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ABSTRACT

Calving of floating ice shelves is studied
by a viscoelastic finite-element analysis. The
fan-shaped breaking-up of glaciers due to
forces that cause bending on creeping ice is
assumed to be axisymmetric. Bending may be due
to geometry of the bedrock, action of tides and
waves, and imbalance (at the ice front) between
the stress in the ice and the sea-water pressure.

The bulk and shear moduli of the ice are
represented by relaxation functions of the Prony
series, which is a discrete relaxation spectrum
composed of a constant and a summation of expo-
nential terms. These properties are also func-
tions of temperature, that varies over the
thickness of the ice shelf. The temperature
distribution across the thickness of the ice is
obtained from calculations based on a linear
dependence of thermal conductivity on the tem-
perature. Numerical results are presented for
various calving mechanisms. A computer code,
VISICl, is developed by modifying a finite-ele-
ment viscoelastic code, VISICE, for floating ice
islands. The buoyancy of the water is taken into
account by a Winkler spring model, with the spring
force determined from displaced volume. Loca-
tions of crack initiation obtained from the
analysis are used to predict the iceberg size
immediately after calving.

INTRODUCTION

Floating ice masses affect shipping and
offshore activity, afford a base for scientific
expeditions, and are a potential resource. The
flow of glaciers and ice shelves, which may result
in the eventual formation of icebergs, has been
studied by many investigators. Nye (1951) studied
the plastic flow within an ice mass, under its
own weight, assuming a constant yield stress and
Lévy-Mises equations of flow and reported the
two-dimensional flow within the glacier with
reference to bed slope and formation of trans-
verse crevasses and shear faults. Later Nye
(1952) assumed laminar flow in valley glaciers
in which the movement is parallel to the bed, and
explained the formation of transverse crevasses
and shear faults by a flow in which an excess
longitudinal stress was assumed. Crevasse
patterns based on the nature of the longitudinal
stress were also indicated. Glen (1952) per-
formed compression tests on blocks of ice and

found that ice does not have a constant coeffi-
cient of viscosity; a linear relationship was seen
between the logarithms of strain-rate and stress,
representing a motion in-between laminar and
plastic flow. Nye (1957) analysed glacier flow
based on Glen's law. Lliboutry (1957) used
plasticity theory to determine the profile of a
glacier, and explain the formation of crevasses,
bulges passing down a glacier, glacier erosion,
and the upturning at the foot of an ice fall.
Weertman (1957) analysed the creep deform-
ation of floating ice shelves, using Glen's flow
law and Nye's application of plasticity theory
for regions away from the edge of the shelf.
Reeh (1968) treated the floating ice shelf as a
beam loaded by the difference between the hydro-
static pressure in ice, the water pressure at the
ice front, and the buoyancy of water; the maxi-
mum shear stress occurred at a distance of about
the thickness from the ice front. The flexure of
a floating ice tongue due to tidal variations was
studied by Holdsworth (1969), who idealized the
ice tongue as a beam on an elastic foundation,
and studied the break-up of the ice, considering
the behaviour of the material as elastic, elastic-
plastic, and fully plastic. The floating ice was
assumed to be sufficiently long so that the ice
floated freely, away from the hinge line, ensur-
ing that the imbalance of forces at the ice front
did not affect theanalysis. Various mechanisms
of calving were discussed by Holdsworth (1978).
The expansive creep in an ice shelf, together
with bending due to bed geometry at the hinge
line and ocean level, was considered to study the
break-up of the ice. A linear elastic theory
with constant properties was used. Calving at
the hinge line due to tidal variation and geo-
metry of the bed, and at the ice front due to the
imbalance between the hydrostatic pressure in the
ice and the water pressure, was reported. The
formation of large icebergs was explained by a
vibration calving mechanism in which the ice
tongue was represented as a rectangular plate
with varying thickness. A finite-difference
scheme was used to solve the eigenvalue problem,
and the locations of maximum stress and deforma-
tions required for fracture were obtained from
the mode shapes. Smith (1977) presented a frac-
ture mechanics approach for calving in floating
ice shelves due to tides. By this means, the
floating ice shelf was modelled as a cantilever
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beam loaded by the buoyancy of the water to
determine the stresses in the ice, and the depth
of cracking was determined by comparing the
stress-intensity factors due to tensile stresses
caused by bending and the compressive overburden
pressure. Iken (1977) presented a plane-strain
finite-element solution for an ice mass breaking
off a cliff. Glen's flow law was used to calcu-
late the stresses and movement in the ice, and to
study calving in a glacier undercut by a lake.
The calving mechanism was modelled as a process
in which a crack opens perpendicular to the
principal tensile stress, extending up to a point
of zero tensile stress, and which is then fol-
lowed by a build-up of tensile stress at the
crack tip until a critical value is reached when
the process repeats itself.

