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Abstract

We examine dynamical systems which are ‘nonchaotic’ on a big (in the sense of Lebesgue measure) set in
each neighbourhood of a fixed point x0, that is, the entropy of this system is zero on a set for which x0 is a
density point. Considerations connected with this family of functions are linked with functions attracting
positive entropy at x0, that is, each mapping sufficiently close to the function has positive entropy on each
neighbourhood of x0.
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1. Introduction and preliminaries

The theory of discrete dynamical systems has wide applications in various fields
of knowledge (economics, physics, biology, information flow theory etc). Many
mathematicians are of the opinion that the basic criterion for determining whether
a dynamical system is chaotic is positive entropy of the system (some heuristic
justification can be found in [3]). Key considerations on topological entropy for
discrete dynamical systems are based on two classical definitions: the first formulated
by Adler et al. [1] based on the cover theory for compact spaces and the second
given, for suitable metric spaces, by Bowen [4] and Dinaburg [10]. Initially, entropy
of a function was considered only for continuous functions. This changed in 2004
when entropy was associated with Darboux-like functions [8]. Continuing this line of
research, we will associate the concept of entropy with the theory of approximately
continuous functions. This is the basis of much contemporary work, mainly due to a
group of scientists gathered around Wilczyński (see, for example, [2, 11]).

The analysis of various examples of functions leads us to the interesting observation
that entropy of a function may be focused at one point [15, 18, 20]. In a natural
manner, these issues can be linked to the approximate continuity of a function at a
given point. In this paper we will concentrate on functions 0-approximately continuous
at a given point, that is, functions which are approximately continuous at a point
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and are not chaotic on some set near this point. In September 2016 during the
30th International Summer Conference on Real Functions Theory in Stará Lesná,
Wilczyński, in reference to our lecture connected with such functions, formulated the
following problem (see also [19]):

How big may be the set of approximate continuity points of a function f
which are not its 0-approximate continuity points?

The paper starts with a partial answer to this question. In the second part of the
paper we present additional observations which have emerged while working on the
question and broadened the scope of our research.

Throughout the paper we will consider only functions from the closed unit interval
I = [0, 1] into I. If A ⊂ I and f is a function, then f � A means the restriction of f to A.
The cardinality of A will be denoted by #(A).

For the reasons given above, we will often limit our considerations to Darboux
functions, that is, functions having the intermediate value property. The family of all
such functions will be denoted by D. At the same time, for simplicity of proofs, we
will use the concept of a left (right)-hand Darboux point and a Darboux point of a
function [6, 7, 14]. We rely on the following properties of these concepts.

(D1) A point x0 is a Daboux point of a function f if and only if it is simultaneously a
left- and a right-hand Darboux point of f (obviously if x0 = 0 or x0 = 1, then we
consider only one-sided Darboux points).

(D2) If f is right- (left-) hand continuous at a point x0, then x0 is a right- (left-) hand
Darboux point of f .

(D3) A function f belongs to D if and only if each point of I is a Darboux point of f .

Since our considerations are closely related to entropy of discrete dynamical
systems, we recall the basic facts and definitions related to this concept [8, 12]. Let
f be a function, A ⊂ I, n ∈ N and ε > 0. A set M ⊂ A is ( f , A, ε, n)-separated if, for
each x, y ∈ M with x , y, there is an i with 0 ≤ i < n such that | f i(x) − f i(y)| > ε (where
f n(x) = f ( f n−1(x)) and f 0(x) = x for x ∈ I). Let s( f ,A, ε, n) denote the cardinality of an
( f ,A, ε,n)-separated set with the maximum possible number of points. The topological
entropy of a function f on the set A is the number

h( f , A) = lim
ε→0

lim sup
n→∞

1
n

log s( f , A, ε, n).

To examine local aspects of the entropy of a function, it is useful to consider certain
families of sets [13]. We will limit our considerations to the family F of all closed
subsets of I (cf. Lemma 2.1).

