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BOW FLOWS WITH SMOOTH SEPARATION
IN WATER OF FINITE DEPTH

G. C. HOCKING!
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Abstract

The bow flow generated by a wide flat-bottomed ship moving in water of finite depth
is examined. Solutions obtained using an integral equation technique are presented
for a range of different depths and for a range of angles of the front of the bow. The
solution for the limiting case of infinite Froude number is obtained as an integral,
and numerical solutions are found for the nonlinear problem in which the Froude
number is finite. Solutions with smooth separation are shown to exist for all values
of Froude number greater than unity, for any bow slope.

1. Introduction

The flow of water under the bow or stern of a ship has been the subject of
considerable research over the years. A knowledge of the flow past the body
can assist in finding the most efficient design, minimising drag. In a fluid of
finite depth, the flow can be characterised by the ratio D/H of the draft D
(submergence depth of the body) to the depth H of the free stream, and the

Froude number F, given by

F= U
vgH

where U is the velocity of the free stream and g is gravity.
Several studies have been performed on the bow flow in water of infinite
depth [12, 14, 15]. Evidence was provided that there are no waveless solutions
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which approach a uniform stream for the case of a semi-infinite body with a flat
bottom and an oblique sloping front. Madurasinghe [6] and Tuck and Vanden-
Broeck [10], have computed flows past bodies of arbitrary shape which have
either smooth separation from the body, or a stagnation point on the front of the
body, and no waves in the free stream.

In a fluid of finite depth Vanden-Broeck [11] has shown the existence of flows
with a stagnation point on the front of a body with a vertical face for a small
range of Froude number between 1.22 and /2.

At infinite Froude number, solutions to the related problem in which the gap
beneath the ship reduces to a line sink, i.e. withdrawal from a fluid of finite
depth, exhibits behaviour in which the free surface rises up to some maximum
height before turning downward and attaching to the wall above the sink {2,
5]. At finite values of Froude number, solutions to this problem have been
computed including both smooth separation from the wall [3, 13] and solutions
with a stagnation point at the point of separation [1, 4, 7].

The present investigation was conducted to determine if similar flows could
be obtained for the case in which the flow is into a finite channel, as beneath a
moving ship.

In this paper, the flow past a flat-bottomed object with a bow of arbitrary
but constant slope wy, in water of finite depth (see Figure 1c), is considered.
The problem is formulated as an integral equation for the angle which the free
surface makes to the horizontal. After removing a part of the solution which can
be computed exactly, the linearised equations which result from taking the limit
as F — oo can be transformed to the well known airfoil equation [8, 9] and the
solution can be calculated as a singular integral. If the Froude number is finite,
the resulting equations become nonlinear and must be solved numerically.

Solutions are found to exist for all bow slopes between 0 and /2 and even
for larger values, and all Froude numbers intherange 1 < F < 00. No solutions
are found for any geometry for values of Froude number less than unity. This
is consistent with the results for the solution to the problem of the flow of a
source into a fluid of finite depth beneath a free surface [3, 13]. However, it is
in contrast to the results obtained for the infinite-depth case [12, 4, 15], in which
no such waveless solutions were obtained. No solutions with a bow-wave-like
formation similar to those found by Hocking [3] are obtained.
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FIGURE 1. Mapped planes used in the problem formulation;
(a) the complex velocity potential w-plane,
(b) the lower half ¢ -plane,
(c) the physical z-plane.
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2. Problem formulation

The steady irrotational motion of an inviscid, incompressible fluid in the
absence of gravity in two dimensions is to be examined. The fluid is of finite
depth and has a free surface on the right-hand side of the y-axis, and a narrow
channel to the left (see Figure 1c).

Let z = x + iy be the physical plane, with the origin directly above the
opening of the narrow channel, and at the level of the free surface far away
from the sink. The mathematical problem is to find a complex potential
w = ¢(x,y) + iY(x,y), which satisfies Laplace’s equation (V?¢ = 0)
within the flow domain, conditions of no flow across the solid boundaries and
the free surface, and the condition of constant pressure on the free surface
provided by Bernoulli’s equation, which, if we nondimensionalise with respect
to the free stream velocity U, and the free stream depth H, takes the form

2 2
2F %y + (a_¢) + (3_4’) =1 2.1)
ox ay

on y = n(x), where n(x) is the equation of the free surface shape. Since the
equations are independent of the direction of the flow, the solutions are equally
valid for a bow or stern flow. We shall henceforth work in nondimensional
variables.

