VOL. 6 (1972), 161-167.

Local analytic structure in certain commutative topological algebras

R.J. Loy

Let B be a topological algebra with Fréchet space topology, A an algebra with locally convex topology and \underline{A} an algebra of formal power series over A in n commuting indeterminates which carries a Fréchet space topology. In a previous paper the author showed, for the case n=1, that a homomorphism of B into \underline{A} whose range contains polynomials is necessarily continuous provided the coordinate projections of \underline{A} into A satisfy a certain equicontinuity condition. This result is here extended to the case of general n, and also to weaker topological assumptions.

An application to the case $\underline{\underline{A}} = {}_{n}0$, the stalk at zero of the sheaf of germs of holomorphic functions on \underline{C}^{n} yields a local condition, in terms of the sheaf of germs of B-holomorphic functions, which is sufficient for the existence of an analytic polydisc in the spectrum of a commutative F-algebra B. The proof requires very little analytic function theory, and for this reason is not amenable to extension to a corresponding result for analytic subvarieties.

Preliminaries

An F-algebra is a complete topological algebra whose topology is given by a countable sequence of algebraic seminorms.

Let A be a commutative complex F-algebra, Φ the spectrum of A

Received 29 September 1971.

162 R.J. Loy

(the set of continuous multiplicative linear functionals of A with the weak topology induced by the algebra \hat{A} of Gelfand transforms of elements of A). It is known that Φ is Hausdorff and hemicompact. (For fuller details regarding F-algebras see [6].) Following [1], for each open set $U\subseteq \Phi$, let A(U) denote the completion of $\hat{A}|U$ under the topology of uniform convergence on the sets $\{U \cap M : M \subset \Phi, M \text{ compact}\}$. Since Φ is hemicompact, A(U) is itself an F-algebra. Extending the notation of [7], a function f on Φ will be termed A-holomorphic if each point $\phi \in \Phi$ has an open neighbourhood U_{ϕ} such that $f | U_{\phi} \in A(U_{\phi})$. The family $\{A(U): U \subseteq \Phi, U \text{ open}\}$ together with the appropriate restriction maps is a presheaf over Φ (see, for example, [4], Chapter IV); the associated sheaf H is the sheaf of germs of A-holomorphic functions. If $\phi \in \Phi$ and $U_{_{oldsymbol{\phi}}}$ is the set of open neighbourhoods of ϕ partially ordered by reverse inclusion, then the stalk $H_{_{dh}}$ of H at ϕ is given by $\lim\{A(U): U\in \mathcal{U}_{\underline{A}}\}$ algebraically, and $H_{\underline{A}}$ is a topological algebra with the inductive limit topology (see, for example, [3], §6.3). For example, taking A as the algebra of entire functions with the compact-open topology, $\Phi = C$, A(U) is the algebra of holomorphic functions on Uwhich are bounded on bounded subsets of U , and H is the sheaf of germs of holomorphic functions. In this case $\,\mathit{H}_{0}\,$ is denoted $\,0\,$, and more generally the stalk at zero of the sheaf of germs of holomorphic functions on C^n is denoted n^0 .

When A is a commutative F-algebra which is singly-generated it is known ([1], Theorem 3.4) that if H_{ϕ} is algebraically isomorphic with 0 then there is an analytic disc in Φ centred at Φ , that is, there is a homeomorphism Γ from an open disc Δ in C into Φ such that $\Gamma(0) = \Phi$ and, for each $x \in A$, $\hat{x} \circ \Gamma$ is holomorphic on Δ . We show below that this result can be extended to general commutative F-algebras with $\frac{1}{n}$ 0 rather than just 0.

For the sheaf S of germs of locally-A functions on Φ (which is a subsheaf of H, generally proper) similar results have been obtained in [2] for the Banach algebra case. Namely suppose there is an epimorphism

 ψ of S_{φ} onto $H_0(W)$, the stalk at zero of the sheaf of holomorphic functions on a subvariety W of an open set in \mathbb{C}^n , and that zero is an interior point of W. Then there is a continuous injection Γ of a neighbourhood W' of zero in W into Φ such that $\Gamma(0) = \varphi$ and for each $x \in A$, $\hat{x} \circ \Gamma$ is holomorphic on W'. If ψ is an isomorphism and $\{\varphi\}$ a G_{ξ} then Γ is a homeomorphism. The proof of these results makes considerable use of properties of holomorphic functions in contrast to our proof below which, however, only considers the case of $\frac{1}{n}$ 0 rather than the more general $H_0(W)$ to which it is not applicable, as will become apparent.

Results

Our method of proof is to extend a result of [5] to such an extent that the desired result is almost an immediate corollary.

