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APPROXIMATION BY A-SPLINES ON THE CIRCLE
T.N.T. GOODMAN, S. L. LEE AND A. SHARMA

1. Introduction. Let A = {A,, ..., A,} denote a set of distinct integers
and let II(A) denote the set of all generalized polynomials of the form

For any given { on the unit circle U with

2

0 = |ar = —,
|arg ] ’

we consider the set Z, of points 1, {, {2, e {k_l where

k > max A, — A[.
iy
We shall denote by #(A, Z,) or & the class of A-splines S(z) which satisfy
the following conditions:
(i) S¢z) € C" (V)
(ii) $(z) |, € TI(A) where
A, =arc”, &), »=0,1,...,k —2) and

14
A = arc(g‘k_', 1).

A-splines were introduced in [8] where their interpolation properties
were studied. Although in [8], A is comprised of non-negative integers,
there are no difficulties in allowing A to contain any integers. When
A = {0, 1,..., n}, A-splines reduce to polynomial splines on the circle
studied in [1], [11].

Our object here is to study approximation theoretic properties of
A-splines and to obtain their trigonometric analogues. As in [11] and [8], a
basic tool to this end will be the B-spline M,(z) € Swhichfork = n + 2
has support on the arc(1, {"* 1, (in fact the minimal support possible). We
shall be concerned mainly with the case {¥ = 1 when the B-splines
My(z{"),»=0,1,...,k — 1 will form a basis for £

In Section 2 we introduce the preliminaries and some definitions and in
Section 3 we study the properties of the B-splines in % and the analogue of
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Marsden’s identity [7]. We then examine approximation operators of the

form
k—1
(L) (#)e) = 2 M)

In Section 4, we take T,(g) to be a linear combination of "),
r=0,1,...,n for some prescribed points 7, on the arc({’, gt I). It is
shown that there is a unique such operator which reproduces ., This is the
analogue of the quasi-interpolant (see [2] ), a special case of which is due
to Chen [3] when A = {0, 1, ..., n}. The order of approximation by this
operator is the subject of Section 5 and generalizes the work in [3].

In Section 6 we consider (1.1) when 7,(g) is a constant multiple of g(o,)
for some o,, We show that there is a unique such operator which
reproduces 2% and M. This is the analogue of the Bernstein-Schoenberg
operator (B-S operator) (see [9] ). Similar results for the case of generalized
real polynomials are due to Hirschman and Widder [5]. Section 6 also
deals with the order of approximation of this operator and in Section 7 we
obtain an asymptotic formula which is reminiscent of a result of
Voronovskaja [6] for Bernstein polynomials, thus generalizing the results
in [4] for the case A = {0, 1,..., n}.

Results of Sections 6 and 7 are analogous to the work of Marsden [7] for
the B-S operator. However, unlike Marsden we keep n fixed = k — 2, but
our results as k — oo are somewhat stronger in so far as we get
convergence for all derivatives up to order n — 1 at all points.

By taking the ?\j’s in A to be symmetric about 0, we can get
corresponding results for trigonometric A-splines which is the subject of
Section 8.

2. Preliminaries. For given distinct integers Ay, A}, . . ., A, we denote by
A, theset {A,, ... A}, but for simplicity we shall use A, instead of A ,.
In order to study the A-splines, it will be useful to consider the function
Py (2) € II(A,,) satisfying the conditions

O,v=0,1,...,n—1
1, = n.

Q1 ¢ = {

It is easy to see that ¢A,,(Z) is uniquely given by

oM
1 1 R

22) $r(2) =(—D"| X A N + Vg .-->A,)
-}\3—1 .}\r]l—l }\nvl

where V(A,,...,A,) denotes the Vandermondian. It follows from (2.1)
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and (2.2) that
(23) (A, = A9y, (2) = 9y, (2) — 9y, (2)

since the coefficients of z™ on both sides are equal and all the derivatives
up to order n — 1 at 1 vanish on both sides.

For any B € U we introduce the analogue of the truncated power
function by setting

,z € arc[l, B)

o7 (2B ) z € arc[B, 1).
We shall prove the following

24) oz B) = {

PROPOSITION 1. The dimension of the space #(A\,, Z,) =

Proof. If S(z) € & then S(z) can be written in the form

k—1
25) 5@ = P@) + X agr (). PE) € TA,).
j=

where S(z) on the arc({k_', 1) is given by P(z). Then it is easy to see
that

k—1

26) X apy (&) =0

j=0

Moreover any S(z) satisfying (2.5) and (2.6) belongs to & Equating to zero
the coefficients of 2%, we see that (2.6) is equivalent to the system of n + 1
equations:

k—1

2 aj§_j}"’= , v=01...,n
j=0

Since k > maxl?\lJl — Al and |arg §| = 27/k, it follows that the rank of the
matrix of this system is n + 1, so that from (2.5) the dimension of &% is
k—(m+1D)+m+1) =k

