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In this note, we prove two monotonicity formulas for solutions of ΔHf = c and
ΔHf − ∂tf = c in Carnot groups. Such formulas involve the right-invariant carré du
champ of a function and they are false for the left-invariant one. The main results,
theorems 1.1 and 1.2, display a resemblance with two deep monotonicity formulas
respectively due to Alt–Caffarelli–Friedman for the standard Laplacian, and to
Caffarelli for the heat equation. In connection with this aspect we ask the question
whether an ‘almost monotonicity’ formula be possible. In the last section, we discuss
the failure of the nondecreasing monotonicity of an Almgren type functional.
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1. Introduction and statement of the results

Monotonicity formulas play a prominent role in analysis and geometry. They are
often employed in the blowup analysis of a given problem to derive information on
the regularity of the solutions, or on their global configurations. In this note we
prove two monotonicity formulas, theorems 1.1 and 1.2, in the geometric set-up of
Carnot groups. While these Lie groups display some superficial similarities with the
Euclidean framework, they are intrinsically non-Riemannian (see Cartan’s seminal
address [14]), and the counterpart of many classical results simply fails to be true.
Our monotonicity results fall within this category. They are false, in general, if in
their statements one replaces the right-invariant carré du champ with the ‘more
natural’ left-invariant one.

Our interest in monotonicity formulas stems from our previous joint works
[19, 21] on some nonholonomic free boundary problems suggested to us by peo-
ple in mechanical engineering and robotics at the Johns Hopkins University. In [21]
the optimal interior regularity Γ1,1

loc of the solution of a certain obstacle problem
was established. While such result guarantees the boundedness of the second hori-
zontal derivatives XiXjf of the solution, it falls short of implying their continuity.
This critical information was subsequently established in [19] in the framework
of Carnot groups of step k = 2, where it was also proved that, under a suitable
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thickness assumption, the free boundary is remarkably a C1,α non-characteristic
hypersurface, suggesting a connection with the sub-Riemannian Bernstein prob-
lem, see [18]. The key idea in [19] was the systematic use of the right-invariant
derivatives in the study of a left-invariant free boundary problem1. This leads us
to the main theme of this note.

Given a Carnot group (G, ◦), we denote the left-translation operator by
Lg(g′) = g ◦ g′ and with dLg its differential. The right-translation will be denoted
by Rg(g′) = g′ ◦ g, and its differential by dRg. If we fix an orthonormal basis
{e1, . . . , em} of the horizontal layer g1, then we can define respectively left- and
right-invariant vector fields by the formulas

Xi(g) = dLg(ei), X̃i(g) = dRg(ei).

More in general, for any ζ ∈ g we respectively indicate with Z, and Z̃ the left- and
right-invariant vector fields on G defined by the Lie formulas

Zf(g) =
d
dt

f(g ◦ exp(tζ))
∣∣
t=0

, Z̃f(g) =
d
dt

f(exp(tζ) ◦ g)∣∣
t=0

. (1.1)

For any η, ζ ∈ g, for the corresponding vector fields on G we have the following
simple, yet basic, commutation identities

[Y, Z̃] = [Ỹ , Z] = 0. (1.2)

Such identities can be easily verified using (1.1) and the Baker–Campbell–Hausdorff
formula. From (1.2) we have in particular [Xi, X̃j ] = 0, for i, j = 1, . . . , m. Given
a function f ∈ C1(G) we will respectively denote by

|∇Hf |2 =
m∑

i=1

(Xif)2, |∇̃Hf |2 =
m∑

i=1

(X̃if)2, (1.3)

the left- and right-invariant carré du champ of f . If we indicate with e ∈ G the
group identity, since Xi(e) = X̃i(e) for i = 1, . . . , m, we have

|∇Hf(e)|2 = |∇̃Hf(e)|2. (1.4)

But the two objects in (1.3) are substantially different, except in the trivial situation
in which the function f depends exclusively on the horizontal variables, see for
instance (3.9).

The left-invariant horizontal Laplacian relative to {e1, . . . , em} is defined on a
function f ∈ C2(G) by the formula

ΔHf =
m∑

i=1

X2
i f. (1.5)

This operator is hypoelliptic thanks to the result in [38]. When the step of the
stratification of g is k = 1, then the group is Abelian and ΔH = Δ is the standard

1In harmonic analysis and PDEs the use of right-invariant derivatives in left-invariant problems
had already appeared in the works [7, 41].
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Laplacian. However, in the genuinely sub-Riemannian situation k > 1, the differen-
tial operator ΔH fails to be elliptic at every point of the ambient space G. We say
that a function f ∈ C2(G) is subharmonic (superharmonic) if ΔHf � 0 (� 0). We
say that f is harmonic if it is both sub- and superharmonic. These notions can be
extended in the weak variational sense in a standard fashion.

Let now ρ be the pseudo-gauge, centred at e, defined in (2.7) of [34]. Let Br =
{g ∈ G | ρ(g) < r} and Sr = ∂Br. Let Q > N indicate the homogeneous dimension
of G associated with the natural anisotropic dilations (Q = N only in the Abelian
case k = 1). Given a function f ∈ C(B1), and a number 0 < α < Q, we consider
the functional

Mα(f, r) =
1
rα

∫
Br

f(g)
ρ(g)Q−α

|∇Hρ(g)|2dg. (1.6)

It is easy to verify (see the opening of § 3) that there exists a universal number
ωα > 0 such that for every r > 0 one has

1
rα

∫
Br

1
ρQ−α

|∇Hρ(g)|2dg = ωα. (1.7)

As a consequence, one has

lim
r→0+

Mα(f, r) = ωαf(e). (1.8)

We have the following.

Theorem 1.1 (Monotonicity formula). Let f be a solution of ΔHf = c in B1, for
some c ∈ R. Then for any 0 < α < Q the functional

Dα(f, r) =
1
rα

∫
Br

|∇̃Hf(g)|2
ρ(g)Q−α

|∇Hρ(g)|2dg (1.9)

is nondecreasing in (0, 1). Moreover, we have for every r ∈ (0, 1)

ωα|∇Hf(e)|2 � Dα(f, r). (1.10)

As we have mentioned, theorem 1.1 ceases to be true, and in the worse possible
way, if in the definition (1.9) of the functional Dα(f, r) we replace the right-invariant
carré du champ |∇̃Hf |2 with the left-invariant one |∇Hf |2.

