(x, 0)

Vmax

(
1 − V(x, 0)

Vmax

)
dx, (8.3)

where Vmax = V(xmax, 0) is the maximum vertical velocity measured along the front-face
streamwise distance and xmax its location. We try here to give an explanation to the
significant thinning of the front-face boundary layer with the Reynolds number shown in
figure 20(b). Between stagnation and separation, the front-face boundary layer maintains
a laminar condition and thins to very small values due to intense favourable pressure
gradients (Lander et al. 2018). This behaviour and the corresponding laminar condition
is valid for many applications since the front-face boundary layer is found to be stable
up to Reynolds numbers based on boundary-layer thickness and velocity at separation
Rebl = δblUs/ν of order 109 (Sigurdson 1986). This is a distinguishing feature of bluff
bodies with sharp edges compared with bluff bodies with smooth edges where, in contrast,
the boundary layer undergoes transition and adverse pressure gradients thus thickening
before separation. Based on the analytical solution for a laminar boundary layer, the
thickness of the front-face boundary layer at separation scales as

δbl ∼ Re−1/2. (8.4)

As shown in figure 20(b), such a scaling is found to almost cancel out the Reynolds
number dependence of δbl. This estimate is slightly different with respect to the scaling
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reported in Lander et al. (2018) for square prisms where δbl ∼ Re−0.59. By inserting the
boundary layer scaling (8.4) into assumption (8.2), we might expect a scaling of the
Kelvin–Helmholtz frequency in the form Stkh ∼ Re1/2. Despite the already mentioned
difficulties in comparing the spectral data in the shear layer, our data actually suggests
that a better scaling is

Stkh ∼ Re0.57. (8.5)

The measured difference in the scaling exponent actually suggests that assumption
(8.2) should be extended to take into account the Reynolds number dependence of the
shear-layer velocity difference �Uτ analysed in § 6. To note that such an anomalous
scaling has been already observed in Prasad & Williamson (1997) and Lander et al. (2018)
where similar exponents for different types of bluff bodies are reported.

In closing this section, it is worth noting the increase with Reynolds of the separation of
scales between the large-scale slow motions due to shedding and the small-scale motions
due to transition to turbulence induced by the Kelvin–Helmholtz instability. By combining
relation (8.5) for the Kelvin–Helmholtz frequency with the fact that the frequency of
the von Kármán instability is expected to be asymptotically constant with Reynolds,
Stvk = 0.11, the scaling of such a separation of scales can be quantified as

fkh

fvk
∼ Re0.57. (8.6)

This separation of scales is a classical Reynolds number effect and is combined to
the separation of regions where the two unsteadiness occur as reported in § 5.1, thus
contributing to the increase of the intensity of the shedding phenomena shown in figure 19
and, hence, of the lift fluctuations shown in § 4.

8.3. Low-frequency unsteadiness
It is interesting to note that the frequency spectrum of streamwise velocity Euu( f ) in the
shear layer at the leading-edge region reported in figure 18(b) exhibits a third peak of
activity for very low frequencies at Stlf = 0.020 for the high-Reynolds-number cases and
at Stlf = 0.014 for Re = 3000. This is a clear footprint of the presence of a very large-scale
low-frequency unsteadiness. As shown in Kiya & Sasaki (1983), this low-frequency
unsteadiness superimposes to the regular vortex shedding. It consists in a shedding of
much larger vortices from the recirculating bubble appearing every six vortex shedding
periods. Accordingly, our data show that Stlf ≈ Stvk/6. Such shedding of larger vortices is
associated with a larger phenomenon of enlargement and shrinkage of the bubble and also
by a more intense flapping motion of the shear layer near the leading edge as apparent from
Euu( f ) reported in figure 18(b). The nature of the phenomenon is clarified in some detail
in Cimarelli et al. (2018b) where the more intense shrinkage of the recirculating region is
found to promote the advancement towards the front of the plate of flow structures through
the reverse boundary layer thus leading to a low-frequency triggering of the shear-layer
instability at the leading edge.