We shall now derive an analogue of Taylor’s formula. To this end we
set

Df(z) = z*f“i(z"‘ff), ji=01,...,n
dz

Observe that if g(z) = f(az), then
Dg(z) = (Df)az),

for any constant a. Since

Dﬂ5Aj € H(Aj— ])
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and since it is easily seen from (2.1) that

d’ ] 0,v=01,...,j—2
;?(Dj‘bf\f) =1 {1,,,=j— 1,

it follows that
Q7)  Dgr() = o _ )
Forj = 1,2,...,n + 1, we define the differential operators Lj- by
(28 Li=D_\D_,...Dy Ly=1
This enables us to get the following analogue of the Taylor’s formula
where f € C"T\(U):
f) = f@opza") + (Lif)a)pp(za™ ) + ...
(2.9) + (Lf)a)ps (za” ") + R,
R, = f; ¢An(zv_')v_l(Lan)(v)dv, a,z € U.

Formula (2.9) can be easily verified by integrating by parts and is perhaps
known.
It is of interest to introduce the operators l~,J by

210) L=D, ;. \D,_j1y...D, 1=j=n+ 1L, =1
In this case, we get an analogue of (2.9). Indeed we have

f@) = fa)ey, (za™ ") + (L f )@y, (za™h) + ...
(2.11) + (Lf)a)py (za”) + R,

R = /Z ¢An(zv_l)v—'(fn+1f)(V)dV-

In order to define B-splines in %, we introduce the A-divided difference
of a function f on a subset of Z, by the symbol [1, ¢, . . ., ot l]A"fdefined
by the expression

1 1 | iG]
Ao A Ay
2.12) f. { 8 f“) = V@, 8,

{(n+l)}\0 {(n+])>\] . {(n+]))\" f(§"+l)
where V(¢™, ..., ¢™) is a Vandermondian. More generally, we set
213) &L T @) = 1L 8 8, S @)
From (2.12) we can see that

n+1

@14) (L& & S = 2 DTS, (A6
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where S,(A,) is the v-th elementary symmetric function of the numbers

o ¢h L P From (2.14), it follows that
(2~15) [17 g’ ceey §n+1]Anf = [§s §2’ ) §'I+]]A”_lf
0 | R A < N 4

n—1

S (SR I ) P 4

]

- {AO[L {a ] gnll\lﬂf"

Remark. If A, = {0, 1,...,n}, then our A-divided difference differs
from the usual divided difference on the same points by a constant factor.
More precisely, in this case

R I e | L L N
P

where the right hand divided difference is the usual one.

3. B-splines and their properties. Here and in the sequel we shall assume
that k = n + 2. We now define the B-spline M, A"(z) to be an element of &

given by
G M@ =L ey
For z € arc({"*', 1),

My () =[L§ 7 Ny o0 (29)

because of (2.4) and so vanishes since
a (2y) € TI(A,).
We shall show that M, (2) is the spline of minimal support in &

ProrosITION 2. If S(z) € & has support strictly contained in the arc
(1, &Y, then S(z) = 0.

Proof. Suppose the support of S(z) lies in (1, {"). Then S(z) lies in the
space of all A-splines with knots 1, {, . .., {" which by Proposition 1 has
dimension n + 1 and thus equals II(A,). So S(z) € II(A,) and since S(z)
vanishes on an arc, S(z) = 0.

We shall now prove

LEMMA 1. The B-splines satisfy the following recurrence relations:
ap [0 IME MY - ENA
- M, () + M, @),
and

(33) DM, () = My (7" — ¢TMM,  (2).
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Proof. Using (2.3) we see from (3.1) that
Ay = MMy (2) = (L Ty (0, (50D
— o5 2y D).
Next we use (2.15) which yields
A = MMy () =785 8y 0,0 D
SRS L SR ol U YO G )
ol (SIS ST ety N YN GRS
F ML T g, )

We now get (3.2) from (2.13) and (3.1).
Formula (3.3) follows on applying DJ to (3.1) and on using (2.7), (2.13)

and (2.15).
As a simple application of the B-splines, we show that
G4 (LT WS = fUMAn(v")v“'(L,,Hf)(v)dv.
In order to see this we use (2.4) and observe that for a = 1 in (2.9) we
have

R, = ﬁ/ da (v 27 W T (L N0y,

We now apply the difference operator [1, ¢!, .. ., §_"_1]A" to both sides
of (2.9) and using (3.1), we get (3.4).

In the sequel we shall suppose that { is a primitive k™ root of unity,
1.e.,

(=e"k kzn+ 2
We then have

PROPOSITION 3. If { is a primitive k™ root of unity, then the B-splines
MAn(zg‘_"), v = 0, 1,...,k — 1 form a basis for the space & of
A-splines.