Our next result, theorem 1.2, should be seen as a parabolic companion of theorem
1.1. Denote by p(g, g′, t) = p(g′, g, t) the smooth, symmetric, strictly positive heat
kernel constructed by Folland in [26]. Given a reasonable function ϕ, the solution
of the Cauchy problem ∂tf − ΔHf = 0 in G × (0, ∞), f(g, 0) = ϕ(g), is given by

f(g, t) = Ptϕ(g) =
∫

G

p(g, g′, t)ϕ(g′)dg′.

Theorem 1.2 (Heat monotonicity formula). Let f be a solution of ∂tf − ΔHf = c
in G × (−1, 0], for some c ∈ R, and suppose that there exist A, α > 0 such that

https://doi.org/10.1017/prm.2022.58 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.58


1546 Nicola Garofalo

such that for every g ∈ G and t ∈ [−1, 0] one has

|f(g, t)| � Aeαd(g,e)2 , (1.11)

where we have denoted by d(g, g′) the control distance in G associated with the
horizontal layer g1 of the Lie algebra. Then, there exists T = T (α) > 0 such that
the functional

I (f, t) =
1
t

∫ 0

−t

∫
G

|∇̃Hf(g, s)|2p(g, e,−s)dgds (1.12)

is nondecreasing in t ∈ (0, T ). Furthermore, we have for every t ∈ (0, T )

|∇Hf(e, 0)|2 � I (f, t). (1.13)

Similarly to theorem 1.1, also theorem 1.2 fails in general if in the definition of
I (f, t) we replace |∇̃Hf |2 with |∇Hf |2. This failure is caused in both cases by the
fact that in sub-Riemannian geometry it is not true in general that if ΔHf = c,
then |∇Hf |2 is subharmonic! There exist harmonic functions f such that |∇Hf |2
is superharmonic on large regions of G! For instance, consider in the Heisenberg
group H

1 (for this Lie group see the discussion following corollary 3.6) the harmonic
function2

f(x, y, σ) = x3 + xy2 − 8yσ − x. (1.14)

A calculation shows that

ΔH(|∇Hf |2)(x, y, σ) = 176x2 + 432y2 − 32 � 432|z|2 − 32 � 0, (1.15)

provided that the point g = (x, y, σ) belongs to the infinite cylinder |z|2 � 2
27 in

H
1. Another example is provided by the harmonic function (1.21). In contrast to

(1.15), as a consequence of our right-invariant Bochner identity in proposition 3.4,
we show the crucial fact that in any Carnot group G a solution of ΔHf = c always
satisfies globally

ΔH(|∇̃Hf |2) � 0.

The reader who is versed in free boundary problems will recognize in theorems 1.1
and 1.2 a resemblance with two deep monotonicity formulas respectively due to
Alt–Caffarelli–Friedman (ACF henceforth) for the standard Laplacian [2, lemma
5.1], and to Caffarelli for the classical heat equation [8, theorem 1]. The former
states that if one is given in the Euclidean ball B1 ⊂ R

n two continuous functions

2For the reader’s understanding, we mention that f = P3 − P1 where P3(x, y, σ) = x3 + xy2 −
8yσ is a solid harmonic of degree three in H1, and P1(x, y, σ) = x is a solid harmonic of degree
one. Such solid harmonics were constructed by Greiner, see [36, p. 387].
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f± satisfying

f± � 0, Δf± � 0, f+·f−=0, f+(0) = f−(0) = 0,

then the ACF functional

Φ(f+, f−, r) =
1
r4

∫
Br

|∇f+|2
|x|n−2

dx
∫

Br

|∇f−|2
|x|n−2

dx (1.16)

is nondecreasing for 0 < r < 1. This monotonicity formula plays a critical role in free
boundary problems with a double phase, see e.g. [12] and [42], where it is used to
show that: (a) lim

r→0+
Φ(f+, f−, r) exists, and (b) such limit is less than Φ(f+, f−, 1).

When f± are smooth and their supports intersect along a hypersurface Σ through
the origin, then the lim

r→0+
Φ(f+, f−, r) is the product of the normal derivatives to

Σ of f± in x = 0. Specialized to the case G = R
n and α = 2 the functional (1.9)

in our theorem 1.1 is precisely half of the ACF functional in (1.16). Similarly, the
functional (1.12) in our theorem 1.2 is half of the Caffarelli functional for the heat
equation in [8].

In light of theorems 1.1 and 1.2, and with potential applications to nonholonomic
free boundary problems with two phases in mind, it is tempting to propose the
following conjecture:

(1)Let G be a Carnot group and suppose that in B1 ⊂ G we have two continuous
functions f± satisfying

f± � 0, ΔHf±=−1, f+·f−=0 f+(e) = f−(e) = 0.

Prove (or disprove?) that the functional

D2(f+, f−, r) =
1
r4

D2(f+, r)D2(f−, r) (1.17)

satisfies the following bound for 0 < r < 1

D2(f+, f−, r) � C {1 + D2(f+, 1) + D2(f−, 1)} . (1.18)

(2)Let G be a Carnot group and suppose that we have two continuous functions f±
satisfying in G × (−1, 0]

f± � 0, (ΔH − ∂t)f±=−1, f+·f−=0, f+(e, 0) = f−(e, 0) = 0,

and with moderate growth at infinity. Prove (or disprove?) that the functional

I (f+, f−, t) =
1
t2

I (f+, t)I (f−, t)

satisfies the following bound for 0 < t < 1

I (f+, f−, t) � C {1 + I (f+, 1) + I (f−, 1)} . (1.19)

Besides the circumstantial evidence provided by theorems 1.1 and 1.2, this con-
jecture is inspired by the Caffarelli, Jerison and Kenig powerful modification of the
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ACF monotonicity formula in which the assumption Δf± � 0 is replaced by the
weaker Δf± � −1, and which does not have any ‘monotonicity’ left in its state-
ment, see [10, theorem1.3]. While when G = R

n a uniform bound such as (1.18)
appears only remotely connected to the ACF monotonicity (1.16), it does nonethe-
less lead to the Lipschitz continuity of the solutions, and once this is known than
one can go full circle and restore monotonicity, as shown in [10]. We also cite [43]
for various applications of the Caffarelli–Jerison–Kenig result to the C1,1 regularity
in free boundary problems, and [11, 40] for some remarkable parabolic versions
of the monotonicity formula (1.16) and the ‘almost monotonicity’ formulas (1.18)
and (1.19).