Another essential notion is the concept of a density point. Let L denote the σ-
algebra of all Lebesgue measurable sets and λ the Lebesgue measure. For any x0 ∈ I
and A ∈ L, if the limit

lim
h→0+

λ(A ∩ [x0 − h, x0 + h])
2h
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exists, we call it the density of the set A at the point x0 and denote it by d(A, x0).
Similarly, we define right-hand and left-hand densities of a set at a point, denoted by
d+(A, x0) and d−(A, x0), respectively. If x0 = 0 or x0 = 1, then we consider a suitable
one-sided density. If d(A, x0) = 1, then we say that x0 is a density point of a set A.

Interval sets at a point play a special role. Let x0 ∈ (0,1) and {an}n∈N, {bn}n∈N, {cn}n∈N,
{dn}n∈N ⊂ I be sequences such that limn→∞ bn = limn→∞ cn = x0 and cn < dn < cn+1 and
bn+1 < an < bn for any n ∈ N. An interval set at a point x0 is a set given by the formula

∞⋃
n=1

Ln ∪ {x0} ∪

∞⋃
n=1

Rn,

where Ln = [cn, dn] and Rn = [an, bn] for n ∈ N. Similarly, we define a right- (left-)
hand interval set at a point x0 ∈ I. To shorten notation, for x0 = 0 or x0 = 1, an interval
set at x0 means a right-hand or left-hand interval set at this point, respectively.

Finally, we recall the Lusin–Menchoff theorem, which will be useful in the next
part of the paper.

Theorem 1.1 [5]. Let E ∈ L and S be a closed subset of E such that d(E, x) = 1 for
x ∈ S . There exists a perfect set F such that S ⊂ F ⊂ E and d(F, x) = 1 for x ∈ S .

2. 0-approximately continuous functions attracting positive entropy

Approximately continuous functions were introduced in 1915 by Denjoy [9]. The
idea is that such a function is continuous on a big (in the sense of measure) set in every
neighbourhood of a given point. We will also require that the function not be chaotic
on this big set (that is, the entropy of the function on this set is zero) and on the other
hand it ‘attracts chaos’. As mentioned earlier, the widest class of functions to which
the concept of entropy commonly applies is the family D, so our considerations will
often be limited to functions from this class.

Let us start with the definitions. We shall say that f is approximately continuous
(0-approximately continuous) at x0 ∈ I if there exists a set A ∈ L such that d(A, x0) = 1
and limA3x→x0 f (x) = f (x0) (and, moreover, h( f , A) = 0).

Let f ∈ D and x0 ∈ I. We say that f attracts positive entropy at a point x0 if for
any ε > 0 there exists δ > 0 such that for each function g ∈ Bρu ( f , δ) ∩ D we have
h(g, B(x0, ε)) > 0. Here B(x0, ε) is the open ball with centre x0 and radius ε with
respect to the natural metric and Bρu ( f , δ) is the open ball with centre f and radius
δ with respect to the metric of uniform convergence.

Obviously, if f ∈ D is such that h( f , I) = 0, then f does not attract positive entropy
at any point x0 ∈ I. Moreover, even if a function has positive entropy, it may not attract
positive entropy at any point. We see at once that there exists a function which is
0-approximately continuous at each point of I. Much more interesting is the problem
of the existence of a function approximately continuous at a point x0 ∈ I, which is
not 0-approximately continuous at this point. Wilczyński’s problem, quoted in the
introduction, arises in this context. Given the above definitions, this problem should
be extended to functions attracting positive entropy at a point.
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Before we state our main results, we formulate some lemmas which will be useful
in the next part of the paper. The first two lemmas are easily derived from the
considerations in the paper [13] (Lemma 2.1) and the monograph [17] (Lemma 2.2).

Lemma 2.1. Let Y ⊂ I and let F0,F1 ⊂ Y be closed and disjoint sets such that Fi −→
f

F j

(that is, F j ⊂ f (Fi)) for i, j ∈ {0, 1}. Then h( f ,Y) > 0.

Lemma 2.2. For any set A ∈ L with positive Lebesgue measure, there exists a set B ⊂ A
having the cardinality of the continuum and Lebesgue measure zero.

Lemma 2.3. Let [a, b] be a nondegenerate closed interval. There exists a function
Φ[a,b] : [a, b]→ [a, b] such that Φ[a,b](a) = a, Φ[a,b](b) = b and Φ[a,b](A) = [a, b] for
any A ⊂ [a, b] such that λ(A) > 0.