Proof. Since the dimension of &is k (Proposition 1), it is enough to show
that {M, (z{ ") }é_l are linearly independent. We shall show that if there
exists a relation

k=1
S@):= 2 My (27" =0

v=0

then all the ¢,’s are zero.
Consider the function T'(z) given by
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0 z € are(l, 7
T() = k—1
> My (2877), z € arc(¢* ", 1).
v=k—n—1 "

Since MA"(z) vanishes outside the arc(l, {"H) it follows that
T(z) = S(z) = 0, forz € arc($*™', 1).

Thus T(z) € & and has support in the arc(¢* "', ¢* 1) and hence by
Proposition 2, vanishes identically.
Observe that for z € arc(¢* ™"~ 1, ¢k,

T(z) = cop My (287K =0

which implies ¢, _,_; = 0. Proceeding in this manner we see that
¢, =0, v=k—n—1,...,k— 1

Hence
k—n—2

2 oM, ()

v=

ll
=

and by the same argument as above, we see that ¢,’s are all zero.
We shall now prove the analogue of Marsden’s identity.

THEOREM 1. If ¢ is a primitive k-th root of unity and if y A () € TI(A)
satisfies the conditions

W) =0 j=12....n
3-) {m"(f‘"") Z o

then we have the identity

k—1
(36) o5 (2y) = 20 Ya, YIM,y (287,
p=

Proof. We prove the identity by induction on n. For n = 0, we have

p,(2) = 2
while M, (2) = — ¢ on arc(1, {) and is O elsewhere. Also by (3.5),

Ya (¥) = — o,

From this we can easily see that for z € arc(¢”, "), we have

k—1
20 YA M (7)) = 05 (EVIMy(2577) = () = ¢ (o).
=
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We shall now suppose that (3.6) is true for any A-set containing n
elements. Then using (2.3) and the inductive hypothesis, we obtain

Ny = Aa (29) = ¢4, (29) — &, (2)
k_

k—1 1
37 = 20 Ya, CIMy, (7)) = A Yo, (EMy (7).
=

j=

We recall formula (3.2) Lemma 1 to obtain

k—1
A, — AO)ZO Ya, (E9IMy (287)
f=

k—1
= 20 Ua (ENIMy (877" = § My (267
p=

— MA,,_l(Zf_j_l) + f_)\"MA”_,(Z{_j) ],
which after elementary manipulation gives

k—1
(3.8) 20 A& I My, (T — My (G )
f

k—1
£ 2 A E(ETMy () My, (@) ).
2

In order to prove (3.6) it is sufficient to show that the right side of (3.7) is
equal to (3.8). This will be so if the following relations hold:

U, ) = @) =@
Yo, () = 4 (@) = §M, @)

or equivalently,

(39 a1 = o, ) = §TM, ()

(310) o (1) = dp & 'y) = £ ().

Obviously both sides of (3.9) belong to the class II(A, ,) and by (3.5) they
agree for y = {7/(j = 1, 2,...,n). This shows that (3.9) is valid. In a
similar way, we can show that (3.10) is true.

Remark. From (3.5) we can get an explicit representation for y A (D)

Thus
A by A,
(=1 1ot N, ){)—AO ?4\, o ?4\,,
GI) e =—Fex % | . . |
9 e 0 ey {A"AO g‘_")‘l . f-nA”
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whence we see that

(312) Yy (1) = (1" fhotth

4. The quasi-interpolant. It is known that for polynomial splines the
quasi-interpolant plays a very useful role. An analogue of the quasi-
interpolant for polynomial splines on the circle has recently been given

in [3].
In order to obtain the quasi-interpolant for A-splines, we choose points
7, € arc({’, ¢ th » =0,1,. ..,k — 1 where { is a primitive kth root of

unity. Consider an operator #C "(U) — & of the following form:

k—1
@) ) = 2 TEM )

where

n

42 T(g) = X a,,(LgXr,)

r=0

and a,,’s are constants depending on 7,, but independent of g. We shall
show that there is a unique operator £ of the form (4.1), (4.2) which
reproduces splines in %, We shall call such an operator the quasi-
interpolant. We can now prove.

THEOREM 2. For an operator % of the form (4.1), (4.2) we have
4.3) (&S)z) = S(z) forall S(z) € &,
if and only if
@44) a,, =L,z )1, ')y =01....k—1r=01..,n

Proof. We shall first show that (4.3) implies (4.4). Note that (4.3) is
equivalent to

(4.5) T,,(MA"(zg‘_f)) =8, jhv=01...,k—1
Applying the operator Ij/ to the identity (3.6) with respect to the variable y
and using (2.7) successively, we obtain

k—1
4.6) ¢, _(2y) = go (L )EYIMy (287,

Now applying the operator 7, to both sides of (4.6) with respect to z and

recalling (4.5), we have
n

@7 2 a, Loy, )ry) = Ly )Ey).

r=0
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From (2.7) we see that

Lon, =D Dry.. . Dodp =y
and from (2.1) we note that
¢Ar.rl—/(1) = 8’*"_j

so that putting y = 7_1 in (4.7) we have

Vn"j (L\PA )(7 gy) j = 0 1

which is equivalent to (4.4).