Interest in the study of the behaviour of
ice under loads has increased with the use of
floating ice as a structural member. Williams
(1976) presented a theory for the analysis of a
viscoelastic plate on elastic foundations, con-
sidering thermal stresses and the dependence of
material properties on temperature. The plate
equations were obtained from the three-dimensional
theory of linear viscoelasticity. Yakunin (1974)
presented a linear viscoelastic analysis of a
floating ice sheet, idealizing the ice as a com-
bination of Maxwell and Kelvin models. A survey
of the bearing capacity of floating plates was
given by Kerr (1976). Vaudrey and Katona (1975)
presented a viscoelastic finite-element analysis
of floating ice sheets in which the bulk and
shear moduli were expressed as relaxation func-
tions given by a constant and summation of expo-
nential terms. Different types of viscoelastic
models were obtained by varying the number of
exponential terms chosen. The buoyancy of the
water was represented by a Winkler foundation, and
the deformation in a circular floating platform
subjected to central loading was illustrated.
The above formulation was extended by Swamidas

and others (1978) to include temperature-dependent

relaxation functions, varying thickness and
reinforcement, and results were presented for an
artificially thickened offshore platform. Tinawi
and Murat (1979) developed a finite-element pro-
gram for the study of floating ice sheets. In
this, a polynomial variation of the elastic
modulus across the ice thickness was assumed, and
a temperature-dependent flow law representing
creep and an incremental analysis using initial
strain technique were used. Hutter (1975) dev-
eloped a plate theory to analyse floating ice
sheets, assuming viscoelastic material behaviour
and a non-uniform temperature distribution across
the depth. The theory also accounted for shear
deformation and large displacement. Hutter and
Williams (1980) presented a brief review of
analysis of floating ice sheets, discussing flow
and temperature distribution. Dempster (1980)
studied the size, towing, and drift characteris-
tics of icebergs based on experimental data and
indicated the feasibility of viscoelastic analy-
sis of calving glaciers to determine the probable
upper bounds on iceberg size.

This paper describes a finite-element visco-
elastic analysis of an ice tongue. A computer
code, VISICE, developed by Katona (1974), is
modified for studying calving mechanisms. The
forces at the ice front were studied based on
temperature-dependent relaxation functions,
tidal actions, and bedrock geometry.
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STATEMENT OF PROBLEM

The behaviour of a floating ice tongue due
to tides, bedrock geometry, and forces at the ice
front are studied. Figure 1 shows the break-up
at the mouth of a glacier. The splaying and uni-
form break-up prompted the use of an axisymmetric
code. An assumed plan view of the ice shelf is
shown in Figure 2. Numerical results are pre-
sented for an ice tongue, 300 m thick, floating
for a length of 1.8 km. The finite-element mesh
is shown in Figure 3, with the buoyancy of the
water represented by springs at the interface
nodes

Fig. 1. Break-up at the mouth of a glacier,
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Fig. 2. Idealized floating ice shelf.
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Fig. 3. Finite-element mesh.