Let A be an algebra over $\mathbb C$ with identity which has a locally convex topology as a vector space. Let t_1, \ldots, t_n be commutative indeterminates and $\underline{\mathbb A}$ an algebra of formal power series in t_1, \ldots, t_n over A. We will suppose that $A[t_i]\subseteq\underline{\mathbb A}$ for at least one i, and choose i=1 with no loss of generality. Elements of $\underline{\mathbb A}$ will be denoted $\sum a_K t^K$ where $K=(k_1,\ldots,k_n)\in\mathbb N^n$ is a multi-index; as usual $|K|=k_1+\ldots+k_n$. Ordering and addition in $\mathbb N^n$ will always be component-wise. We suppose finally that $\underline{\mathbb A}$ has a Fréchet space topology such that there is a sequence $\left\{\gamma_K:K\in\mathbb N^n\right\}$ of positive reals with the property that $\left\{\gamma_K^{-1}p_K\right\}$ is an equicontinuous family, where $p_K:\sum a_j t^{J}\mapsto a_K$ is the K-th coordinate projection.

THEOREM 1. Let B be a topological algebra with Fréchet space topology, and $\phi: B \to \underline{\mathbb{A}}$ a homomorphism with $t_1 \in \phi(B)$. Then ϕ is continuous.

Proof. The proof is similar to that of [5], Theorem 1, and will be

164 R.J. Loy

outlined only. Supposing ϕ discontinuous, there is a seminorm $\|\cdot\|_N$ on A and a multi-index K such that $p_J\phi:B\to (A,\|\cdot\|_N)$ is continuous for J < K but discontinuous for J = K. Take neighbourhoods U, V in B, A repectively, and $\{|\cdot|_m\}$, $\{M_m\}$, $\{\delta_m\}$ all as in [5], and let $\{\mu_J\}$ be a sequence of positive reals with $\mu_J^{-1}\gamma_J \to 0$ as $|J| \to \infty$. Let $\dot{\mathcal{L}} = (i,0,\ldots,0) \in \mathbb{N}^n$, and let $s \in B$ with $\phi(s) = t_1$. Define $\{x_m\} \subseteq B$ inductively such that

(i)
$$x_m \in U$$
,

(ii)
$$|x_m|_i \le 2^{-m} \delta_m \min_{\substack{1 \le j \le m \\ 1 \le l \le m}} \left\{ 1 + |s^j|_l \right\}^{-1}$$
 for $1 \le i \le M_m$,

(iii)
$$\|p_K \phi(x_m)\|_{N} \ge \mu_{K+m} + k_1 + \sum_{i=1}^{m-1} \|p_{K+i} \phi(x_{m-1})\|_{N}$$

Setting $y = \sum_{m \ge 1} s^m x_m \in B$ we have

$$\begin{split} p_{M} \phi(y) &= p_{M} \left\{ \sum_{i=1}^{m_{1}} t_{1}^{i} \phi(x_{i}) \right\} \\ &= \sum_{i=1}^{m_{1}} \sum_{0 \leq L \leq M} p_{L} \left(t_{1}^{i} \right) p_{M-L} \phi(x_{i}) \\ &= \sum_{i=0}^{m_{1}-1} p_{(i,m_{2},\dots,m_{n})} \phi(x_{m_{1}-i}) , \end{split}$$

and taking M = K + i,

$$\|p_{K+i}\phi(y)\|_{N} \geq \mu_{K+i}$$
,

giving a contradiction as in [5].

Having extended the result of [5] to several indeterminates we now weaken the topological assumptions.

THEOREM 2. Suppose $\underline{\mathbb{A}}$, \mathbb{B} , ϕ are as above except that the topologies

on <u>A</u> and B satisfy:

- (i) $\underline{\underline{A}}$ is the countable internal inductive limit of a sequence $\{\underline{\underline{A}}_{m}\}$ of algebras each with Fréchet space topology,
- (ii) B is the internal inductive limit of a directed family $\{B_{\alpha}\}$ of topological algebras each with Fréchet space topology τ_{α} such that if $\alpha \leq \beta$ then $B_{\alpha} \subseteq B_{\beta}$ and $\tau_{\alpha} \geq \tau_{\beta}|_{B_{\alpha}}$.

Then \$\psi\$ is continuous.

Proof. Suppose firstly that B has Fréchet space topology. Then the argument of Theorem 1, using [3] Theorem 6.7.1 in place of the closed graph theorem, gives the required result.

In the general case note that the hypothesis (ii) entails that $B=\lim_{\alpha \to \beta} B_{\alpha} \quad \text{for each fixed } \beta \quad \text{(this crucially uses the fact that } \{B_{\alpha}\} \quad \text{is also directed rather than just partially ordered)}. Choosing β such that <math display="block">t_1 \in \phi(B_{\beta}) \quad \text{, it follows by the first part that } \phi: B_{\alpha} \to \underline{A} \quad \text{is continuous}$ for each $\alpha \geq \beta$, so that $\phi: B \to \underline{A} \quad \text{is continuous}$.

