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INTRODUCTION

Stop Loss reinsurance has attracted the interest of ASTIN
members for years. May I recall the paper of Borch [i] in which
he demonstrates some optimality qualities of the stop loss reinsur-
ance from the ceding company's point of view, the contribution of
Kahn [2] and the paper of Pesonen [3]. I also mention the paper
of Esscher [4] and Vcrbeek's contribution [5]. Going back to the
pre-ASTIN days we find a papei of Dubois [6].

The rating problems have been dealt with by several authors.
Let me recall the rating formula worked out by a group of Dutch
Actuaries some 20 years ago. This was based on the assumption
that the mean and the standard deviation were known. Based on
Chebycheff's inequality an approximation formula was worked out
which, of course, was heavily on the safe side.

Even younger members of ASTIN arc probably familiar with the
studies made in the early sixties by a group of Swedish Actuaries,
the results of which were presented by Bohman at the Actuarial
Congress in London in 1964. Partly based on this, Biihlmann
worked out some tables which he used for rating purposes.

My present contribution to the subject may not justify the above
reviews, particularly as I will deal with a very special retention situa-
tion which a practical underwriter will rightly not accept, namely a
stop-loss point as low as equal to the mean value of the distribution.

My excuse for this is that the formula deduced is very handy
and that it is of value to the underwriter to know the stop loss risk
rate also at this low level.

Let us denote the aggregate annual claims amount for a certain
portfolio z and its distribution function F(z) and define

E = m = J xdF(x)

V = a*= } {x — £)2 dF(x)
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34 A SPECIAL STOP LOSS COVER

and the stop loss risk premium when the retention is A

e{A) = ](x — A)dF(x).
A

We will study the special case

c(E) = j(x — E) dF(x) = J {E - *) dF(x).
K n

CALCULATION OF e (E) FOR VARIOUS DISTRIBUTIONS

I. F(x) is generated by a Poisson process with the parameter X.
All claims are of equal size 5. We have

E = X • s

and

V = X • s*.

Further

e{E) = / ( * — £) #?(*) = J [E — x) dF(x)

= S (E - vs) P,(v) = E • S (I - v/X) Px(v) =

[x] [X] w [x]-i

= E( S Px(v) - S P,(v - I)) = £( S Px(v) - S Px(v)) =
V - 0 V - 1 V - 0 V - 0

= E • Px(W)
where [X] is the integer part of X.

It is useful for the following if we replace in the formula

the factorial by the F-function.

Thus

As seen in the following table the error is small.
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Comparison of P>.([X]) with

i -5
2-5
3-5
4-5
55
6-5
7-5
8-5
9-5
10.5

1.085
1.051
1.036
1.028
1.023
1.019
T.017
1.015
1.013
1.012

2. F(x) is generated by a Poisson-Pareto process. In another
paper by G. Benktander "A Motor Excess Rating Problem: Flat
Rate with Refund", it has been shown that the formula for the
stop loss premium

e(E)oo£-Px(X)

represents a remarkably good approximation.

The X to be used here should not be equal to the Poisson Para-
meter (the expected number of claims n) but smaller. A good value
is

(See G. Benktander "The Calculation of a Fluctuation Loading for
an Excess of Loss Cover", ASTIN Bulletin, Volume VIII, Part 3.)

The results just obtained or referred to lead us to calculate e[E)
directly for some distributions which could describe the total
claims amount and compare it with E . P>(X).

3. The exponential distribution

/(*) = (i/a) e-*la

E = a V = a2 X = 1
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and

c ( E ) = / ( i / a ) ( * — a) e-xladx^a}{y — i)e-vdy = a-c-l=E
a 1

For the exponential distribution the formula is thus exact.

4. The Gamma distribution

1

E = 1 V = -, X = — = Y
c c2 V
YT

Also in this case the formula is exact which is not surprising
considering the close connection between the Gamma- and the
Poisson-distribution.

5. The normal distribution

f{x) =

= m V = a2 X =

(% ~ m ) to-
X f (% ~ m ) to-""' , * f „,« , «

= - ,= e in*. dx=-j= ye » dy = -i=

as
m

we get
1

e{E) = m • rp== = E
271X

https://doi.org/10.1017/S0515036100011363 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100011363


A SPECIAL STOP LOSS COVER 37

I
We thus have to compare . with l\{k).

V2nX

P« (X)

I

2

3
4
5
6

7
8
9

10
20

0.399
0.282
0.230
0.199
0.178
0.163
0.151
0.141
0.133
0.126
0.089

0.368
0.271
0.224
0.195
0-175
0.161
0.149
0.140
0.132
0.125
0.089

The approximation is very good and converges towards the
exact value. Using the Stirling-formula

x! = r(x + 1) = <rx xx |/2TCX (1 + — + )
I2X

we get

+
6. The Log-normal distribution

I ,//lna;-w\'

or

E = c" t + o ! / ' 2 V = c;2'" + o'

X = ~V = en'^i

a = |/ln (1 + i/X).