We reiterate that all the functionals in the above conjectured (1.18) and (1.19)
involve the right-invariant carré du champ |∇̃Hf±|2. In this respect, we mention
that in the recent papers [23, 24] the authors have proposed in the Heisenberg
group H

n a nondecreasing monotonicity formula in which the ACF functional is
substituted by the following one containing the left-invariant carré du champ of the
functions f+ and f−

I(f+, f−, r) =
1
r4

∫
Br

|∇Hf+(g)|2
ρ(g)Q−2

dg
∫

Br

|∇Hf−(g)|2
ρ(g)Q−2

dg. (1.20)

The same authors have quite recently recognized in [25, theorem 1.1] that their con-
jecture cannot be possibly true. In H

1 with coordinates g = (x, y, σ) they consider
the following harmonic function (see the footnote to (1.14))

f(x, y, σ) = x+ 6yσ − x3, (1.21)

and with rather long calculations they show that

r −→ 1
r2

∫
Br

|∇Hf(g)|2
ρ(g)Q−2

dg

is nonincreasing as r ∈ (0, r0) for a sufficiently small r0 > 0. Since on the function
(1.21) (but (1.14) would equally work) each half of (1.20) is invariant with respect
to the change of variable (x, y, σ) → (−x, −y, σ) (see (3.23)), they infer that

1
r2

∫
Br

|∇Hf+(g)|2
ρ(g)Q−2

dg =
1
r2

∫
Br

|∇Hf−(g)|2
ρ(g)Q−2

dg,

which shows that

r → I(f+, f−, r) =
(

1
r2

∫
Br

|∇Hf+(g)|2
ρ(g)Q−2

dg
)2

=
1
4

(
1
r2

∫
Br

|∇Hf(g)|2
ρ(g)Q−2

dg
)2

is nonincreasing (instead of nondecreasing) on (0, r0), thus disproving their own
conjecture. We emphasize that, instead, neither of the functions (1.14), (1.21) pro-
duces a counterexample to our conjecture above. The next result gives a perspective
on the negative example (1.21) which is somewhat different from that in [25].
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Proposition 1.3. For the harmonic function (1.21) one has

ΔH(|∇Hf |2)(x, y, σ) � 0,

for every (x, y, σ) ∈ H
1 such that x2 + y2 � 1

9 . As a consequence, the left-invariant
functional (3.20) is nonincreasing for r ∈ (0, 1

3 ) for any 0 < α < Q. Instead, the
right-invariant functional in (1.17),

r −→ D2(f+, f−, r) =
1
r4

D2(f+, r)D2(f−, r),

is nondecreasing on (0, ∞).

This note contains four sections. Besides the present one, in § 2 we collect some
background material that is needed in the rest of the paper. In § 3 we prove the-
orems 1.1, 1.2 and proposition 1.3, and discuss the role that Bochner formulas
plays in these results. In § 4 we discuss another famous monotonicity formula, that
of Almgren [1], and we show that, in accordance with the results in [30, 34], its
sub-Riemannian counterpart generically fails. However, the fundamental question
of whether or not the frequency (4.1) be locally bounded, remains open at the
moment.

In closing, we hope that the present note helps to clarify some of the critical
aspects connected to monotonicity in non-Riemannian ambients and at the same
time provides an incentive for further understanding.

2. Background material

In this section, we collect some background material that is needed in the rest
of the paper. To keep the preliminaries at a minimum and avoid pointless repeti-
tions, we routinely use from now on the definitions and notations from the paper
[34], where some Almgren type monotonicity formulas in Carnot groups and for
Baouendi–Grushin operators were obtained (for the latter, see also the first papers
on the subject [27, 30]). A Carnot group of step k � 1 is a simply connected real
Lie group (G, ◦) whose Lie algebra g is stratified and k-nilpotent. This means that
there exist vector spaces g1, . . . , gk such that:

(i) g = g1 ⊕ · · · ⊕ gk;

(ii) [g1, gj ] = gj+1, j = 1, . . . , k − 1, [g1, gk] = {0}.
We assume that g is endowed with a scalar product 〈·, ·〉 with respect to which
the layers g′js, j = 1, . . . , r, are mutually orthogonal. We let mj = dim gj , j =
1, . . . , k, and denote by N = m1 + · · · +mk the topological dimension of G. From
the assumption (ii) on the Lie algebra it is clear that any basis of the first layer g1

bracket generates the whole of g. Because of such special role g1 is usually called
the horizontal layer of the stratification. For ease of notation we henceforth write
m = m1. In the case in which k = 1 one has g = g1, and thus G is isomorphic
to R

m. There is no sub-Riemannian geometry involved and everything is classical.
We are primarily interested in the genuinely non-Riemannian setting k > 1.
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Henceforth, given a horizontal Laplacian ΔH as in (1.5), we indicate with
Γ(g, g′) = Γ(g′, g) the unique positive fundamental solution of −ΔH which goes
to zero at infinity. Such distribution is left-translation invariant, i.e. one has

Γ(g, g′) = Γ̃(g−1 ◦ g′),
for some function Γ̃ ∈ C∞(G \ {e}), where e ∈ G is the group identity. For every
r > 0, let

Br =
{
g ∈ G | Γ(g, e) >

1
rQ−2

}
. (2.1)

It was proved by Folland in [26] that the distribution Γ̃(g) is homogeneous of
degree 2 −Q with respect to the non-isotropic dilations in G associated with the
stratification of its Lie algebra g. This implies that, if we define

ρ(g) = Γ̃(g)−1/(Q−2), (2.2)

then the function ρ is homogeneous of degree one. Notice that ρ ∈ C∞(G \ {e}) ∩
C(G). We obviously have from (2.1)

Br = {g ∈ G | ρ(g) < r}. (2.3)

Henceforth, we will use the notation Sr = ∂Br.
Next, denote by p(g, g′, t) the positive and symmetric heat kernel for ΔH −

∂t constructed by Folland in [26]. We recall the following result, which combines
[44, theorems IV.4.2 and IV.4.3]. In what follows, if 
 ∈ N ∪ {0}, we consider multi-
indices (j1, . . . , j�), with j1, . . . , j� ∈ {1, . . . , m}.
Theorem 2.1. There exists C, C ′ > 0 such that for all g, g′ ∈ G and t > 0 one has

p(g, g′, t) � C

tQ/2
e−C′((d(g,g′)2)/t).