We shall now show that (4.4) implies (4.3), which is equivalent to (4.5).
Applying the operator T, to both sides of (3.1) after replacing z by z§ / we
have

48)  TMy (X)) =[L¢ T T T (2 y ).
In order to simplify the right side above we observe that (4.2) yields

n n

49)  T(or () = 2 a,(Lgy)oy (1,0) = 2 4,95 (1,0).

r=0 r=0

We claim that

n

(410) Ty () = 2 a6y (1,9) = by (3.

r=

Since both sides belong to II(A,,), it is sufficient to show that

.....

To see this, we observe that on using (2.1) and (2.7) the left side in (4.11)
becomes

n

2 av,r(bl\m_j(l) = av,n —J

r=0

which by (4.4) equals the right side of (4.11). This proves the assertion
(4.10).

In order to find T,(M, (2§ 7)), we examine Ty (2§ .,y ) in the
light of (4.8). We observe "that from (4.10),

) ¢y,
@12) Tyop (X7 y7h) = {3A A At Al

Thus from (4.8) and (4.12) on using (2.13), we obtain
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@13) TMy K )) =777 T RO,
where we set
Y(y) = {

We now consider three cases:
(a)j < ». In this case, take any , 0 =/ =n + 1. If

¢l e are(r, ! 7Y,

0 n,lEan(y§)
¥ (1¢"), otherwise.

then
7, € arc¢ 77 )

and so
V7T =g 7.

On the other hand, if
¢ e argg L N,

then —n — 1 < v — j — [ < 0 and so by (3.5),
w7 =0

Hence

@.14) ¥,V =0 =y, 7.

Thus we have

@15) K7L T )
=BT T T R () = 0.

(b)j > ». Again, as in case (a) we takeany , 0 =/ =n + L. If

¢/ e arqr, ¢,

then —n — 1 < » — j — [ < 0 so that by (3.5), we have (4.14). If
¢ e a0,

then this implies that
7,,_' € arc{ /7 ¢

and so
Y7 =0
Hence
¢ T () = 0.
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(¢)j = ». In this case we observe that from (3.5).
W7 = =0, I=12,...,n
Hence
Y7 =0 I=12,...,n
Since
€ arc¢T T 8T,
it follows that
v,/ h =o.
Moreover
V() = dp () = (=)

by (3.12). Thus when j = », we see from (2.13) and (2.12) that

ISEAY SN ) R 708))
=L TR = 1

Combining the results of (a), (b) and (c) above, we see from (4.13) that

(4.5) holds, which completes the proof.

5. Approximation by quasi-interpolants. We shall now examine the
quasi-interpolant #as a tool for approximating functions of class C"(U).
In order to do so, we recall the definition of the modulus of continuity for

a function f € C(U). We set

w(f; h) = sup{|1f(z)) — f(zy) l:iz}, z, € U, |z; — z,| = h}.

We are interested in the approximating property of .% for fixed A, as

k — oo. We shall prove

THEOREM 3. For any [ € C"(U) and z € U, we have the following

estimates:

G &NV — [ =

K 1
kn—sw(g; Z)’ § = Oa 1,~ ..o n

where g(y) = y_A"L,,f(y) and K is independent of f and k.

1
It may be observed that w( g Z) vanishes whenever f(z) = D, Jj=0,

1,...,n

For the proof of Theorem 3, we shall need two lemmas. In what follows

for any f € U, we set

I/l = suplf(z)I.
zeU
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LEmMMA 2. Forj = 0, 1, ..., n, we have
(52) LMyl = O™,

Proof. Using (2.9) with @ = 1, n = 0, and replacing A, by A
that

sn» WE SEE

M, (z) = f 1 op, (v ' WTID,My (v)dbv.

Since MA"(z) has support in the arc(1, ¢!

1 1
vy = o Himay i = oL )imy,

on using (3.3). Hence

(53) Myl = Ok™")IIM, | = Ok ™),

), we get

since
MAO(z) = —z*og‘*q
Again applying (3.3) successively, we obtain
LMy I = 2/IIMy || = O™, j =0,1,....n
on observing that A;, = {A,...,A,] and on using (5.3).
LEMMA 3. Forj = 0, 1, , n, we have
(5.4)  sup{ WY)(2) I:z € arc(g‘""‘ 1)} = OK).
Proof. From (3.11) it can be seen that

VA = 2 - A
=
I =

v#Ej

l+_[§ iy J

whence we easily obtain
55 Wl = 0K, »=0,1,....n
Furthermore, it is known that for any z € U, we have
(5:6) [5¢ T WA ()
S P TN S S R
where the divided difference on the left is the usual divided difference and

the B-spline on the right in the integral is the usual B-spline on the circle.
If z € arc(¢ """, 1), then by (5.6) and (3.5), we see that
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1

! )
<w>¢un=ﬁfpﬂnmwxwm

where
F(z, w) = HI (z = §HMlz, ¢ 8.
j2

For any w, § € (§_"_], 1), we define the truncated power function

wrlz{@—wwiwweamr“ﬂa

+ 0 ,if w € arc(§, 1).