To derive an integral equation for this problem, we follow a similar procedure
to that used in Hocking [2, 3]. The transformation

e =¢ (2.2)

maps the infinite strip between v = 0 and ¥ = —1.0 in the w-plane to the lower
half of the ¢-plane (see Figure 1). Without loss of generality we may choose to
let w = 0 correspond to the point of separation, so that the free surface ¥ = 0,
¢ > 0, lies along the real ¢-axis where { > 1. The bottom corner of the bow
is situated at £z where 0 < ¢ < 1, the point far downstream of the opening
beneath the ship corresponds to the origin, and the bottom of the channel to the
negative real axis (see Figure 1). The case in which ¢ = 0 corresponds to the
case of a line sink in the bottom comer of a channel.

We seek w by solving for Q(¢) = §(¢) + it(¢), defined in relation to the
complex conjugate of the velocity field by

w'(z(§)) = 0. 2.3)
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The magnitude of the velocity at any point is then given by |w'(z)| = ¢*®, and
the angle any streamline makes with the horizontal is §(£). The total flux is
one, and since the free stream velocity is also one, the depth of the free stream
is one. Thus, for solutions which attach smoothly to the bow, we have § = my
at{ =1l,and 7,6 > Oas ¢ — oo.

On the region of the real ¢ -axis given by —oo0 < ¢ < 1, which corresponds to
the solid boundaries of the flow domain, the streamlines must be parallel to the
walls, so that the condition that there be no flow normal to the solid boundaries
is satisfied if we choose §(¢) to be the angle of the wall to the horizontal, i.e.

0 if —oo <& <0
85) =10 if0 < ¢ < é&p; 2.9
ny if&g <& <1

The only singularities of the function €2(¢) in the £-plane are those at the
origin and at { = ¢, corresponding to the point at downstream infinity, and the
bottom corner of the bow of the ship, respectively. Both of these singularities
can be shown to be weaker than a simple pole, so that Cauchy’s theorem can be
applied to £2(¢) on a path consisting of the real ¢ -axis, a semi-circle at [z| = oo
in the lower half plane, and a circle of vanishing radius about the point {. Hence,
for Im{¢} < 0 we have

1 [ Q%)
Q)= “omi . T- é_dfo, (2.5)
since Q — Qas [¢| = oo. If welet Im{¢} — 0™, we obtain
1 [+ 4
@)= o) 45, (2.6a)
T Joo ;0 - C
and 400
5(8) = —~ f @) e (2.6b)
T Jooo ;0 - Z

where the integrals are of Cauchy principal-value form.
Substituting the known values of §(¢) given by (2.4) into the equation for

T(&) gives -
I—C]+ 1 f 8(%o)
1

O=yil—l+ 27 n¢

The singularity at { = 1 in (2.7) can be removed by noting thaton 1 < ¢ < oo,

1 [* arcsingy /2 1 (1—;)

dgo. Q.7

—_ ——dé'o =—=—In{f —= (28)

T Jy S—¢ 2 4
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Writing 8(Z) = 2y arcsin¢ ~'/? + §,(Z), (2.7) becomes

£ 1 [P 8@
ity S

T(¢) =y In( do, (2.9)

onl < ¢ < oo0.
On the remainder of the boundary, —oo < ¢ < 1, T can be shown to take the

form
_ 1 % 8,(0)
t@)=2yIn(1+1-8)—yIn(¢ — %)+ —
7h &-—¢

To obtain the value of tr, we must satisfy the Bernoulli condition of constant
pressure. This can be achieved by combining (2.1), (2.2) and (2.3), to give after
some manipulation

3 * sin 8(&p)
@) =1 (1 + nF2f¢ . 0 dg0>. (2.11)

onl < ¢ < oo. Combining this with (2.9) gives a nonlinear integral equation
for 4 on the free surface.