Three types of possible loading of the ice
tongue are considered. Figure 4 shows the salient
features of marginal calving. The imbalance
between the hydrostatic stress in the ice and the
sea-water pressure at the ice front produces a
net outward force and a clockwise moment at the
edge. Figure 5 shows a step in the bedrock. The
sea-water level is such that the ice level
decreases seawards away from the bedrock support.
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Fig. 5. Rock step-induced bending,

The difference in the level of water from that
required for full buoyancy is taken as 3 m. The
bending in the ice tongue due to tidal variations
in the water level is shown in Figure 6. A tidal
variation of 2 m from the mean is assumed with a
period of 12 h.

A linear viscoelastic theory is used for
the analysis. Relaxation functions are obtained
by modelling the ice as a standard linear solid
(Fig. 7) based on its short- and long-term pro-
perties. The effect of temperature on the
dynamic modulus (Michel 1978), and the variation
of Poisson's ratio across the thickness (Hutter
1974), have been reported to be not very signifi-
cant. However, under static conditions when the
load application is relatively slow, ice exhibits
considerable delayed elasticity giving rise to a
lower apparent elastic modulus. Under these con-
ditions, which describe the present case, the
elastic modulus and Poisson's ratio arc dependent
on temperature (Gold 1958). Steady-state temper-
ature distribution has been obtained assuming the
thermal conductivity to vary linearly as the
temperature. This leads to a parabolic variation
in temperature. The water is assumed to be at
0°C. Mass densities of 875 kg/m® and 1025 kg/m3
are assumed for the ice and the water respective-
ly.

----- HIGH WATER

e T T e— MEAN WATER

LOW WATER

777

Tidal bending.

Relaxation Function Y{) =Ag+A,e"™

Ag=(E,E)/(E,+E;)

A= (ESV(E +E,)

N, = (I/E +E,)

Flg, ¥

Standard linear solid

ANALYSIS
Temperature distribution

Drouin and Michel (1974) have reported the
findings of various investigators on the thermal
conductivity of ice as a function of temperature.
I't was found that the thermal conductivity
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increases almost linearly with decrease in tem-
perature. The coefficient of thermal conduc-
tivity k can be expressed as

k=ky (1 + ba) , (@8]
where ko and b are constants, and 8 is the
temperature.
Applying the law of thermal conduction,
de
g=-kdoa (2)

where g is the rate of heat transfer, 4 is the
sectional area, and 9% is the temperature

gradient; the tcmper;ture distribution is given
by
4
b2, . (d- 5% b,?
A R [(ap-zelhrq—)" (epelo )10 NI [ /6 (3)

where 8y, 0, are the ice surface and ice-water
interface temperatures respectively, d is the
depth of the floating ice, and z is the distance
from the ice-water interface.
Material model

Ice is modelled as a linear viscoelastic
material to account for its time-dependent
behaviour (Katona 1974). The viscoelastic con-
stitutive relation for an isotropic material is
given by

( [ 4 2 2 1 qe 5
911 (K+-G)  (K--0) (K--G) 0 B11
3 3 3

2 4 2
9221 [(%--6) (K+-G) (K--G) O J Ez2
3 3 3 =
! = 2 2 I i r(‘l)
033 (K--G) (K--G) (k+-G) 0 3
3 3 3
a E
L_m L 0 0 0 26 | zzj

where o{j are the stresses, €4+ are the strqins,
K and G are the bulk and shear moduli, and d
represents a derivative operator. The bulk and
shear moduli are monotonically decreasing relax-
ation functions, represcnted by the Prony series
given below:

~1:/=:¢.i
K(t) =Ko + L Kj e

—t/ﬁi
and G(t) =Gy + L Gy e (63

where ¢ is the time and aj, Bi are the relaxation
times. Kg, Gp are the long time moduli, and the
instantaneous values are given by Xj + I K; and
Go + T Gi. Different types of viscoelastic
behaviour are obtained by varying the number of
terms in the summation. In the analysis only
one term is considered for representing a stan-
dard linear solid (Fig. 7).
Finite-element model