Furthermore, for every s, 
 ∈ N ∪ {0} and ε > 0, there exists C > 0 such that for
all g, g′ ∈ G and t > 0 one has

|∂s
tXj1Xj2 . . . Xj�

p(g, g′, t)| � C

tQ/2+s+�/2
e−((d(g,g′)2)/(4(1+ε)t)).

The heat semigroup Pt = e−tΔH is defined on a reasonable function f : G → R

by the formula

Ptf(g) =
∫

G

p(g, g′, t)f(g′)dg′.

Similarly to the classical case, the function u(g, t) = Ptf(g) is smooth in G × (0, ∞)
and solves the Cauchy problem

ΔHu− ptu = 0 in G × (0,∞), u(g, 0) = f(g), g ∈ G.

If we assume that there exist A, α > 0 such that for every g ∈ G one has

|f(g)| � Aeαd(g,e)2 , (2.4)
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where we have denoted by d(g, g′) the control distance in G associated with the
horizontal layer g1 of the Lie algebra, then the semigroup Ptf(g) is well-defined, at
least for 0 < t < T , where T = T (α) > 0 is sufficiently small. For this it suffices to
observe that, if T < 1/(4(1 + ε)α), then for 0 < t < T one has for any g ∈ G

|Ptf(g)| �
∫

G

|f(g′)|p(g, g′, t)dg′ � CAe2αd(g,e)2
∫

G

e−d(g′,g)2[1/(4(1+ε)T )−α]dg′ <∞.

For r > 0 consider now the parabolic cylinders

Qr = Br × (−r2, 0).

As a special case of [17, theorem 1.1] we obtain the following.

Theorem 2.2. Suppose that f solves ΔHf − ∂tf = c in G × R, for some c ∈ R.
For every s, 
 ∈ N ∪ {0} and r > 0, one has

sup
Qr/2

∣∣∣∣∂s
tXj1Xj2 . . . Xj�

f

∣∣∣∣ � C

r2 s+�

1
|Q2r|

∫
Q2r

|f |dg′dτ,

for some constant C = C(c, s, 
) > 0.

3. Proof of theorems 1.1, 1.2 and proposition 1.3

In this section, we prove theorems 1.1 and 1.2, as well as proposition 1.3. With
these preliminaries in place, we now return to the functional (1.6) and observe
that, since the function g → ρ(g) is homogeneous of degree one with respect to
the nonisotropic group dilations {δλ}λ>0, while g → |∇Hρ(g)|2 is homogeneous of
degree zero with respect to the same, the change of variable g′ = δr(g), for which
dg′ = rQdg, immediately gives

1
rα

∫
Br

1
ρQ−α

|∇Hρ(g)|2dg =
∫

B1

1
ρQ−α

|∇Hρ(g)|2dg = ωα > 0.

This proves (1.7). The statement (1.8) immediately follows from the continuity of
f and from (1.7).

Next, we record the following equation (see [34, formula (3.12)] or also the earlier
work [15] for a more general result), valid for any function ψ ∈ C2(G),

ψ(e) =
Q− 2
rQ−1

∫
Sr

ψ(g)
|∇Hρ(g)|2
|∇ρ(g)| dHN−1(g) −

∫
Br

ΔHψ(g)
[

1
ρQ−2

− 1
rQ−2

]
dg.

(3.1)
Equation (3.1) represents a generalization of Gaveau’s mean value formula in [35]
for harmonic functions in the Heisenberg group H

n. Differentiating with respect to
r in (3.1) we obtain

d
dr

1
rQ−1

∫
Sr

ψ(g)
|∇Hρ(g)|2
|∇ρ(g)| dHN−1(g) =

1
rQ−1

∫
Br

ΔHψ(g)dg. (3.2)

From (3.2) we immediately infer the following result.
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Lemma 3.1. Suppose that ψ ∈ C2(B1). If ΔHψ � 0 (� 0) in B1 then the averages

r → 1
rQ−1

∫
Sr

ψ(g)
|∇Hρ(g)|2
|∇ρ(g)| dHN−1(g)

are nondecreasing (nonincreasing) in r ∈ (0, 1).

Returning to the functional Dα(f, r), we have the following simple, yet important,
fact.

Proposition 3.2. Suppose that the surface averages of f ,

r → 1
rQ−1

∫
Sr

f(g)
|∇Hρ(g)|2
|∇ρ(g)| dHN−1(g), (3.3)

are nondecreasing (nonincreasing) in r ∈ (0, 1). Then r → Dα(f, r) is nondecreas-
ing (nonincreasing) in (0, 1) and we have for every r ∈ (0, 1)

ωαf(e) � Dα(f, r), (3.4)

where ωα > 0 is the universal constant in (1.7).

Proof. Using Federer’s coarea formula to differentiate (1.6) one has

D ′
α(f, r) = − α

rα+1

∫
Br

f(g)
ρQ−α

|∇Hρ(g)|2dg +
1
rQ

∫
Sr

f(g)
|∇Hρ(g)|2
|∇ρ(g)| dσ.