Proof. If [a, b] is a nondegenerate closed interval, then a < b. Let B(a,b) be the family
of all Borel sets contained in (a, b) and having positive Lebesgue measure. Obviously,
#(B(a,b)) = c.

By the well-ordering principle, the family B(a,b) can be indexed by the ordinal
numbers less than ωc, where ωc is the first ordinal having c predecessors. That is,
B(a,b) = {Bα}α<ωc . We now proceed by transfinite induction and construct the family
{Cα}α<ωc such that

#(Cα) = c and Cα ⊂

(
Bα \

⋃
β<α

Cβ

)
and λ(Cα) = 0, (2.1)

where, in addition,
⋃
β<α Cβ = ∅ for α = 0.

By Lemma 2.2, there exists a set C0 ⊂ B0 such that #(C0) = c and λ(C0) = 0. Let
α < ωc. Suppose that we have already defined Cβ for 0 ≤ β < α such that

#(Cβ) = c and Cβ ⊂

(
Bβ \

⋃
γ<β

Cγ

)
and λ(Cβ) = 0.

Since α < ωc, we have λ(
⋃
β<α Cβ) = 0, which gives λ(Bα\

⋃
β<α Cβ) = λ(Bα) > 0. By

Lemma 2.2, there exists Cα ⊂ Bα\
⋃
β<α Cβ such that #(Cα) = c and λ(Cα) = 0, which

finishes the proof of (2.1).
Clearly, by the well-ordering principle, each set Cα (α < ωc) can be represented as a

transfinite sequence {x(α)
γ }γ<ωc . Let A0 = {x(α)

0 : α < ωc} ∪ ((a, b)\
⋃
α<ωc Cα). Moreover,

for each β < ωc and β > 0, put Aβ = {x(α)
β : α < ωc}. Then the familyA = {Aα : α < ωc}

has the cardinality of the continuum and Aα1 ∩ Aα2 = ∅ for any α1, α2 < ωc and α1 , α2.
What is more,

⋃
α<ωc Aα = (a, b).

For each x ∈ (a, b), let αx denote the ordinal number such that x ∈ Aαx . Obviously,
there is a bijection ϕ :A→ [a, b]. Now we define a function Φ[a,b] : [a, b]→ [a, b] in
the following way: Φ[a,b](a) = a, Φ[a,b](b) = b and Φ[a,b](x) = ϕ(Aαx ) for x ∈ (a, b). To
see that Φ[a,b] is the required function, it is sufficient to prove that Φ[a,b](A) = [a, b] for
any A ⊂ [a, b] such that λ(A) > 0.
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Let A ⊂ [a, b] be such that λ(A) > 0. Since λ(A) = λ(A\{a, b}), there is no loss of
generality in assuming that A ⊂ (a, b). Moreover, there is a Borel set B ⊂ A such that
λ(B) > 0.

Fix y ∈ [a, b]. Clearly, there exists αy < ωc such that ϕ(Aαy ) = y. Let αB < ωc

be such that B = BαB . Since CαB ⊂ BαB = B and CαB = {x(αB)
γ : γ < ωc}, we see that

x(αB)
αy ∈ Aαy ∩ B ⊂ A and, in consequence, Φ[a,b](x(αB)

αy ) = ϕ(Aαy ) = y. Since y is arbitrary,
it follows that [a, b] ⊂ Φ[a,b](A) and, in consequence, [a, b] = Φ[a,b](A). �

If [a, b] is a nondegenerate closed interval, then the function Φ[a,b] : [a, b]→ [a, b]
from Lemma 2.3 is a Darboux function which is discontinuous at each point of the
interval [a, b].

The next theorem is not only related to Wilczyński’s problem (see the note
following the proof of the theorem), but it is also related to the problem of finding
functions attracting positive entropy at a point.

Theorem 2.4. There exists a function f ∈ D such that f is continuous at every point
of the Cantor set C, h( f , A) > 0 for any set A ⊂ I such that λ(A) > 0, and f attracts
positive entropy at every point x ∈ I.