An axisymmetric finite-element formulation
(Katona 1974) is used for the solution of the
floating ice-tongue problem. Quadrilateral iso-
parametric elements with two degrees of freedom
per node are used. An incremental approach is
used, and the governing matrix equation for the
solution of displacement increments for a given
time, %,, is given as

29
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[K] {aun} = {R(t)} - {H(tn)} - [Kpl (uy1} (6)

where [K] is the incremental stiffness matrix,
{u} is the displacement vector, {#} is the vector
of applied loads, {#} is the history vector up to
the time tp, and [K,] is the stiffness matrix due
to the fluid foundation. A Winkler-type found-
ation is assumed, and for a compatible axisym-
metric element with two nodes on the fluid inter-
face, the spring stiffness is given as

2 2 2 2
I—(-Srl + 2py 1y + 1y) (r; - rp)

Allen (1973). The least ratio of sides is a
little more than half and compares well with the

viscoelastic calving value.

TABLE 1. ICEBERG STZES

Investigator Length Width Depth

Ratio of sides

(m) (m) (m) Max. Min.
Allen (1973) 228 203 121  0.89 0.53
268 243 175 0.91 0.65
190 208 144 0.91 0.69

=t . (M

2 2 2
(rz - r1) (3rp - 2ry ry - 1))

where the suffix m refers to the element m, y is
the unit weight of supporting fluid, and r; and
rp are the radial distances of the two ice-water
interface nodes. The equations are reduced using
a solver for banded, partitioned matrices.

RESULTS AND DISCUSSION

The short- and long-term displacements at
the top and bottom of the ice tongue, due to the
imbalance of forces at the ice front causing
creep, are shown in Figure 8. The ice front is
subject to larger bending and due to relaxation
there is a reduction in bending away from the ice
front. The stresses near the ice front are shown
in Figure 9. A maximum radial stress of 0.28 x
103 kN/m? occurs at the top at a distance from
the ice front of about three-quarters of the
depth. A similar value was obtained by Holdsworth
(1978) about half the depth away from the ice
front. Cracking would take place at the point of
maximum tensile stress and travel downwards
resulting in the breaking away of an ice mass
whose length is about equal to its thickness. A
similar situation in the third dimension would
result in evenly-dimensioned ice masses when
other environmental forces are absent. Table T
gives a summary of some iceberg features on the
northern Grand Banks of Newfoundland reported by

Tt
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Fig. 8. Marginal calving - displacement
(amplified 200 times).
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Fig. 9. Marginal calving stresses (10% kN/m2).
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The stresses at the top and bottom layers of
elements due to a tidal variation of 4 m are
shown in Figure 10. The ice responds with the
tide and the maximum stresses occur at the hinge
line. As the stresses alternate, cracks would
form and close at the hinge. The cracks will
deepen as the modulus of the section is reduced
after cracking and may not regain the full ten-
sile strength when it closes. A similar situa-
tion is seen for the bending due to a rock step
at the hinge (Fig. 5). The stresses at the top
and bottom layer of elements are plotted in
Figure 11. The maximum stresses occur at the
hinge line, and,unlike tidal bending, the stres-
ses do not alternate. Cracks will form at the
hinge line and progress downward resulting in the
whole ice tongue breaking away. Unlike the case
of tidal bending, another maximum occurs at a
peint 1 km away from the hinge. Similar maxima
have been reported by Holdsworth (1969, 1978),
and equally-spaced rifts have been noted on ice
shelves in Antarctica.
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Fig. 10. Tidal bending - radial stresses.
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Fig. 11. Radial stresses due to rock step at
hinge.

Simple examples have been used to demon-
strate the use of a viscoelastic model. The
model can be improved by extending the code to
viscoplastic analysis. and the inclusion of
fracture mechanics to study crack propagation.
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