Assume that (3.3) are nondecreasing in r ∈ (0, 1). Again the coarea formula gives

α

rα+1

∫
Br

f(g)
ρQ−α

|∇Hρ(g)|2dg =
α

rα+1

∫ r

0

∫
St

f(g)
ρQ−α

|∇Hρ(g)|2
|∇ρ(g)| dσdt

=
α

rα+1

∫ r

0

tα−1 1
tQ−1

∫
St

f(g)
|∇Hρ(g)|2
|∇ρ(g)| dσdt

� α

rα+1

1
rQ−1

∫
Sr

f(g)
|∇Hρ(g)|2
|∇ρ(g)| dσ

∫ r

0

tα−1dt

=
1
rQ

∫
Sr

f(g)
|∇Hρ(g)|2
|∇ρ(g)| dσ.

This proves that D ′
α(r) � 0 for r ∈ (0, 1). Similarly, one proves that D ′

α(r) � 0 if
(3.3) are nonincreasing. The second part of proposition 3.2 is a direct consequence
of the first, and of (1.8). �

Remark 3.3. Since in view of lemma 3.1 the monotonicity of (3.3) characterizes
sub- and superharmonicity, a similar monotonicity holds true for r → Dα(f, r) if f
is sub- or superharmonic in B1.
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We next recall that the celebrated identity of Bochner states that on a
Riemannian manifold M one has for f ∈ C3(M)

Δ(|∇f |2) = 2||∇2f ||2 + 2〈∇(Δf),∇f〉 + 2Ric(∇f,∇f), (3.5)

where Ric(·, ·) indicates the Ricci tensor on M , see e.g. [16, § 4.3 on p. 18]. This
implies in particular that if Δf = c for some c ∈ R, and Ric(·, ·) � 0, then

Δ(|∇f |2) � 2||∇2f ||2 � 0. (3.6)

As we will see next, in sub-Riemannian geometry the fundamental subharmonicity
property (3.6) fails miserably. This negative situation can be remedied by bringing
the right-invariant vector fields X̃i to centre stage. As we have mentioned, in free
boundary problems the idea of working with right-invariant derivatives was first
systematically developed in [19] to establish the C1,α regularity of the free boundary
in the non-holonomic obstacle problem. A related perspective was further exploited
in [29] to prove C1,α regularity via maximum principles, and subsequently in the
study of fully nonlinear equations in [39], and of sub-Riemannian mean curvature
flow in [13].

Proposition 3.4 (Right Bochner type identity). Let G be a Carnot group, f ∈
C3(G), then one has

ΔH(|∇̃Hf |2) = 2〈∇̃Hf, ∇̃H(ΔHf)〉 + 2
m∑

i=1

|∇̃H(Xif)|2. (3.7)

If in particular ΔHf = c, for some c ∈ R, then we have

ΔH(|∇̃Hf |2) = 2
m∑

i=1

|∇̃H(Xif)|2 � 0. (3.8)

Proof. The proof is a straightforward calculation that uses the commutation
identities [Xi, X̃j ] = 0, i, j = 1, . . . , m. We leave the details to the interested
reader. �

We emphasize that the two objects |∇̃Hf |2 and |∇Hf |2 differ substantially. For
instance, in the special case in which G is a group of step k = 2, with group
constants b�ij , and (logarithmic) coordinates g = (z1, . . . , zm, σ1, . . . , σm2), one has

|∇Hf |2 − |∇̃Hf |2 = 2
m2∑
�=1

⎛
⎝ ∑

1�i<j�m

b�ij
(
zi∂zj

f − zj∂zi
f
)⎞⎠ ∂σ�

f, (3.9)

see [29, lemma 2.3].
We can now present the

Proof of theorem 1.1. Suppose ΔHf = c in B1. By hypoellipticity, we know that
f ∈ C∞(B1). At this point the desired conclusion is an immediate consequence of
proposition 3.4, lemma 3.1 and proposition 3.2. �
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Next we present the

Proof of theorem 1.2. Let f be a solution of ∂tf − ΔHf = c in the infinite slab G ×
(−1, 0). By the hypoellipticity result in [38], we know that f ∈ C∞(G × (−1, 0)).
However, now we cannot proceed as in the proof of theorem 1.1 since the set of
integration is not a relatively compact set (the pseudoballs Br). To make sense
of the integral in (1.12) on a sufficiently small interval t ∈ (0, T ) and be able to
differentiate it with respect to the parameter t ∈ (−1, 0), we use the assumption
(1.11). Note that we can write (1.12) as follows

I (|∇̃Hf |2, t) =
1
t

∫ t

0

Pτ (|∇̃Hf(·,−τ)|2)(e)dτ, (3.10)

provided that the function u(g, t) = |∇̃Hf(g, −t)|2) is such that the integral
defining

Pt(|∇̃Hf(·,−t)|2)(e) =
∫

G

p(g, e, t)|∇̃Hf(g,−t)|2dg

be finite. From theorem 2.2 we now have for every 
 ∈ N and r > 0

sup
Qr/2

|Xj1Xj2 . . . Xj�
f | � C

r�

1
|Q2r|

∫
Q2r

|f(g′, τ)|dg′dτ � AC

r�

1
|B2r|

∫
B2r

eαd(g′,e)2dg′,

(3.11)
where in the last inequality we have used (1.11) and the fact that |Q2r| = 4r2|B2r|.
From (3.11) it is easy to show that Xj1Xj2 . . . Xj�

f satisfies the same uniform
estimate in (1.11) as f . Since any right-invariant derivative X̃jf can be expressed in
terms of the vector fieldsXj and a certain number of combinations, with polynomial
coefficients, of terms Xj1Xj2 . . . Xj�

f , by (3.11) we obtain a similar a priori estimate
for |∇̃Hf |2, possibly with a larger coefficient α > 0 in the exponential. This implies
that Pτ (|∇̃Hf(·, −τ)|2)(e) is well-defined for 0 < τ < T , for some T = T (α) > 0
(see the discussion prior to theorem 2.2). Differentiating (3.10) we thus find for
every t ∈ (0, T )

d
dt

I (|∇̃Hf |2, t) = −1
t
I (|∇̃Hf |2, t) +

1
t
Pt(|∇̃Hf(·,−t)|2)(e).