¢ -

Since the B-spline is the divided difference of the truncated power
function, we see that

1 _ S _
—Fz, o) =(¢-w) ' - 2 ¢ - oy
n+1 =1

n 7 — g—r )
X X (_—"T, .
-
From the above it is easy to see that

C
§W, j=0, 1,...,"“1

9/
(5.8) @F(Z, W)

for all z, w € arc(¢ """, 1), where C is a constant independent of k.
Differentiating (5.7) j times and using (5.5) and (5.8) we obtain (5.4).

LEMMA 4. If G(t) € C"(U) and if for some z € U,
Gz =0, »=0,1,....,n— 1,
then for w € U, we have

(59 ILGW) = Clo — 2" sup |L,G()]

t€arc(w,z)
Jorr =0,1,...,n — 1, where C, is independent of G, w and :.
Proof. Using (2.9) with f replaced by L,G, we get for r = 0, 1,...,
n—1,
(5.100 L,G(w) = f éa_ (@™ WTLGE)d.
Now from (2.1), we know that

6 (D=0 fors = 0.1..oon— 2 rand

ron—1

o810 = 1.
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So by the classical Taylor’s formula with remainder,

1 ! —LiZ—r,(n—1—r
o, () = [ p— /1 (t —vy? ¢(A,‘,,l, ().

=1 n—2
Hence we get
G gy, (O = Cle=11"' "
which combined with (5.10), yields (5.9).
Proof of Theorem 3. In order to prove (5.1) it is enough to show that

K 1
w(g;—), s=0,1,...,n.

(5.12) L)) — Lf(2)| =

k"~S k

Set

G@t) = f(t) — P,()
where

P(¢) € II(A,) and

Y — PYz) =0, #»=0,1,...,n).
Then

L(&f)z) — LS (z) = L(&ZfNz) — LP.(2)
(5.13) = L(&f)z) — Ly(ZP,)(z), by (43)

= L(ZG)2).
From (4.1), we see that
k—1

mmqmm=§mm%%ﬂ

where from (4.2), we have

n

(5.15) T(G) = 2 a,(L,GXr,).

r=
By Lemma 4, we can see that forr = 0,1,...,n — 1

(5.16) | (L,G)1)| = C)lr, — 2I"" sup [L,G(@)I.

1€arc(t,,2)
From the definition of P,(¢) it follows that
LP,(v) = Cy™
(C, a constant) and

Lan(z) = Lnf(z)s

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-059-9

1100 T.N. T. GOODMAN, S. L. LEE AND A. SHARMA

so that
L,Gv) = L,f(v) = L,P.(v)
(5.17) = L,f(v) — vz YL, f(2)
= M(g(v) — g(2)).
where
g() = v ML, f ().
From (5.16) and (5.17), we obtain
ILG(t)| = Clr, — 2" "w(glr, — zl), r=20,1,...,n
which from (5.15) yields

6ﬂ)MWH§Q§ymm—MWMm—A)

Since 7, € arc({, ", ie., 7,,_l§” € arc(¢ """, 1), it follows from
(4.4) and (5.4) that

(5.19) la,,| = OK"™"), r=20,1,...,n

§v+n+l

Observe that M A"(zg“ ~%)is non-zero only if z € arc(, ) and since 7,

also lies in this arc, we have
Ir, — 2zl = O™,
so that (5.18) and (5.19) give

= .1)

Hence from (5.14), we obtain

el )
< _3 .
L&) | = alg 7).

which is equivalent to (5.12) because of (5.13).

6. Bernstein-Schoenberg type operator. While the quasi-interpolant
requires information about the value of the function and its derivative up
to order n at k points, the B-S operator needs only function-values at k
points. In view of this, it is of some interest to define the B-S type operator
for A-splines.

Using (2.2) and (3.11) and comparing coefficients of y)\f on both sides in
(3.6), we obtain
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k—1
6.1) N=C,) 20 CIML (87, =01, n

where

n A - A/
©2) G, = 0V I =——=.
/ iZo¢Th — ¢
I#)
We shall show that there is a unique linear operator

k_

1
63) (8)2) = Obyf(oy)MA"(Zs“_”)

which reproduces 2% and ZM. This requirement gives, in view of (6.1)
b,o = Co(A ™, boh = C (AN,

It is easy to see that
by = {Co(A,) P OTIHC (A, YT —ib(a,)

and

Cy(A,) }0‘1_)‘0)—1
CO(An)

From (6.2) it follows by elementary computation that

o,.= a,(A,) ={

o, = R¢V2AnHD Y

where

A=A A=A
sin -0 sin ’—k—'w

64y RN II|—% _—
We now renormalize our B-splines MA"(z) and set
(6.5)  Np (2) = b(A,)M, (2).

From (6.2) and Lemma 2, we get

(6.6) Ny (z) = O(1).