Proof. Let S be the set of all components of the set I\C. Clearly, for any interval
P ∈ S, there exist a strictly decreasing sequence {aP

n }n∈N ⊂ P and a strictly increasing
sequence {bP

n }n∈N ⊂ P such that limn→∞ aP
n = inf P, limn→∞ bP

n = sup P and bP
1 − aP

1 > 0.
For any P ∈ S, we define the function fP : P→ P as follows: fP(x) = ΦQ(x) for

x ∈ Q ∈ {[a1, b1]} ∪ {[aP
n+1, a

P
n ] : n ∈ N} ∪ {[bP

n , b
P
n+1] : n ∈ N}, where ΦQ is the function

from Lemma 2.3.
Next put f (x) = x for x ∈ C and f (x) = fPx (x) for x ∈ I\C, where Px is the component

of the set I\C containing x.
We will show that f is the required function. For that, we will prove first that

C( f ) = C, (2.2)

where C( f ) denotes the set of all continuity points of f .
Let x0 ∈ C. We will show that f is right-hand continuous at x0 (for left-hand

continuity the proof runs in a similar way). Obviously, in this case we have x0 , 1
and f (x0) = x0. Let ε ∈ (0,min{x0, 1 − x0}).

Assume first that there is P0 ∈ S such that x0 = inf P0. Obviously, one can find
n1 ∈ N such that aP0

n1 < x0 + ε. Put δ = aP0
n1 − x0, so that δ ≤ ε. If x ∈ (x0, x0 + δ), then

x ∈ [aP0
n+1, a

P0
n ] for some n ≥ n1. Thus, f (x) = fP0 (x) ∈ [aP0

n+1, a
P0
n ], so f (x) ∈ [x0, x0 + ε)

and, in consequence, f ([x0, x0 + δ)) ⊂ [x0, x0 + ε).
Assume now that x0 , inf P for every P ∈ S and consider the point x0 + ε ∈ I.

If x0 + ε ∈ C, then put δ1 = ε. If x0 + ε < C, then put δ1 = min{ε, inf Px0+ε − x0},
where Px0+ε ∈ S and x0 + ε ∈ Px0+ε. Obviously, δ1 ≤ ε. Moreover, if P ∈ S and
P ∩ (x0, x0 + δ1) , ∅, then P ⊂ (x0, x0 + ε). Now it is easy to see that f ([x0, x0 + δ1)) ⊂
[x0, x0 + ε).
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Thus, we have proved that C ⊂ C( f ). Taking into account the remark made after the
proof of Lemma 2.3, we immediately obtain C = C( f ).

Now we prove that
f ∈ D. (2.3)

If x ∈ C, then, by (2.2) and condition (D2), x is a Darboux point of f . If x < C, then
there is P ∈ S such that x ∈ P. From the construction of f and the remark made after
the proof of Lemma 2.3, it follows that also in this case x is a Darboux point of f .
Condition (D3) gives (2.3).

Now we show that

h( f , A) > 0 for any set A such that λ(A) > 0. (2.4)

Let A be as in (2.4) and let F ⊂ A be a closed set such that λ(F) > 0. Obviously,
there is P ∈ S such that λ(P ∩ F) > 0. Without loss of generality, we can assume that
λ([aP

n0+1, a
P
n0

] ∩ F) > 0 for some n0 ∈ N. Thus, there are c, d ∈ (aP
n0+1, a

P
n0

) such that
c < d, λ([aP

n0+1, c] ∩ F) > 0 and λ([d, aP
n0

] ∩ F) > 0. Now put F0 = [aP
n0+1, c] ∩ F and

F1 = [d, aP
n0

] ∩ F. Clearly, F0, F1 are closed disjoint sets. Since f (F0) = [aP
n0+1, a

P
n0

],
f (F1) = [aP

n0+1, a
P
n0

] and F0 ∪ F1 ⊂ [aP
n0+1, a

P
n0

], we see that Fi −→
f

F j for i, j ∈ {0, 1}.