Once this is solved, § is known everywhere on the boundary, and hence we
can obtain 7 from (2.9) or (2.10). Using § and r, it is possible to integrate (2.3)
to obtain the location of points on the free surface. These may be written as

& ,—1(%0)
*@) = X&) + — f e cosdo) 4 2.12)
b 4 « Zo

dg. (2.10)

and

1 ¢ et gin §
y({)=y(§*)+;/ e sindl) 4o (2.13)

¢ %o

Since y — 0 as & — oo, the depth of the separation point is

1 [ e~ "®@gins
he = __/ e___ﬂ@d;m (2.14)
T J o
and the draft D is given by
H (<))
D =he + 2TV / ¢ dx. 2.15)
4 ¢ ;0

The downstream velocity in the.gap can be obtained from the value of 7(¢)
at ¢ = 0 since e*® is the velocity at any point, and we know the flux is one, so
that the height of the gap is G = ¢~*® and must equal 1 — D.

Thus, if we can find §,({) on 1 < ¢ < oo by solving the integral equation
given by (2.9) and (2.10), we can compute all aspects of the flow.
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FIGURE 2. Diagram showing the angle of the free surface for several values of 5. The
solutions are the same if scaled by the bow slope, y.

3. Solution in the infinite Froude number limit

In the limit as the Froude number approaches infinity, the velocity on the free
surface approaches a constant value given by (2.2). Thus the solution in this
limit can be obtained by setting t =0on 1 < ¢ < 00, in equation (2.9). There
exists a solution to this integral equation which is written as a principal-value
integral. A simple transformation takes (2.9) into the form of the airfoil equation

"2 T(a) Y
— = 1/2 31
f./zﬂ—a = 5112 In[1-¢5(8+1/2)] (.1

where
8y ()

a+1/2
and ¢ = (B + 1/2)7', for which a particular solution is given by ([8, 9]),

oy (1248 [V 12—« da
FPs(ﬁ)——;,/l/z_ﬁ " 1/2+aln(1_§8(a+1/2))ﬁ__;- (3.2)

The solution to the homogeneous airfoil equation, in which the right-hand
side of (3.1) is zero, is given by ([8, 9])

[o(B) =

MNa) =

X

NIy

(3.3)
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where y is a constant which must be chosen to satisfy the boundary conditions.
The only solution which is bounded at both ends of the interval is that for which
8,(B) =0at 8 = 1/2,—1/2. These conditions give a smooth separation from
the body and a horizontal free stream surface as x — 0o0. Combining (3.2) and
(3.3), and choosing x so that both boundary conditions are satisfied, the solution
for §, is given by

_ Y Y2 In(1 —&p(@+1/2)) de
5B =——V1/2+8)(1/2-B) A0 —a Y

or, in the original coordinates

@) = =L@ = 10" f o - 1 nar - 2
4 1 S0 %o—¢

on 1 < ¢ < oo. This integral can be solved using standard techniques (see, e.g.,
Tuck [9]), and remembering that the angle of the free streamline is given by
8(¢) = 2y arcsinZ~Y/2 + §, (%), the angle of the free streamline and hence the
free surface shape, draft and separation depths can be computed very accurately.

The shape of the free surface was computed for a range of bow angles and gap
sizes. In Figure 2, the angle of the free surface, 8, is plotted against a mapped
variable B = arcsin ¢ ~!/2 for a range of values of £z. As p approaches zero,
the solution approaches the line § = 2y 8, as it should. It is an interesting fact
that the solution, §(¢), for a given value of {p is a solution for any value of y if
multiplied by the appropriate factor, as can be seen from equation (2.9). Thus
the solution for a line source in the corner of a wedge with internal angle wy is
given by 8§(¢) = 2y arcsinZ~'/2. This is not true of the free streamline shape in
the physical plane, however.