Our operator (Sf)(z) now takes the form

k=1
6.7)  (SH)iz) = X F@INA (X7, o, = REV2n+ D+
v=0
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When A, = 0, we note that (6.7) shows that the normalized B-splines
NAI(zf_"), vy =0,1,...,k — 1) form a partition of unity.
For a study of the convergence of this operator, we shall prove
LEMMA 5. Forr = 0, 1,...,n — 1 we have the identity
k_

1
(6.8) L(S/)z) = b(A,) 20 L8,

X f(o,,y)MA"_r(zf_").
Proof. We shall prove (6.8) by induction on r. For r = 0, (6.8) reduces to
(6.7). We assume then that (6.8) is true for some r < n — 1. Then

L (Sf)z) = D,_, L(S)(2).
Applying our inductive hypothesis and observing that by (3.3),

D,_ My () =M, _(&7H MMy (X7
we have after elementary rearrangement

L 1(Sf)2)

k—1
= b(A,) 20 (L7 8 B OOM, ()

n—r—I

where

F(y) = fo,-) = £ f(0,0).
We note thato, | = o,,f_l and apply (2.13) and (2.15) to derive (6.8) with
r replaced by r + 1 which completes the proof.

We shall now prove

THEOREM 4. Let f(z) be defined on some annulus {z:p, = |z| = p,} for
some p, < 1 < p,. Suppose that for any n, p; = m = p,, the function f(nz)
lies in C"(U), z€ U for somer,0 = r = n—1. Moreover let

H,(n2): = (nz) L, f(nz)
be continuous for z € U, py = n = p,. Then

- _ - 1
©9) LS — L)) = cul ;)

where C is independent of f and k.

Proof. Since the operator S reproduces 2™, it follows from (6.7) that

k—1
2 (08, Y Ny, ().

v

(6.10) zM

Then from (6.8) we obtain
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_ _ bA,) A -,
61 L(S)e) — Lfe) = == 2 ANy (7
(An—r) v=0 r
where
6.12) (A) =L 8T, S0, (M)

b,
b(A,)

From (3.4) it follows that

L f(z)z Mo (A,_) .

©13) (L& T = Sy My 07 YT ).
In particular for f(z) = 2™, this yields (from (6.2) ),

I_nI g)‘o _ gAj — CO(An—r)

(6.14) / M (v—-l)vko_ldv _ .
U An—r+|,n j=n—r+1 AO - >\j CO(An)

Hence from (6.12), (6.13) and (6.14) after some simplification, we get

(6.15) A f = LMAn_,w(v")vM“<oy(A,) Yo{H,(0,(A,))
— H,.(z) }av.

For a fixed z € U, we shall estimate A, fin (6.11) for those values of » for
which

Ny (7)) #0,
ie., for z € arc({’, {"™"7""!). Moreover, the integrand in (6.15) is
non-zero only for values of v in the arc(¢{ "~ !, 1). Recalling that
o(A,) = R¢2DHY and 1 — R = 0k,
we see that
vo,(A,) — 2l = O™
so that using (5.2) of Lemma 2 in (6.15) we obtain

a1 = 06 (A i)

Since
1b(A,)/b(A,—,)| = O(K) and [Ny _(z)| = O(1),
the result follows from (6.11).

Remark. The B-S operator (6.7) is defined only for functions f which are
defined on some annulus {z:p; = [z| = p,}, p; < 1 < p,. However, any
function f € C(U) can be extended to f which is continuous on an
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annulus in a number of ways. Perhaps the simplest way is to set
fmz) =f), zeUn>o0.
Using this extension we can easily derive from Theorem 4, the following

COROLLARY. For f € C(U), set

k—1
(6.16) (Sf)z) = gof(f'”‘"*'“”)NA,,(zs"”).
If f € C'(U) for somer,0 = r =n — 1, then for z € U,
~ - ~ | ~ .1

where C, is independent of f and k.
In particular
SN = @), @ =01,....r)
uniformly on U as k — oo.
7. An asymptotic formula. If we suppose the function f(z) to be analytic
in a neighbourhood of U, then it is possible to get a more precise result for

the error of approximation to f by the B-S type operator. We shall indeed
prove

THEOREM 5. If f is holomorphic in a neighbourhood 2 of U, then we
have

a1 lim RS ~f6)) = —%(n + DALy (o).

The proof of Theorem 5 will be based on
LeEmMMA 6. If E, ((2) is given by

k—1
(12)  Ejpz) = go o(0,2 IV, (287

then
+ 1) 1
(nt D, 0(_4)_
6k k
Proof. From (2.2) we see that
(7.4) V(g A, M)E, i(2)

(13)  Eyz) = —
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ez (o Y (0,27
= 20 1 1 1 Ny 7).
T A A A

From (6.1) and (6.5) we have

S 1,j=0,1
2 e PN ETY = LTS

v=0 ’

where

(CO(An) )0\: =)/ (A -AO)(CI(An) )(}\0—}\2)/()\0*)“)
R C(A,) ‘

K

Using (6.2), elementary calculation shows that

(n + 1)2772V(>\0, AL AY) N 0(_13).
6k* (A} — Ap) k

The result now follows from (7.4) and (7.5).