We infer that t −→ I (|∇̃Hf |2, t) is nondecreasing (nonincreasing) in (0, T ) if and
only if we have for every t ∈ (0, T )

I (|∇̃Hf |2, t) � (�) Pt(|∇̃Hf(·,−t)|2)(e). (3.12)
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We next differentiate the functional in the right-hand side of (3.12) obtaining by
the chain rule

d
dt

{
Pt(|∇̃Hf(·,−t)|2(e))

}
= Pt

(
d
dt

(|∇̃Hf(·,−t)|2)
)

(e) +
dPt

dt
(|∇̃Hf(·,−t)|2)(e)

= −2Pt(〈∇̃Hf(·, t), ∇̃H(∂tf(·,−t))〉)(e) + ΔHPt(|∇̃Hf(·,−t)|2)(e)
= −2Pt(〈∇̃Hf(·,−t), ∇̃H(∂tf(·,−t))〉)(e) + Pt(ΔH(|∇̃Hf(·,−t)|2))(e)
= 2Pt(〈∇̃Hf(·,−t), ∇̃H(ΔHf − ∂tf))(·,−t)〉)(e)

+ 2
m∑

i=1

Pt(|∇̃H(Xif)(·,−t)|2)(e), (3.13)

where in the last equality in (3.13) we have used (3.7) in proposition 3.4. Since we
are assuming that ΔHf − ∂tf = c in G × (−1, 0), we infer from (3.13)

d
dt

{
Pt(|∇̃Hf(·,−t)|2(e))

}
= 2

m∑
i=1

Pt(|∇̃H(Xif)(·,−t)|2)(e) � 0, (3.14)

therefore the functional t −→ Pt(|∇̃Hf(·, −t)|2)(e) is nondecreasing. This implies

I (|∇̃Hf |2, t) =
1
t

∫ t

0

Pτ (|∇̃Hf(·,−τ)|2)(e)dτ � Pt(|∇̃Hf(·,−t)|2)(e),

which finally proves (3.12), and therefore the nondecreasing monotonicity of t −→
I (|∇̃Hf |2, t). �

Having established the positive results, we next discuss the typically non-
Riemannian phenomenon for which theorems 1.1 and 1.2 fail if in their statement
one replaces the right-invariant carré du champ with the left-invariant one |∇Hf |2.
We recall the following result which is [28, proposition 3.3].

Proposition 3.5 (Left Bochner type identity). Let G be a Carnot group, f ∈
C3(G), then one has

ΔH(|∇Hf |2) = 2||∇2
Hf ||2 + 2〈∇Hf,∇H(ΔHf)〉 +

1
2

m∑
i,j=1

([Xi,Xj ]f)2

+ 4
m∑

i,j=1

Xjf [Xi,Xj ]Xif + 2
m∑

i,j=1

Xjf [Xi, [Xi,Xj ]]f. (3.15)

In (3.16) we have denoted by ∇2
Hf = [fij ] the symmetrized horizontal Hessian

of f with entries

fij =
XiXjf +XjXif

2
.

When G is of step 2, then [Xi, [Xi, Xj ]] = 0 and we obtain from proposition 3.5.
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Corollary 3.6. Let G be a Carnot group of step k = 2, f ∈ C3(G), then one has

ΔH(|∇Hf |2) = 2||∇2
Hf ||2 + 2〈∇Hf,∇H(ΔHu)〉 +

1
2

m∑
i,j=1

([Xi,Xj ]f)2

+ 4
m∑

i,j=1

Xjf [Xi,Xj ]Xif. (3.16)

The problem with (3.16) is that, even if ΔHf = 0, the term 4
∑m

i,j=1Xjf [Xi, Xj ]
Xif can prevail so badly on the positive terms, to reverse the sign of the sum in
the right-hand side. We have already hinted to this phenomenon with the example
(1.14), see (1.15). For the reader’s understanding, we next discuss this aspect in
more detail. Consider the Heisenberg group G = H

n with the left-invariant basis of
the Lie algebra given by

Xi = ∂xi
− yi

2
∂σ, Xn+i = ∂yi

+
xi

2
∂σ, i = 1, . . . , n. (3.17)

If we let T = ∂σ, then the only nontrivial commutators are [Xi, Xn+j ] = Tδij , and
we find

m∑
i,j=1

([Xi,Xj ]u)2 =
2n∑

i,j=1

([Xi,Xj ]u)2 = 2
∑
i<j

([Xi,Xj ]u)2 = 2n(Tu)2.

Similarly, we have

m∑
i,j=1

Xju[Xi,Xj ]Xiu =
∑
i<j

Xju[Xi,Xj ]Xiu−
∑
i<j

Xiu[Xi,Xj ]Xju

= 〈∇H(Tu),∇⊥
Hu〉,

where we have denoted by ∇⊥
Hu = (Xn+1u, . . . , X2nu, −X1u, . . . , −Xnu). Substi-

tuting the latter two equations in (3.16) we obtain

ΔH(|∇Hf |2) = 2||∇2
Hf ||2 + 2〈∇Hf,∇H(ΔHf)〉 + n(Tf)2

+ 4〈∇H(Tf),∇⊥
Hf〉. (3.18)

Now, if ΔHf = c, with c ∈ R, then one has from (3.18)

ΔH(|∇Hf |2) = 2||∇2
Hf ||2 + n(Tf)2 + 4〈∇H(Tf),∇⊥

Hf〉. (3.19)

The following discussion shows that the term 4〈∇H(Tf), ∇⊥
Hf〉 can destroy the

subharmonicity of |∇Hf |2. Consider the harmonic function (1.21) from the work
[25, § 5], but (1.14) would work equally well. Such function is the sum of two solid
harmonics of degree one and three. Greiner first computed such solid harmonics in
H

1, see [36, p. 387], and Dunkl subsequently generalized his results to H
n in [22].