Therefore, Lemma 2.1 gives (2.4).
In order to complete the proof, we will show that

f attracts positive entropy at every point x ∈ I. (2.5)

Let x0 ∈ I and ε > 0. Assume first that x0 ∈ C. Let P ∈ S be such that P ⊂ B(x0, ε). Put
δ = 1

3λ([aP
1 , b

P
1 ]) and consider g ∈ B( f , δ) ∩D, c1 = aP

1 + δ and c2 = bP
1 − δ. Let F0, F1

be closed disjoint sets with positive Lebesgue measure such that F0 ∪ F1 ⊂ [c1, c2].
Naturally, f (Fi) = [aP

1 , b
P
1 ] for i = 0, 1. Thus, one can find xi

1 ∈ Fi and xi
2 ∈ Fi such

that f (xi
1) = aP

1 and f (xi
2) = bP

1 for i = 0, 1. Hence, g(xi
1) < f (xi

1) + δ = aP
1 + δ = c1 and

g(xi
2) > f (xi

2) − δ = bP
1 − δ = c2 for i = 0, 1. Since g ∈ D, we have [c1, c2] ⊂ g([xi

1, xi
2])

if xi
1 < xi

2 or [c1, c2] ⊂ g([xi
2, xi

1]) if xi
2 < xi

1. Finally, Fi ⊂ [c1, c2] ⊂ g(F j) for i, j =

0, 1, which means that Fi →
g

F j for i, j = 0, 1. By Lemma 2.1, we conclude that

h(g, B(x0, ε)) > 0, which proves (2.5) in this case.
Now assume that x0 < C. Let P ∈S be such that x0 ∈ P. There is no loss of generality

in assuming that there is n0 ∈ N such that x0 ∈ [aP
n0+1, a

P
n0

]. Put δ = 1
3 (aP

n0
− aP

n0+1). Let
g ∈ B( f , δ) ∩ D and d1, d2 ∈ [aP

n0+1 + δ, aP
n0
− δ] ∩ B(x0, ε) be such that d1 < d2. There

are closed and disjoint sets F0, F1 having a positive Lebesgue measure and such that
F0 ∪ F1 ⊂ [d1, d2]. We see at once that f (Fi) = [aP

n0+1, a
P
n0

] for i = 0, 1. An argument
similar to that in the proof of the first case establishes (2.5). �

Referring to Wilczyński’s problem mentioned at the beginning of the paper, the
classical Cantor set is an uncountable set consisting of continuity (so also approximate
continuity) points of the function f from the above theorem. On the other hand, none
of these points is a point of 0-approximate continuity of f . (In fact, the function f is
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not 0-approximately continuous at any point.) The problem of the existence of a set A
of positive Lebesgue measure and a function g such that every point of A is a point of
approximate continuity of g and is not a point of 0-approximate continuity of g is still
open.

3. Attracting positive entropy in some equivalence classes

Many papers connected with the entropy of a function are related to functional
structures (for example, semi-groups, envelopes etc). We will relate our considerations
to the equivalence classes with respect to relations based on density points. We first
define these equivalence relations.

We shall say that two functions f and g are approximately equal at a point x0 ∈ I
if there is a set M ∈ L such that x0 ∈ M, d(M, x0) = 1 and M ⊂ {x ∈ I : f (x) = g(x)}.
Equivalently: f and g are approximately equal at a point x0 if there is A ∈ L such that
x0 < A, d(A, x0) = 0 and diff( f , g) = {x ∈ I : f (x) , g(x)} ⊂ A.

Let ε > 0. We shall say that two functions f and g are approximately ε-close at
a point x0 ∈ I if there is a set M ∈ L such that d(M, x0) = 1 and ρu( f �M, g �M) < ε
(where ρu is the metric of uniform convergence).

Let us now introduce two equivalence relations related to the above definitions. Let
f , g be functions.

(1) f 'x0
g if and only if f and g are approximately equal at a point x0.

(2) f �x0
g if and only if for any ε > 0 the functions f and g are approximately ε-close

at a point x0.

From now on the symbol [ f ]x0 will stand for the equivalence class of f with respect
to the relation 'x0

and the symbol 〈 f 〉x0 for the equivalence class of f with respect to the
relation �x0

. We see at once that [ f ]x0 ⊂ 〈 f 〉x0 for any f . We note two basic properties.

Property 3.1.

(a) A function f is approximately continuous (0-approximately continuous) at a
point x0 ∈ I if and only if each function g ∈ [ f ]x0 is approximately continuous
(0-approximately continuous) at x0.

(b) For any function f and any x0 ∈ I, there exists g ∈ 〈 f 〉x0 such that g is not
approximately continuous (so also is not 0-approximately continuous) at the
point x0. Moreover, if f ∈ D, then g ∈ D.