COROLLARY. If $\underline{\underline{A}} = \bigcup_{i=1}^{\infty} A_i$ where each A_i is a closed set in $\underline{\underline{A}}$, then for each α there is an integer i_{α} such that $\phi(B_{\alpha}) \subseteq \operatorname{span}(A_{i_{\alpha}})$.

Proof. A category argument as in [1], Lemma 3.3.

We now observe that $_n0$ satisfies the conditions on $\underline{\mathbb{A}}$ of Theorem 2 and its corollary. Firstly $_n0$ can clearly be considered as an algebra of formal power series over \mathbb{C} , for if $x\in _n0$, there is a unique power series of which x is the germ, and henceforth we identify x with this power series. Also, if

$$\Delta(r) = \left\{ z = (z_1, \ldots, z_n) : |z_i| < r, i = 1, 2, \ldots, n \right\}$$

and $\overline{\Delta}(r)$ is its closure in C^n , taking $\underline{\underline{A}}_m = \text{hol}\left(\Delta\left(\frac{\underline{1}}{m}\right)\right)$, the algebra of

functions holomorphic on $\Delta\left(\frac{1}{m}\right)$ and continuous on $\overline{\Delta}\left(\frac{1}{m}\right)$ with supremum norm $\|\cdot\|_m$, we have $n^0 = \lim_{M \to \infty}$. Cauchy's inequalities show that for each $x \in n^0$, $|p_J(x)| \leq \|x\|_m \cdot m^{|J|}$ for m sufficiently large, and hence the equicontinuity condition is satisfied with $\gamma_K = |K|^{|K|}$. Finally, letting $A_m = \left\{x \in n^0 : |p_J(x)| \leq m^{|J|}\right\}$ we have $n^0 = UA_m$ and each A_m is closed in n^0 .

We also note at this point that the reason our methods are of no avail for $H_0(W)$ is that this is not an algebra of power series like ${}_n^{\,\,0}$, but rather a quotient of ${}_n^{\,\,0}$.

The desired result is the following, which, incidentally, does not use the full strength of Theorem 2.

THEOREM 3. Let B be a commutative F-algebra with spectrum Φ . Suppose that for some $\phi \in \Phi$ and for some integer n there is an epimorphism $\psi : H_{\phi} \to {}_{n}0$. Then there is a homeomorphism Γ of a polydisc Φ in Γ into Φ such that $\Gamma(0) = \Phi$ and for each $\pi \in B$, $\pi \circ \Gamma$ is holomorphic on Φ ; that is, there is an analytic polydisc in Φ centered at Φ .

Proof. (Cf. [1] Theorem 3.4) Let U be an open neighbourhood of ϕ such that $t_i \in \psi(B(U))$, $i=1,2,\ldots,n$. Then the corollary shows that $\psi:B(U) \to \text{hol}(\Delta)$ for some open polydisc Δ , since $\underline{\underline{A}}_m \subseteq \text{span}(A_m) \subseteq \underline{\underline{A}}_{m+1}$ for each integer m. If $\theta:B \to B(U)$ is the inclusion map then θ is a continuous homomorphism and so $\psi\theta:B \to \text{hol}(\Delta)$ is a continuous homomorphism with range dense in $\text{hol}(\Delta)$. It follows that the adjoint map $(\psi\theta)^*:\overline{\Delta} \to \Phi$ gives the required homeomorphism Γ .

References

[1] Ronn Carpenter, "Singly generated homogeneous F-algebras", Trans.

Amer. Math. Soc. 150 (1970), 457-468.

- [2] Dennis Clayton, "A local characterization of analytic structure in a commutative Banach algebra", preprint.
- [3] R.E. Edwards, Functional analysis (Holt, Rinehart and Winston, New York, Chicago, San Francisco, Toronto, London, 1965).
- [4] Robert C. Gunning, Hugo Rossi, Analytic functions of several complex variables (Prentice-Hall, Englewood Cliffs, New Jersey, 1965).
- [5] R.J. Loy, "Uniqueness of the Fréchet space topology on certain topological algebras", Bull. Austral. Math. Soc. 4 (1971), 1-7.
- [6] Ernest A. Michael, Locally multiplicatively-convex topological algebras (Mem. Amer. Math. Soc. 11. Amer. Math. Soc., Providence, Rhode Island, 1952).
- [7] C.E. Rickart, "Analytic phenomena in general function algebras", Pacific J. Math. 18 (1966), 361-377.

Department of Pure Mathematics, School of General Studies, Australian National University, Canberra, ACT.