Such a low-frequency unsteadiness is a peculiar feature of separating flows over sharp
edges being absent in the case of flow separations over smooth leading edges (Cimarelli,
Franciolini & Crivellini 2020). The associated more intense flapping motion of the shear
layer significantly affect the self-sustaining mechanisms of turbulence taking place along
the shear layer itself. As shown in Cimarelli et al. (2019), it consists in a reverse of sign of
the Reynolds shear stresses, −〈u′v′〉 < 0, that, together with a positive sign of the mean
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Figure 21. Premultiplied time cospectrum of the Reynolds shear stresses StEuv as a function of the time scale
λt = 1/St and evaluated in the leading-edge shear layer at x = 0.1 (a) and x = 0.3 (b) for the case Re = 14 000.

shear ∂U/∂y > 0 leads to a negative contribution to the production of turbulence,

− 〈u′v′〉∂U
∂y

< 0. (8.7)

Such a reverse of sign can be easily related to the flapping motion of the shear layer.
In particular, when the shear layer is closer to the body induces a local increase of both
the streamwise and vertical velocities with respect to their average values, i.e. u′ > 0 and
v′ > 0. In contrast, when the shear layer is farthest from the body induces a local decrease
in both the streamwise and vertical velocities with respect to their average values, i.e.
u′ < 0 and v′ < 0.

This phenomenology is unequivocally shown in quantitative terms by the premultiplied
frequency cospectra StEuv reported in figure 21. At the early stage of development,
the shear layer experiences only the slow flapping motion induced by the von Kármán
instability superimposed to the low-frequency unsteadiness being the Kelvin–Helmholtz
instabilities still not activated. As shown in figure 21(a), the negative values of the
Reynolds shear stresses in this region of the flow −〈u′v′〉 < 0 are indeed associated with
the time scales of the von Kármán and low-frequency unsteadiness centred respectively at
λt ≈ 9 and 54. Further downstream, the transitional mechanisms of the Kelvin–Helmholtz
instability set in and, as shown figure 21(b), the associated small time scales are related
with the generation of positive values of Reynolds shear stresses −〈u′v′〉 > 0 that indeed
correspond to a positive production of turbulence fluctuations. Hence, two well-separated
range of scales exist in the shear layer with small Kelvin–Helmholtz scales contributing to
production of turbulence fluctuations in opposition to the large scales of the von Kármán
and low-frequency unsteadiness whose action is, in contrast, to suppress turbulence. By
further moving downstream, the shear-layer instability amplifies the intensity of the small
Kelvin–Helmholtz scales thus overcoming the reverse of sign induced by the large scales
and recovering the classical positive sign of the Reynolds shear stresses −〈u′v′〉 > 0 and
of their contribution to turbulence production, i.e. −〈u′v′〉(∂U/∂y) > 0.

9. Final discussion

The flow around bluff bodies with sharp edges exhibits fascinating phenomena ranging
from the small-scale mechanisms of turbulence to the large-scale motions of the main flow
shedding instabilities. The non-local coupling of the different strongly inhomogeneous
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phenomena characterising the flow challenges for the development of theories able
to explain the overall behaviour of the flow system. Here, we take the challenge by
decomposing the problem into multiple interacting flow mechanisms, by providing a
detailed physical description of their behaviour and by addressing how their complex
interaction contribute to the overall properties of the flow. To this aim, DNSs of the flow
around a rectangular cylinder at different Reynolds numbers have been performed. The
analysis reveals interesting flow features that are here summarised.