It is easy to see that we cannot replace approximate continuity with continuity in (a).

Proof. In both cases it suffices to prove necessity.
(a) Assume that f is approximately continuous (0-approximately continuous) at a point
x0. Then there exists a set B ∈ L such that d(B, x0) = 1 and limB3x→x0 f (x) = f (x0)
(and, moreover, h( f , B) = 0). Let g ∈ [ f ]x0 . Thus, f 'x0

g, so one can find a set A ∈ L
such that x0 < A, d(A, x0) = 0 and diff( f , g) ⊂ A. We see at once that g(x0) = f (x0).
With C = B\A, we see that d(C, x0) = 1 and limC3x→x0 f (x) = f (x0) (and, moreover,
h(g,C) = 0). Thus, g is approximately continuous (0-approximately continuous) at x0.
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(b) Let x0 ∈ I. We need only consider the case where f is approximately continuous at
x0. Let P =

⋃∞
n=1 Ln ∪ {x0} ∪

⋃∞
n=1 Rn, where Ln = [cn, dn] and Rn = [an, bn] for n ∈ N,

be an interval set at x0 such that d(P, x0) = 1 (if x0 = 0 or x0 = 1, then we consider a
one-sided interval set).

Fix β ∈ I\{ f (x0)}. Define a function g by g(x0) = β, g(x) = f (x) for x ∈ P\{x0},
g(x) = 0 for x ∈ { 13 (2bn+1 + an) : n ∈ N} ∪ { 13 (2cn+1 + dn) : n ∈ N} and g(x) = 1 for
x ∈ { 13 (bn+1 + 2an) : n ∈ N} ∪ { 13 (cn+1 + 2dn) : n ∈ N}, and let g be linear on each interval
[bn+1,

1
3 (2bn+1 + an)], [ 1

3 (2bn+1 + an), 1
3 (bn+1 + 2an)], [ 1

3 (bn+1 + 2an), an], [dn,
1
3 (cn+1 +

2dn)], [ 1
3 (cn+1 + 2dn), 1

3 (2cn+1 + dn)] and [ 1
3 (2cn+1 + dn), cn+1]. If x0 , 0 (x0 , 1), then,

in addition, put g(x) = f (x) for x ∈ [0, c1) (g(x) = f (x) for x ∈ (b1, 1]).
It is easy to see that g ∈ 〈 f 〉x0 . Moreover, if we assume in addition that f ∈ D, then,

by (D1)–(D3), we obtain immediately that g ∈ D. �

The next theorem establishes the interesting fact that each equivalence class [ f ]x0

for Darboux functions contains a function that attracts positive entropy at x0.

Theorem 3.2. If f ∈ D and x0 ∈ I, then there exists g ∈ [ f ]x0 which attracts positive
entropy at the point x0.

Proof. Let x0 ∈ I and let P =
⋃∞

n=1 Ln ∪ {x0} ∪
⋃∞

n=1 Rn ⊂ I be an interval set at x0
such that d(P, x0) = 0. If x0 ∈ {0, 1}, then as usual we consider a one-sided interval set.
Without restriction of generality, we can assume that for any n ∈ N there is a closed
interval Hn = [a∗n, b

∗
n] ⊂ (inf Rn, sup Rn). For each n ∈ N, fix points c∗n, d

∗
n, s∗n, t

∗
n ∈ Hn

such that a∗n < c∗n < d∗n < s∗n < t∗n < b∗n. We define the function g : I→ I in the following
way: g(x) = f (x) for x ∈ I\ int(

⋃∞
n=1 Rn), g(x) = 0 for x ∈ {a∗n, d

∗
n, t
∗
n}, n ∈ N, g(x) = 1 for

x ∈ {b∗n, c
∗
n, s∗n}, n ∈ N and g is linear otherwise. It is easy to see that f 'x0

g. Moreover,
by (D1)–(D3), we see at once that g ∈ D. Now we will show that

g attracts positive entropy at x0.