The coefficient of variation is

https://doi.org/10.1017/S0515036100011363 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100011363


38 A SPECIAL STOr LOSS COVER

In practical applications the main interest should be concentrated
on the X-interval i to ioo.

The corresponding interval for the dispersion of In x, a, is

Kin 2 to Kin i.01 = 0.833 to 0.1.

After some calculations we get

c(E) = em - ' * {9(0/2) - 9(— T/2)} = E . [9(9/2) - 9 ( - a/2)J.

X

T

2

3
4
5
6

7
8

9
1 0

2O

30
4 0

a

2

0.416
0.318
0.268

0.236
0.213
0.196
0.183
0.172

0.162

0154
0.110
0.091
0.079

\ 2 / \ 2 /

O-323
0.250
0.212
0.187
0.169
0.156

0.145
0.136

0.129
0.123
0.088

0.072
0.063

P.(X)

0.368
0.271
0.224

0.195
0.176
0.161
0.149

0.140

0.132

0.125
0.089

0.073
0.063

The approximation is, as can be seen, good, slightly on the safe
side and converging towards the exact value when X increases. This
is not astonishing because

2 a 2!2f
-p= • - c- « 0 < 0 < 1

K271 2

2 CT

~" 8
As cr = |/ln (1 + i/X) 00 j/i/X,

we get
02 1
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7. Parcto
f(x) = a • a"x~a~1 x > a > o

a a

a — 1 (a — i ) 2 (a — 2) v

a 1 /a — i y - ' n E I
e{E) = I — = - 1 —

v / a — I \ \ a / / a \
1 / / a — i X " - ^

x -[*-(—) ) ^(W)
2.25 0.56 0.231 0.570
2.5 1.25 0.214 0358

.̂75 2.00 0.199 0.270
3.00 3.00 0.185 0.224
3.25 4.06 0.173 0.195
3.50 5.25 0.162 0.174
375 6.56 0.153 0.157
4.00 8.00 0.144 0.140

The correspondence is not as good as in other examples above.
It has, however, to be kept in mind that the (unlimited) Pareto
distribution does not represent a good description of the total
claims amount.

8. F(x) is generated by a Poisson process with fluctuating basic
probabilities according to a Gamma-structure function (resulting
in a Negative Binomial distribution).

All claims

y(vs) —

are of
T{h

r(v 4

1

1

equal

t + v)
-1) ri

/ = x

size s
/

[h) \h

E

• s2 4

h \h

+ x/
= X • s

X2s2

^ h

We transform this distribution in a Poisson distribution deter-
mining its parameter X' in the same way as above.

https://doi.org/10.1017/S0515036100011363 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100011363


40 A SPECIAL STOI' LOSS COVER

i/X' = i/X -I- i/A

c(2?) = £ • £ ( v / X - i)/(v) = £ • S (i - v/X)/(v)
v - [X] + 1 v - o

is approximated by E . 1\,{[X])-

The approximation is good, even for small h (= large variation
in the basic probability).

X
Neg. Binom.

i

2

4
8

i

2

4
8

l

2

4
8

h

15
15
15

15

25
25

25
25

5 0

5 0
5 0

5 0

XI,

~ X + h

<» 937
'•7^5
3-I58
5-217

0.962
1.852
3-448
6.061

0.980
'•923
3-7°4
6.897

e(E)

0.380
0.288
0.220

0-173

°375
0.281

0.210

0.160

0.372

0.276
0.203

0.150

0.392
0.302
0.223

O.I75

0.382
0.291

0.217

0.161

0-375
0.281

0.209
0.151

CONCLUSION

We have seen that for a large group of distributions the risk
premium of a special stop loss cover (retention equal to the
expected value) can be approximately calculated by a handy
formula.

e{E) = E • P,([X])

with

X = E*/V

E = Expected value of the distribution
V = G2 = Variance.

In 5. we have seen that

E 1

+ 12X
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lim E • 1\{\) = -j=

Thus the convenient approximation c(E) = aj\/2n which is exact
in case of a normal distribution is more on the safe side than
PX(X). How does the approximation e(E) = al\/2n fit generalized
Poisson distribution functions ?

If we assume the existence of all moments of the claim size
distribution function and that the expected number of claims X
is large enough so that all terms of order o(X"1/2) and higher order
in the Edgeworth expansion can be neglected, then CT/|/2TU is a good
approximation for the risk premium of the special stop loss cover.
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