A major distinguishing feature of the flow about bluff bodies with sharp edges as
compared with smooth edges is given by the nature of the boundary layer impinging on
the front face. The boundary layer undergoes transition and adverse pressure gradients
in smooth-edge bodies thus thickening before separation. In contrast, the boundary layer
maintains a laminar condition and thins to very small values due to intense favourable
pressure gradients in sharp-edge bodies. Accordingly, the thickness of the front-face
boundary layer at separation is found to behave as δbl ∼ Re−0.5 in agreement with
theoretical scaling of laminar boundary layers. This scaling is recognised as a relevant
feature for the instability of the shear layer developing from the leading-edge separation.
The shear layer rapidly rolls up due to the onset of the Kelvin–Helmholtz instability
and the amplified frequency is found to be strictly related with the initial shear-layer
thickness imposed by the front-face boundary layer. The measured scaling is Stkh ∼ Re0.57

that is indeed very close to the scaling of the initial shear-layer thickness 1/δbl ∼ Re0.5.
In addition to Kelvin–Helmholtz instability, the early stage development of the shear
layer is also characterised by a low-frequency flapping motion induced non-locally by
von Kármán-like shedding of vortices from the recirculating bubble. The intensity of
this flapping is enhanced by a further very low-frequency unsteadiness that is related to
a shedding of much larger vortices every 6 von Kármán shedding periods. In contrast
to the motion induced by the Kelvin–Helmholtz instability, the flapping motion of the
shear layer is recognised as responsible for a change of sign of the Reynolds shear stress
that is related with a suppression of turbulence production. The opposite contribution
to turbulence production provided by the Kelvin–Helmholtz and flapping instabilities is
characterised by a separation of scales that is found to increase with the Reynolds number
as fkh/fvk ∼ Re0.57.

From the leading edge, the vertical displacement of the shear-layer centreline ysl is
initially fast and saturates around x ≈ 2 reaching a value ysl ≈ 0.5. This behaviour appears
to be driven by the mean flow advection as demonstrated by the good agreement with
classical predictions from the free streamline theory. For x > 2 the shear-layer centreline
slightly bends towards the plate wall before positioning at an almost constant distance from
the wall for x > 4. This final behaviour does not conform with the mean flow paths thus
suggesting that also turbulent fluxes become relevant. Along its development, the shear
layer undergoes entrainment mechanisms thus increasing its thickness. Two piecewise
linear growths of the shear-layer thickness are observed and related with the behaviour of
the velocity difference �Uτ induced by the reverse boundary layer within the recirculating
bubble. The cross-over between these two linear growths is indeed determined by the
separation of the reverse boundary layer for x = xSV

e . The first slower linear growth for
x < xSV

e is found to be compatible with the self-similar assumption of plane mixing layers
being the velocity difference �Uτ constant when the reverse boundary layer is separated.
Still, the model for the growth rate dδsl/dτ = Cλ leads to a constant C ≈ 0.045 that is
smaller than the value C = 0.17 commonly measured in free plane mixing layers. The
second faster linear growth is on the other hand found to be directly determined by
pressure gradient effect on the reverse boundary layer that leads to a velocity difference

984 A20-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

21
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.215


Reynolds number effects in separating and reattaching flows

that increases between xSV
e < x < xc. Downstream the center of rotation of the primary

vortex x > xc, the shear-layer thickness is found to saturate to an almost constant value.
We recognise that the position of the center of rotation of the primary vortex is the
location where the shear-layer thickness becomes of the order of the distance from the
wall δsl(xc) = O( ysl). In these conditions, the shear layer growth is limited from below by
the presence of the wall and the unbalance of entrainment from the outer and inner sides
of the shear layer reaches its maximum. This unbalance leads to a preferential spreading
of the flow towards the low-momentum side and, hence, to a deflection towards the wall of
the mean flow paths that indeed corresponds to the primary vortex pattern for x > xc.

In accordance with the above results, the tendency of the flow to deviate towards the wall
and to reattach is found to be a direct consequence of the unbalance of the entrainment
mechanisms along the streamwise development of the shear layer. Such phenomena are
related with the continuous deformation and folding of the shear-layer interface and
their effectiveness is quantified by the entrainment parameter β = Ve/�Uτ . The analysis
reveals that along the first, almost self-similar, linear growth of the shear-layer thickness
for x < xSV

e , the levels of entrainment β = 0.07 are significantly smaller than common
values measured in free mixing layers (β ≈ 0.15) due to the transitional character of this
region of the flow. On the other hand, the second faster linear growth is characterised
by significantly higher entrainment rates, β = 0.12 for xSV

e < x < xr, due to engulfment
events related with the fully turbulent character of this region. Analogously, the levels of
entrainment are further enhanced in the final part of the body, β = 0.25 for xr < x < L,
due to strong mechanisms of engulfment induced by the increased relevance of vortex
shedding.