Let ε > 0. There exists n0 ∈ N such that Rn0 ⊂ B(x0, ε). Put δ = min{1 − t∗n0
, c∗n0
} and

consider g∗ ∈ B(g, δ) ∩D. If F0 = [c∗n0
, d∗n0

] and F1 = [e∗n0
, t∗n0

], then, since g∗ ∈ D, it is
easy to see that Fi →

g∗
F j for i, j = 0, 1. From that and Lemma 2.1, we conclude that

h(g∗, B(x0, ε)) > 0. Since ε > 0 is arbitrary, it follows that g attracts positive entropy at
x0. �

Since [ f ]x0 ⊂ 〈 f 〉x0 , we can replace the equivalence class [ f ]x0 by 〈 f 〉x0 in the above
theorem. It is interesting to ask about the existence of a function f such that the
equivalence class 〈 f 〉x0 consists only of functions attracting positive entropy at x0.
Note that such a function f cannot be approximatively continuous at x0 (it is sufficient
to consider the constant function assuming the value f (x0)). Taking into account this
observation and the fact that each approximately continuous function f : I→ I is a
derivative function (that is, a derivative of some function), the following theorem
seems to be particularly interesting.

Theorem 3.3. There exist a derivative function f and x0 ∈ I such that f (x0) = x0 and,
if g ∈ 〈 f 〉x0 , then g attracts positive entropy at x0.
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Proof. Fix x0 = 1
2 . Let A, B be interval sets at x0 such that d(A, x0) = 1

2 = d(B, x0),
d+(A, x0) = 1

2 = d+(B, x0) and A ∩ B = x0. (Such sets are constructed, for example, in
the proof of Theorem 5.5(d) in [5, Ch. 2].) Let f : I→ I be a function satisfying the
following conditions: f (x0) = x0, f (x) = 1 for x ∈ A\{x0}, f (x) = 0 for x ∈ B\{x0} and
C( f ) = I\{x0} (where C( f ) denotes the set of all continuity points of f ). Such a function
is a derivative function that is not approximately continuous at x0 (see [5, page 35]).
Note that if σ > 0 and D ∈ L is such that d(D, x0) = 1, then

there exist xD,σ
A ∈ A ∩ D ∩ (x0, x0 + σ) and xD,σ

B ∈ B ∩ D ∩ (x0, x0 + σ). (3.1)

Let g ∈ 〈 f 〉x0 . Choose ε ∈ (0, 1
4 ) and δ = 1

8 . There exists C ∈ L such that d(C, x0) = 1
and ρu( f �C, g �C) < δ. Then (3.1) implies that there are x1, x2, x3, x4 ∈ ( 1

2 ,
1
2 + ε) such

that x4 < x3 < x2 < x1 and x1, x3 ∈ A ∩C and x2, x4 ∈ B ∩C.
Consider g∗ ∈ Bρu (g, δ) ∩ D. Putting F0 = [x2, x1] and F1 = [x4, x3], we obtain

immediately that Fi →
g∗

F j for i, j = 0, 1. Therefore, by Lemma 2.1, we conclude that

h(g∗, B(x0, ε)) > 0, which implies that g attracts positive entropy at x0. �

4. 0-approximate stable points of a function

The concept of a stable point of a function or dynamical system is considered
in [15, 16]. Obviously if x0 is a stable point of f then x0 is a fixed point of f (the
set of all fixed points of f will be denoted by Fix( f )). We introduce an analogous
concept.

We say that x0 ∈ I is a 0-approximate stable point of f if x0 ∈ Fix( f ) and there exists
a set A ∈ L such that d(A, x0) = 1, h( f , A) = 0 and, for any ε > 0, there is δ > 0 such
that for each n ∈ N and x ∈ A, if |x − x0| < δ, then | f n(x) − x0| < ε.

Obviously, if x0 ∈ I is a 0-approximate stable point of f , then f is approximately
(0-approximately) continuous at x0. On the other hand, it is easy to find a continuous
function such that x0 ∈ Fix( f ) and x0 is not a 0-approximate stable point of f . The
following theorem is of interest in connection with stability and for the observation
that a function for which x0 is a 0-approximate stable point may attract positive entropy
at this point.

Theorem 4.1. Let f ∈ D be a function approximately continuous at x0 ∈ Fix( f ). There
exists g ∈ 〈 f 〉x0 such that g attracts positive entropy at x0 and x0 is a 0-approximate
stable point of g.