3.5

4. The nonlinear problem

The full nonlinear integral equation for § given by equations (2.9) and (2.11)
on 1 < ¢ < oo can not be solved analytically, and we must resort to numerical
methods. This can be done by truncating the integrals to some large value of
¢ = &r, and generating a set of nonlinear algebraic equations by evaluating the
integral at N evenly spaced points on the interval 1 < ¢ < ¢r, using a guess for
the value of §, at the same N points. This guess can be successively updated
using a Newton iteration scheme until the residual error on the surface is less
than some small value (e.g. 10~%) at every point on the interval. The value of
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&r was increased until it had minimal effect on the calculations; usually a value
of around ¢ = 30 was found to be sufficient. The principal-value integral can

be treated by letting
1[5 8,(%0) 1[" 85(%0) — 85(%) &), &r—¢
— déy = — d 1 . 41
7] -t w) T eop et mGD) @D

The singular point is thus removed, and all of the integration can be performed
using standard techniques. In this paper, cubic splines were used for all of the
calculations.

A value of N = 240 was found to give anwers accurate to four decimal
places, and was used for most calculations. For each bow slope and value
of ¢z, a solution was computed for some value of F > 1, and the Froude
number was gradually decreased, using the previous solution as a starting guess,
until the method failed to converge. The iteration scheme converged rapidly,
usually within four steps, for all values of bow slope, gap size and Froude
number greater than unity. However for Froude numbers less than one, the
method failed to converge for any combination of parameters despite numerous
attempts using different starting values, thus providing evidence that no solutions
of this type exist for subcritical values of F. Several attempts were made to
compute solutions at a unique Froude number, as found by Vanden-Broeck and
Keller [13] for the line source problem, by allowing F to be a variable rather
than a fixed quantity, but without success.

5. Results and Conclusions

All of the computed solutions exhibit a smooth separation of the free surface
from the bow (see Figures 3, 4, 5, 6) and asymptote to the free stream level from
below. There is no sign of the beginning of a bow wave for any geometrical
configuration of the flow boundaries.

Figure 3 shows typical free streamlines for the case of a bow sloping forward
at an angle of 45° with various values of the submergence depth. The solid line
represents the bow, and the dashed line the free surface.

Figure 4 shows flows with a fixed draft for F = oo, but varying angles of the
bow face. It can be seen that the point of separation occurs relatively closer to
the surface for a bow with a smaller value of y. As x increases, the free surface
converges to much the same shape, which is as it should be since the effect of
the bow slope is only important locally for a body of fixed draft.
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FIGURE 3. Some free surface shapes for a fixed bow slope with different submergence depths
for the infinite Froude number case. All asymptote to the level y = 0, and the bottom of the
channel is at y = —1. Solid lines depict the bow, dashed lines the free surface.
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FIGURE 4. Free surface shapes computed for a fixed submergence depth at infinite Froude

number, but with different bow slopes. The effect of the bow is local, with all free surfaces
asymptoting to the same shape as x increases.
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FIGURE 5. Comparison of free surface shapes for different values of the Froude number,
F =00, F =2, F = 1, where the slope is 54° and the draft D/H = 0.6.

Figure 5 shows the effect of varying the Froude number on the shape of the
free surface. A fixed geometry of y = 54° and D/H = 0.6 is shown for several
different values of the Froude number. The free surface shapes obtained for
finite values of Froude number differ little from those obtained in the limit as
F — oo, exceptas F — 1.

The computed solutions are also valid for values of y > 1/2, and it is
interesting to note that for such flows the separation point occurs very close
to the corner compared to the cases where y < 1/2 (see Figure 6), i.e as y
increases, the separation point occurs closer to the corner.

The related problem in which the gap is replaced by a line sink on the bottom
of a channel produced solutions with smooth separation for finite values of F ([3,
13]) above some lower bound (usually F = 1), and this qualitative behaviour
is repeated in this problem. At very low values of the Froude number for this
related problem, solutions with a stagnation point above the sink were found [1,
4], and there is no reason to believe that solutions with a stagnation point on
the bow could not exist at low Froude number. Vanden-Broeck [11] has already
computed stagnation-point solutions over a small range of Froude numbers,
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FIGURE 6. Free surface shapes for a bow which slopes backward for F = 1 and F = 00. Note
that the separation is still smooth, but very close to the corner. The slope is 126° and D/H = 0.63.

1.22 < F < +/2. In addition, Vanden-Broeck [12] computed solutions in which
the flow separates smoothly from the bottom corner of the body rather than the
upslope for a fluid of infinite depth. Work is continuing to attempt to compute
both of these types of solution, and the results will be reported at a later time.
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