Finally, the flow develops in the wake for x > L. A self-similar solution is achieved and
found to be characterised by two distinct regimes corresponding to fast and slow growth
rates of the wake width. The higher rates of entrainment of the near-wake regime, β = 0.7,
are associated with intense events of engulfment induced by a very coherent pattern of
vortex shedding. This coherent pattern is then gradually lost along the wake development
due to the mixing action of turbulence thus leading to a transition to the lower rates of
entrainment β = 0.25 characterising the far-wake regime.

The physical understanding provided for each of these flow mechanisms are then used
to provide a physical explanation of how their interaction contributes to the main flow
features. In this respect, the reverse boundary layer and its separation are recognised as the
key flow features determining the overall flow properties. Indeed, the intensity of the flow
velocities induced by the reverse flow is found to determine the scaling of the shear-layer
velocity difference �Uτ that in turn is directly related with the entrainment processes
exerted by the flow. We found that almost all the main flow features (heat and drag
coefficients, mean flow and scalar patterns, mean flow reattachment length, aerodynamic
loads by lift, etc.) can be explained through the behaviour of entrainment along the shear
layer and consequently through the scaling of the reverse boundary layer. By increasing the
Reynolds number, we found that the reverse boundary layer more efficiently counters the
adverse pressure gradients occurring in the first part of the primary vortex for x < xc thus
leading to a shift towards the front of the plate of its separation. This behaviour is expected
to saturate at high Reynolds numbers thus leading to an asymptotic regime characterised
by asymptotic values for the heat and drag coefficients and for the mean reattachment
length.
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Appendix A. Spatial resolution, statistical convergence and validation

In this section further details about the quality of the database used in the present work
are provided in terms of spatial resolution and statistical convergence. A validation of the
highest-Reynolds-number case is also provided through a comparison with statistics from
experimental measurements.

The values of the worst spatial resolution in terms of Kolmogorov scale for the three
spatial directions have been already reported in table 1. We take advantage of this section
to expand this single-point information by addressing the levels of spatial resolution in the
different flow regions thus allowing us to better assess the quality of the spatial resolution
employed to solve the overall flow. To this aim, we consider as characteristic length for
spatial resolution the cubic root of the numerical volume described by the spatial degrees
of freedom of the numerical method, h = (�x �y �z)1/3 where the spacings �x, �y
and �z are defined as the distance between N + 1 uniformly spaced points within the
spectral element with N the order of the polynomial used in the spectral element method,
see § 2. The spatial distribution of the ratio h/η is shown in figure 22 for the three
Reynolds numbers. The highest values are reached in the shear layer, with a maximum
value of 3.44, 3.68 and 4.94 for the cases at Re = 3000, 8000 and 14 000, respectively. By
considering that the high-order method here employed corresponds to a seventh order of
spatial accuracy, these values are considered as suitable for a DNS. By further considering
that these values pertain to a small region of the flow and that all the rest of the flow is
resolved with a spatial resolution ranging from two to three Kolmogorov scales, see again
figure 22, we can finally conclude that the reported flow solutions are well resolved in
space. Further details about the question of spatial resolution in separating and reattaching
flows can be found in Corsini et al. (2022).