Proof. Since f is approximately continuous at x0 ∈ Fix( f ), one can find a set B ∈ L
such that d(B, x0) = 1 and limB3x→x0 f (x) = x0. There is no loss of generality in
assuming that x0 ∈ B. By Theorem 1.1, there is a perfect set A such that {x0} ⊂ A ⊂ B
and d(A, x0) = 1.

Let P =
⋃∞

n=1 Ln ∪ {x0} ∪
⋃∞

n=1 Rn ⊂ I be an interval set at x0 such that d(P, x0) = 1.
Without loss of generality, we can assume that

⋃∞
n=1 Ln , ∅,

⋃∞
n=1 Rn , ∅, sup R1 < 1

and inf L1 > 0. Obviously, there exists δ > 0 such that P ⊂ (x0 − δ, x0 + δ). Moreover,
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we see at once that d(A ∩ P, x0) = 1, A ∩ P is a closed set and x0 ∈ A ∩ P. Put
C = A ∩ P.

Let An = Rn ∩ A for n ∈ N. There is no loss of generality in assuming that An , ∅ for
n ∈ N. Put gn(x) = x for x ∈ An and n ∈ N. For each n ∈ N, the set An is closed, so there
exists a continuous function g∗n : Rn → Rn such that g∗n � An = gn. Similarly, for each
n ∈ N, there is a continuous function β∗n : Ln → Ln such that β∗n(x) = x for x ∈ Ln ∩ A.

For n ∈ N, fix a nondegenerate interval Hn = [a∗n, b∗n] ⊂ (sup Rn+1, inf Rn) and
c∗n, d

∗
n, s∗n, t

∗
n ∈ Hn such that a∗n < c∗n < d∗n < s∗n < t∗n < b∗n. Define the function g as

follows: g(x) = g∗n(x) for x ∈ Rn, n ∈ N; g(x) = β∗n(x) for x ∈ Ln, n ∈ N; g(x) = f (x)
for x ∈ {x0} ∪ I\(x0 − δ, x0 + δ); g(x) = a∗n for x ∈ {a∗n, d

∗
n, t
∗
n}, n ∈ N; g(x) = b∗n for

x ∈ {b∗n, c
∗
n, s
∗
n}, n ∈ N and g is linear otherwise.

First we will show that
g ∈ 〈 f 〉x0 .

Let ε > 0. There is δ ∈ (0, 1
3ε) such that f (B ∩ [x0 − δ, x0 + δ]) ⊂ (x0 −

1
3ε, x0 + 1

3ε), so
f (C ∩ [x0 − δ, x0 + δ]) ⊂ (x0 −

1
3ε, x0 + 1

3ε). Moreover, d(C ∩ [x0 − δ, x0 + δ], x0) = 1
and g(C ∩ [x0 − δ, x0 + δ]) ⊂ (x0 −

1
3ε, x0 + 1

3ε). From this,

ρu( f � (C ∩ [x0 − δ, x0 + δ]), g � (C ∩ [x0 − δ, x0 + δ])) < ε,

which shows that f and g are approximately ε-close at x0 and, in consequence, that
g �x0

f . Since ε > 0 is arbitrary, it follows that g ∈ 〈 f 〉x0 .
Now we will prove that x0 is a 0-approximate stable point of g. We see at once

that x0 ∈ Fix(g). Fix ε∗ > 0 and put δ∗ = ε∗. Let n ∈ N, x ∈ C and |x0 − x| < δ∗. Thus,
gn(x) = x ∈ (x0 − ε∗, x0 + ε∗). Obviously, since g �C is an identity function, we have
h(g,C) = 0.

To complete the proof, it suffices to show that g attracts positive entropy at x0. By
conditions (D1)–(D3), we deduce that g ∈ D.

Let ε1 > 0. Obviously, there is n0 ∈ N such that [sup Rn0+1, inf Rn0 ] ⊂ B(x0, ε1).
Put δ = min{ 12 (c∗n0

− a∗n0
), 1

2 (b∗n0
− t∗n0

)} and consider g∗ ∈ B(g, δ) ∩ D. Since g∗ ∈ D, it
follows that for F0 = [c∗n0

, d∗n0
] and F1 = [e∗n0

, t∗n0
], we have Fi→

g∗
F j for i, j = 0, 1. From

Lemma 2.1, h(g∗, B(x0, ε)) > 0 and so g attracts positive entropy at x0. �
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