(15 K=1-

Proof of Theorem 5. Since fis holomorphic in a domain &, formula (2.9)
is valid for any points z, a in 2. Thus for z € U, w € 2, we have

(16)  f(w) = f(@)ppwz ) + (Lif )2y (w2 )
+ (L )2)p w0z ) + O(lw — zP).
Using (7.6) with w = 0,, v = 0, 1,...,k — 1 we have

k—1
) (SN = Z SNy (X

= f(2)Eg1(2) + (L1 /)2)E) 1(2)
+ (Lyf)2)Ey i (2) + O(lw — zP).

where
k—1
E\(z) = 20 a0,z WA (2T, j=0,1,2.

From (2.2),
¢A0(o,,z_|) = (t'!,,z_l)>‘0 and
oa0,27") = [(0,27 O = (0,27 YU\, = A),

so that using the reproducing property of the B-S operator we have
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(7.8)  Eg(z) =1 and E|,(z) =0.
The result then follows from (7.7), (7.8) and (7.3).
Remark. We observe that
Lyf(z) = 2f7(z) + (1 = X — A\)af"(@) + A f(2),

which shows that the asymptotic formula depends upon A, and A; and not
onAy, ..., A

ne

8. Trigonometric A-splines. We shall consider the special case when the
numbers A; in A are symmetric about the origin, or equivalently, when

Y {=Em ot} . o n=2m — 1
@1 A= {{O, Tl ER,) 0= 2m

In this case II(A,) is related to the class of trigonometric polynomials
T(A,) spanned by

{cos pf, sin pf}" whenn = 2m — 1
or by
{1, cos pf, sin p@}\" when n = 2m.

Indeed, p(z) € II(A,) if and only if p(¢”) € T(A,) when A, is given by
8.1).

For a positive integer k > 2 max|p| we shall denote by 7, (A,,) the class
of trigonometric splines 7(6) which satisfy

i) 1(6 + 2m) = 1(0), 1(8) € C"\(R),
i) 1| jn+ny € T(A,), for all integers j, where h = 2m/k.

It follows that taking
Z, ={1, e, ei(k_])h},
S(z) € A\, Z,) if and only if
sy e 7.(A,).
From Proposition 1, we see that
dim J_(A,) = k.
Let g5 (8) € T(A,) be such that

e JO, v=0,1,...,n—1
qA"(O)—{l’ YV = n.

It is easy to see from (2.1) that

(82)  qa(0) = i "9y ().
It is now possible to define the trigonometric B-splines 040 as a
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trigonometric A-divided difference of g, (6 — y)(@ — y)(i. However for
the sake of brevity, we set

(83) 0, (0) = —i"M, ().

It follows immediately from Proposition 3 that {Q, (8 — vh) }'5 ! form
a basis for the space 7 (A,). ’

We shall use the symbol A? to denote the set AN{=mw,}. Using (8.3)
and Lemma 1, we shall prove

LEMMA 6. The B-splines Q, (6) satisfying the following recurrence
relations:

(8.4) (i — #DQA(6) = Qpn(8 — 2h)
— 2.cos p,hQpn(0 — h) + Qpn(B)
= {QaN0 — 2h) — 2 cos phQp1 (0 — h)
t o0} n=3

and for n even

(85) Q) (0) = Qn _(0) — Oy _ (6~ h).

Proof. In order to prove (8.4), we use (3.2) with { = ¢, Ao = 1y,
A, = m,. and obtain

(B = BOM, (2) = My(ze™™) — e MM (2)
— My(ze™ ™y + e M Mp(2).
where 4 = A \{p;} and B = A \{u,,}-

We again apply (3.2) to MA(ze—ih) and M,(z) with Ay = —p, and
A, = n, Also we use (3.2) for My(ze ™) and Mp(z) with Ay = g,
and A, = —p,,. After simplification, we get

(5, = BDM, (2) = My (ze7 ")
— 2 cos pthA’ll(ze_’h) + Myi(2)
- {MA;n(ze_Zih) — 2 cos pmhMAT(ze_ih)

Formula (8.4) follows now on using (8.3).
In order to prove (8.5) we use (8.3) and (3.3).

Remark. As an application of (8.4) and (8.5) we show that Q A"(0) is real.
When n = 1,
in p,0
0,0 =7 for0<6<h and
|
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sin p,(2h — 0)

0,,(6) = for h < 8 < 2h.

It follows from (8.4) that Q A"(ﬂ) is real for all odd n. From this and from
(8.5) we see that Q’AH(B) is real for n even. But from (3.1) and (8.3) we
observe that for 0 < 0 < h,

On,(0) = q4,(9),

whence it follows that for n even, Q An(ﬂ) is real.