The subject has since somewhat languished for lack of a complete understanding
of some fundamental orthogonality and completeness issues, see the unpublished
preprint [37, p. 29], but also the discussion in § 4.
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Proof of proposition 1.3. Instead of the lengthy calculations based on spherical
harmonics in [25, § 4, 5], we disprove the nondecreasing monotonicity of the
left-invariant functional

r −→ 1
rα

∫
Br

|∇Hf(g)|2
ρ(g)Q−α

|∇Hρ(g)|2dg (3.20)

by simply observing that, on the function (1.21), we have ΔH(|∇Hf |2) � 0 in an
infinite cylinder in H

1. We then use lemma 3.1 and proposition 3.2 to deduce the
nonincreasing monotonicity of (3.20). From (1.21) and (3.17) simple computations
give

X1f = 1 − 3|z|2, X2f = 6σ + 3xy, (3.21)

and furthermore

X2
1f = −6x, X2

2f = 6x. (3.22)

In particular ΔHf = 0 in H
1 (this conclusion is also obvious from the fact that f

is the sum of two harmonic polynomials). Using (3.21) we now find

|∇Hf |2 = 1 + 9|z|4 − 6|z|2 + 36σ2 + 9x2y2 + 36xyσ. (3.23)

We next prove that, contrarily to the Riemannian case (3.5), the function |∇Hf |2
badly fails to be subharmonic. We compute from (3.23)

X1(|∇Hf |2) = 36x|z|2 − 12x+ 18xy2 + 36yσ − 36yσ − 18xy2

= 36x|z|2 − 12x,

and

X2(|∇Hf |2) = 36y|z|2 − 12y + 18x2y + 36xσ + 36xσ + 18x2y

= 36y|z|2 − 12y + 36x2y + 72xσ.

Next,

X2
1 (|∇Hf |2) = 36|z|2 + 72x2 − 12,

and

X2
2 (|∇Hf |2) = 36|z|2 + 72y2 − 12 + 72x2

= 108|z|2 − 12.

Combining the latter two equations we find

ΔH(|∇Hf |2) = 216x2 + 144y2 − 24. (3.24)

It is now clear from (3.24) that

ΔH(|∇Hf |2) � 216|z|2 − 24 � 0, (3.25)

provided that |z|2 � 1
9 . From lemma 3.1 and proposition 3.2 we conclude that for

the harmonic function f in (1.21) the functional

r −→ D2(|∇Hf |2, r)
is nonincreasing for r ∈ (0, 1/3)!
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For the second part of the proposition we need to compute |∇̃Hf |2. We have

X̃1f = fx +
y

2
fσ = 1 − 3x2 + 3y2, X̃2f = fy − x

2
fσ = 6σ − 3xy,

and therefore

|∇̃Hf |2 = (1 − 3x2 + 3y2)2 + (6σ − 3xy)2. (3.26)

By (3.26), the fact that |∇Hρ|2 = |z|2/ρ2, and the change of variable (x, y, σ) →
(−x, −y, σ) (see [25, formula (6.2)]), we easily recognize that

Dα(f+, r) = Dα(f−, r).

Therefore, thanks to (3.8) in proposition 3.4 and our theorem 1.1, we know that

r −→ Dα(f+, r) =
1
2
Dα(f, r) is nondecreasing for r ∈ (0,∞).

As a consequence, we infer that r −→ D2(f+, f−, r) = 1
4D2(f, r)2 is nondecreasing

on (0, ∞). �

Remark 3.7. It is interesting to observe that with f as in (1.21) we have instead
in the entire space H

1

ΔH(|∇Hf |2 +
1
3
(Tf)2) = 216x2 + 144y2 − 24 + 24 � 0.

As a consequence, the functional r −→ D2(|∇Hf |2 + 1
3 (Tf)2, r) is globally

nondecreasing.

4. Failure of Almgren monotonicity formula in sub-Riemannian
geometry

In this final section, we discuss the sub-Riemannian counterpart of another cele-
brated monotonicity formula from geometric PDEs. We recall that, in its simplest
form, Almgren monotonicity formula states that if Δf = 0 in B1 ⊂ R

n, then its
frequency

N(f, r) =
r
∫

Br
|∇f |2dx∫

Sr
f2dσ

is nondecreasing, see [1]. This result plays a fundamental role in several areas of
analysis and geometry, ranging from minimal surfaces, to unique continuation for
elliptic and parabolic PDEs, and more recently free boundaries in which the obstacle
is confined to a lower-dimensional manifold. We refer in particular to the papers
[31, 32], and to the more recent works [3, 5, 6, 9, 20, 33].

In sub-Riemannian geometry the horizontal Laplacian (1.5) is not real-analytic
hypoelliptic in general, and a fundamental open question is whether harmonic func-
tions have the unique continuation property (ucp). An initial very interesting study
of what can go wrong for smooth, even compactly supported, perturbations of (1.5)
was done by Bahouri in [4]. However, Bahouri’s work does not provide any evidence,
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in favour or to the contrary, about the ucp for harmonic functions in a Carnot
group. The reader is referred to [34] for a detailed discussion. In the same paper,
the authors have shown that, in a Carnot group G, given a harmonic function f in
a ball B1 ⊂ G, the following sub-Riemannian analogue of Almgren frequency

N(f, r) =
r
∫

Br
|∇Hf |2dg∫

Sr
f2|∇Hρ|dσH

(4.1)

is nondecreasing in r ∈ (0, 1) provided that f has vanishing discrepancy, see also
[30] for the first result in this direction in H

n. In the surface integral in (4.1)
the symbol dσH denotes the horizontal perimeter measure. It is obvious that if
the frequency is nondecreasing on an interval (0, r0), then one has in partic-
ular N(f, ·) ∈ L∞(0, r0). In [34, theorem 4.3] it was shown that, in fact, the
local boundedness of N(f, ·) is necessary and sufficient for the following doubling
condition ∫

B2r

f2dg � C

∫
Br

f2dg, 0 < r < r0. (4.2)

It is well-known by now (see [31]) that (4.2) implies the strong unique continuation
property for f .

In a Carnot group G the local boundedness of the frequency of a harmonic func-
tion f is a fundamental open problem (to be proved, or disproved). In [34, theorem
8.1] it was shown that (4.2) is true for harmonic functions in a Metivier group, and
therefore in such Lie groups (which include those of Heisenberg type) the frequency
(4.1) is locally bounded. The following discussion shows that not even in H

n one
should expect the frequency to be generically nondecreasing. We emphasize that
this phenomenon of monotonicity versus boundedness is connected to the ‘almost
monotonicity’ character of the conjecture in § 3.