In turbulent flows around bluff bodies, the statistical convergence generally requires
a long integration time given the occurrence of unsteady motions with large correlation
times. A clear example is given by the von Kármán shedding instability and by the
low-frequency unsteadiness analysed in § 8. Here, we address the statistical convergence
by analysing the sensitivity of the main flow statistics to the variation of the number
of samples used for the ensemble average. An example is given in figure 23 where the
turbulent kinetic energy field and the mean flow streamlines for the flow case at Re = 3000
obtained by using 59 (a) and 40 (b) time samples are shown. No significant differences
are observed. In a more quantitative point of view, the peak value of turbulent kinetic
energy moves from 〈k〉max = 0.145 to 0.146 by reducing the number of samples that
corresponds to a variation of 0.7 %. Analogous results are obtained for global quantities
such as CD, CH , Stvk and xr that shows variation of less than 1 %. To further assess the
statistical convergence, the behaviour of the turbulent kinetic energy and of the mean flow
streamlines when the statistical symmetry about the xz mid-plane is not taken into account,
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Figure 22. Distribution of the spatial resolution h/η for the flow cases at Re = 3000 (a), Re = 8000 (b) and
Re = 14 000 (c).
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Figure 23. Turbulent kinetic energy and mean velocity paths at Re = 3000 computed by performing the
ensemble average over 58 (a) and 40 (b) time samples separated by equal time intervals �T = 5. The behaviour
of the same quantities obtained by not availing of the flow symmetry about the y = −0.5 axis is shown in (c).

is shown in figure 23(c). The almost perfect symmetry of the reported statistics with
respect to the y = −0.5 symmetry axis is a further supporting evidence of the adequacy
of the statistical sample used.
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Figure 24. Vertical profiles of the flow solution at different streamwise locations for the flow case at
Re = 14 000 (solid lines) compared with experimental results from Kumahor & Tachie (2022) at Re = 16 200
(symbols): mean streamwise velocity (a), streamwise turbulent intensity (b), vertical turbulent intensity (c) and
turbulent shear stress (d).

In closing this section, we provide a validation of the present flow solutions. To note that
a detailed validation of the flow case at Re = 3000 has been already performed in Corsini
et al. (2022) through a comparison with DNS data from Chiarini & Quadrio (2021) and
Cimarelli et al. (2018a). At the time of this writing, however, there are no other DNS data
available in the literature for this flow configuration at Re > 3000. Hence, the validation of
the results for the highest Reynolds number is performed by considering experimental data.
In this context, the experimental set-up employed by Kumahor & Tachie (2022) is found to
be the closest to the present flow configuration at Re = 14 000 in terms of geometry, inflow
turbulence intensity (TI = 1.2 %), and Reynolds number (Re = 16 200). The results of the
present study are compared with those from Kumahor & Tachie (2022) in figure 24. The
vertical profiles of the mean streamwise velocity and Reynolds stresses evaluated in the
DNS are in good agreement with experiments. Only a slightly higher mean streamwise
velocity profile is observed in the experimental results that, however, is compatible and can
be attributed to a different blockage ratio that is higher in the experiment (D/Ly = 7 %)
with respect to that of the present numerical set-up (D/Ly = 3.2 %).

Appendix B. Definitions of the aerodynamic and heat coefficients

The drag coefficient is defined as

CD = CDp + CDf , (B1)

with the form and friction drag coefficients defined as

CDp = −
∫

cpnx d(�/D) CDf =
∫

cf ny d(�/D), (B2a,b)
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where n = (nx, ny) is the outward normal to the rectangular cylinder, � is its closed
bounding line and

cp = 〈pw〉 − p0

ρU2
0/2

cf = 〈τw〉
ρU2

0/2
, (B3a,b)

are the average pressure and friction coefficients with pw and τw the pressure and shear
stresses at the wall. The lift coefficient is defined as

CL = −
∫

cpny d(�/D) −
∫

cf nx d(�/D). (B4)

On the other hand, the standard deviation of the lift coefficient is defined as

CLrms = −
∫

cprmsny d(�/D) −
∫

cfrmsnx d(�/D), (B5)

where

cprms = 〈p′
wp′

w〉1/2

ρU2
0/2

cfrms = 〈τ ′
wτ ′

w〉1/2

ρU2
0/2

, (B6a,b)

are the standard deviation of the pressure and friction coefficients. Finally, the Stanton and
Nusselt numbers are defined as

CH = 1
ρU0c

∫ 〈qw〉
�θ

d(�/D) Nu = D
κ

∫ 〈qw〉
�θ

d(�/D), (B7a,b)

where qw is the wall heat flux, κ is the thermal conductivity of the fluid and c the specific
heat.
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