Putting z = ¢, y = ¢ '® in (3.6) we can deduce from Theorem 1 an
analogue of Marsden’s identity. We state without proof

THEOREM 6. If Vo 0) € T(A,) and satisfies the conditions
V) (0) = 1
(8.6) {VA"(jh) —0, j=1,2...,n
then we have the identity

k—1
BT 4p0 — ) = 2 Vy(a = Q0 ~ jh).

We note from (3.11) and (3.12) that
Va(0) = (=1)" "'y (7).

In order to define the quasi-interpolant for trigonometric A-splines, we
need to introduce some differential operators. We shall denote in the
sequel d/dd by D. If n = 2m — 1 and A, = {=£pu,, ..., =, }, we set

88) ©,=10, = H1 (D* + 1), ©,,4, = DO,,.
=

Similarly if n = 2m and A, = {0, =, ..., £pu,}, we set

r—1
89 ©,=16,_,=D Hl (D* + 1)), ©,, = DO,,_,.
=

For n even (or odd) we set

m

@O =1 G)Zr = H (D2 + 'u‘_/z)’ @2r+l = D@2r'
Jj=m—r+l1

We now choose points 7,(v = 0, 1,...,k — 1) withr, € (wh, (v + n +
1)h) and consider a linear operator

L*:Cy(R) = J ()
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of the following form:

k—1

B11) (@0 = X TH)Qp (O — vh)

v=0

where

®12) () = 2 b,(0./)1)

and b, , are constants depending on 7, but not on f.
We can then prove

THEOREM 7. An operator ¥* of the form given by (8.11) and (8.12)
satisfies

(8.13) (Z*S)0) = S@), forall SO) € J(A,)

if and only if

8.14) b,, = (=1 '@, ¥\ )r, — vh), »=0,1,....k— L.

where V) is given by (8.6).

For .Z* of the form (8.11) and (8.12), define an operator

LC'"(v) >

by
Lg(e%) = L*f(6), when g(¢*) = f(0).

It is easily seen that .Zis of the form (4.1) and (4.2). Moreover #* satisfies
(8.13) if and only if Psatisfies (4.3); also £* satisfies (8.14), if and only if
Psatisfies (4.4). Theorem 7 then follows from Theorem 2.

From Theorem 3 we can deduce

THEOREM 8. If f(8) € C5.(R), then the following estimate holds:
(B.15) (L)) — [P0 |
= Kh" {w(g) h) + w(gys b))} (s=0,1,...,n)
where
(8.16) g,(6) + igy(8) = &*’D(e” @, f.
If n = 2m, the right hand side of (8.15) can be replaced by
KW' "5w0(®, 1, h).

It may be observed that w(g;; &) and w(g,; h) both vanish when

/€ T,
We now consider the B-S operator (6.7) where A, is given by (8.1) and
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Ay = Wy, Ay = —p,. It is easily seen from (6.4) that in this case R = 1
so that

k—1
®17) (Sg)z) = 2 gV, (7).

Thus in this case S coincides with S given by (6.16). We now define an
operator

S*:CZW(R) - gl:(An)
by
(8.18) (S*)0) = (Sg)e?), g(*) = f(0).

It follows from (8.17) and (8.16) that S* reproduces cos p;8 and sin p,6.
An explicit formula for S*f can be derived from (8.18), (8.17), (6.5) and
(8.3). Indeed we have

k—1
1
(8.19) (S*/)6) = gof(—z-(n + Dh + Vh)Al(A,,)QA”(0 — vh)

where
A7) =
(1 2 1 )\?
( m —y‘l) - (“IJ“)
2 2/
_“‘h 1T 1 . on=2m— 1,
sin wh j=2 . .
17777 sin? Ep.lh — sin’ Ep.jh

4

Gn) - (o)

(1 )2
e m
1 2
“ , n=2m.

R

1 .o 1 .o 1 .2
cos —p h sin” — sin“ —u,h — sin” —wh
o 2#1 X e

From Corollary to Theorem 4, we can deduce

THEOREM 9. If f(8) € C5,(R) for somer,0 = r = n — 1, then

8.20) (87O - 7@ =C {h 2 IS0+ s h)},

where C is independent of f and h.

Finally we consider an analogue of the asymptotic formula (7.1), which
was proved under the assumption that f is holomorphic in a neighbour-
hood of U. However if the number R occurring in the definition of Sf'is 1,
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then we can prove (7.1) even for f € C3(U), because then we require
formula (7.6) only when w, z € U. Thus from Theorem 5 we can
deduce

THEOREM 10. If f € C3 (R), then
X _ 1
lim h2{ (S*/)0) — f(0) ) = —(n + D)(f"(©O) + u1f(O)).
h—0 24

For A = {0, 1,...,n} it is shown in [4] that the B-S operator S* is
variation-diminishing, i.e., the number of times which S*f changes sign
in [0, 27] is no greater than the number of times which f changes sign in
[0, 27). It would seem plausible that S* is also variation-diminishing for
more general A, possibly under a restriction on the size of h.
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