We recall that in [34, proposition. 3.6] it was shown that if f is harmonic in a
Carnot group, then ∫

Br

|∇Hf |2dg =
1
r

∫
Sr

fZf |∇Hρ|dσH , (4.3)

where Z denotes the generator of the group dilations in G. Combining (4.1) with
(4.3) we see that we can express the frequency in the useful alternative fashion

N(f, r) =

∫
Sr
fZf |∇Hρ|dσH∫

Sr
f2|∇Hρ|dσH

. (4.4)

We emphasize that (4.4) does immediately imply that if f is a harmonic function
homogeneous of degree κ, then N(f, r) ≡ κ. We do not know whether the opposite
implication holds in general! The main reason is that, even when G = R

n, the
only known proof of such implication seem to crucially rest on the full-strength of
Almgren monotonicity formula.

Suppose now that Ph and Pk are two harmonic functions in G, respectively of
homogeneous degree h �= 0 and k �= 0, and suppose to fix the ideas that h < k. If
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f = Ph + Pk, we have

fZf = f (ZPh + ZPk) = f (hPh + kPk) = hf2 + (k − h)fPk.

Inserting this information in (4.4) we find

N(f, r) = h+ (k − h)

∫
Sr
fPk|∇Hρ|dσH∫

Sr
f2|∇Hρ|dσH

. (4.5)

It is clear from (4.5) that on a harmonic function of the type f = Ph + Pk the
frequency is nondecreasing if and only if such is the quantity

E (r) =

∫
Sr
fPk|∇Hρ|dσH∫

Sr
f2|∇Hρ|dσH

.

Suppose that, similarly to the case G = R
n, we knew

∫
S1

PhPk|∇Hρ|dσH =

{
0, if h �= k,

ah > 0 if h = k.
(4.6)

From (4.6) we would immediately infer by rescaling (dσH ◦ δr = rQ−1dσH) that

E (r) =
akr

k−h

ah + akrk−h
,

and this would easily imply E ′(r) � 0. But in sub-Riemannian geometry the
‘Euclidean’ looking identity (4.6) fails to be true in general. This negative phe-
nomenon was already brought to light in the context of H

n in [30, theorem 1.1],
and this is why that result contained the additional assumption (1.19), and in [34,
definition 5.1] the notion of discrepancy was introduced. What is true, instead, in
any Carnot group, is the following formula∫

Sr

Ph
〈∇HPk,∇Hρ〉

|∇ρ| dHN−1 =
∫

Sr

Pk
〈∇HPh,∇Hρ〉

|∇ρ| dHN−1, (4.7)

but, as we next show, (4.7) is a far cry from its Euclidean counterpart containing
the Euler vector field and the Euclidean norm. To understand this comment we
recall [34, lemma 6.8] (see also [30, formula (2.22)] for H

n), that states that when
G is a group of Heisenberg type, with logarithmic coordinates g = (z, σ), then for
f ∈ C1(G) one has

〈∇Hf,∇Hρ〉 =
Zf

ρ
|∇Hρ|2 +

4
ρ3

m2∑
�=1

σ�Θ�(f), (4.8)

where

Θ� =
∑
i<j

b�ij
(
zi∂zj

− zj∂zi

)
.

The vector fields Θ�, which come from the complex structure of G, are the reason
for the failure of (4.6), and in view of (3.9) also of the failure of the nondecreasing
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character of theorems 1.1 and 1.2 if we change |∇̃Hf |2 into |∇Hf |2. In view of (4.8),
when G is of Heisenberg type we obtain from (4.7)

(k − h)
∫

S1

PhPk|∇Hρ|dσH = 4
m2∑
�=1

∫
S1

σ�

{
PhΘ�(Pk) − PkΘ�(Ph)

}dHN−1

|∇ρ| , (4.9)

but it is not true that the right-hand side of (4.9) generically vanishes when h �= k.
This lack of orthogonality of the spherical harmonics causes the nondecreasing
monotonicity of the frequency (4.1) to fail for a harmonic function of the type
f = Ph + Pk. As a consequence, one cannot expect an Almgren type monotonic-
ity formula on a generic harmonic function f , unless additional assumptions are
imposed on f itself.

We close by illustrating this claim. Suppose that G = H
1 and consider either

one of the harmonic functions in H
1 given in (1.14) or (1.21). If to fix the ideas

we consider (1.21), since f = P1 + P3, where P1(x, y, σ) = x and P3(x, y, σ) =
6yσ − x3, with Z = x∂x + y∂y + 2σ∂σ we presently have ZP1 = P1, ZP3 = 3P3.
As a consequence, (4.5) gives

N(f, r) = 1 + 2

∫
Sr
fP2|∇Hρ|dσH∫

Sr
f2|∇Hρ|dσH

= 1 + 2 E (r),

where we have let

E (r) =

∫
Sr
fP3|∇Hρ|dσH∫

Sr
f2|∇Hρ|dσH

=

∫
S1
f(δrg)P3(δrg)|∇Hρ|dσH∫
S1
f(δrg)2|∇Hρ|dσH

. (4.10)

Observe now that

f(δrg)P3(δrg) = (rP1(g) + r3P3(g))r3P3(g) = r4P1(g)P3(g) + r6P3(g)2,

and

f(δrg)2 = (rP1(g) + r3P3(g))2 = r2P1(g)2 + 2r4P1(g)P3(g) + r6P3(g)2.

Now notice that P1P3 = 6xyσ − x4. Since xyσ is odd, if we set

a =
∫

S1

P 2
1 |∇Hρ|dσH , b =

∫
S1

x4|∇Hρ|dσH , c =
∫

S1

P 2
3 |∇Hρ|dσH ,

then a, b, c > 0, and we have from (4.10)

E (r) =
−br4 + cr6

ar2 − 2br4 + cr6
=

−br2 + cr4

a− 2br2 + cr4
.

A simple calculation gives

E ′(r) = −2r
ab+ 2acr2 − bcr4

(a− 2br2 + cr4)2
� 0,

provided that 0 � r � r0, for some r0 > 0 sufficiently small. Therefore, r → N(f, r)
is nonincreasing on (0, r0), instead on nondecreasing!
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