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Enumeration of three-quadrant walks via
invariants: some diagonally symmetric
models

Mireille Bousquet-Mélou

Abstract. In the past 20 years, the enumeration of plane lattice walks confined to a convex cone—
normalized into the first quadrant—has received a lot of attention, stimulated the development of
several original approaches, and led to a rich collection of results. Most of these results deal with the
nature of the associated generating function: for whichmodels is it algebraic, D-finite, D-algebraic?
Bymodel, what we mean is a finite collection of allowed steps.

More recently, similar questions have been raised for nonconvex cones, typically the three-
quadrant cone C = {(i, j) ∶ i ≥ 0 or j ≥ 0}. �ey turn out to be more difficult than their quadrant
counterparts. In this paper, we investigate a collection of eight models in C, which can be seen as the
first level of difficulty beyond quadrant problems. �is collection consists of diagonally symmetric
models in {−1, 0, 1}2/{(−1, 1), (1,−1)}. �ree of them are known not to be D-algebraic. We show
that the remaining five can be solved in a uniform fashion using Tutte’s notion of invariants, which
has already proved useful for some quadrant models. �ree models are found to be algebraic, one is
(only) D-finite, and the last one is (only) D-algebraic. We also solve in the same fashion the diagonal
model {↗,↖,↙,↘}, which is D-finite.�e three algebraicmodels are those of theKreweras trilogy,
S = {↗,←, ↓}, S∗ = {→, ↑,↙}, and S ∪ S∗.

Our solutions take similar forms for all six models. Roughly speaking, the square of the
generating function of three-quadrant walks with steps in S is an explicit rational function in the
quadrant generating function with steps in S ∶= {( j − i, j) ∶ (i, j) ∈ S}. We derive various exact or
asymptotic corollaries, including an explicit algebraic description of a positive harmonic function
in C for the (reverses of the) five models that are at least D-finite.

1 Introduction

1.1 Walks in a quadrant

Over the last two decades, the enumeration of walks in the nonnegative quadrant

Q ∶= {(i , j) ∶ i ≥ 0 and j ≥ 0}
has attracted a lot of attention and established its own scientific community with close
to 100 research papers (see, e.g., [10] and citing papers). Most of the attention has
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Enumeration of three-quadrant walks via invariants 1567

focused on walks with small steps, that is, taking their steps in a fixed subset S of{−1, 0, 1}2/{(0, 0)}. We o�en call S-walk, a walk taking its steps in S. For each step set
S (o�en called amodel, henceforth), one considers a three-variate generating function
Q(x , y; t) defined by

Q(x , y; t) = ∑
n≥0
∑
i , j∈Q

q i , j(n)x i y j tn ,(1.1)

where q i , j(n) is the number of quadrant S-walks starting from (0, 0), ending at (i , j),
and having in total n steps. For each small step model S, one now knows whether and
where the series Q(x , y; t) fits in the following classical hierarchy of series:

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic.(1.2)

Recall that a series (say Q(x , y; t) in our case) is rational if it is the ratio of two
polynomials, algebraic if it satisfies a polynomial equation (with coefficients that are
polynomials in the variables), D-finite if it satisfies three linear differential equations
(one in each variable), again with polynomial coefficients, and finally D-algebraic if it
satisfies three polynomial differential equations. One central result in the classification
of quadrant problems is that, for the 79 (nontrivial and essentially distinct) models
with small steps, the series Q(x , y; t) is D-finite if and only if a certain group, which
is easy to construct from the step set S, is finite [5, 6, 10, 24, 25, 27].

1.2 Walks in a three-quadrant cone

In 2016, the author turned her attention to nonconvex cones [9] and initiated the
enumeration of lattice paths confined to the three-quadrant cone

C ∶= {(i , j) ∶ i ≥ 0 or j ≥ 0}
(see Figure 1).We can say that such walks avoid the negative quadrant.�ese problems
turn out to be significantly harder than their quadrant counterparts. In [9], the
two most natural models were solved: simple walks with steps in {→, ↑,←, ↓} and
diagonal walks with steps in {↗,↖,↙,↘}. �e associated series C(x , y; t), defined
analogously to (1.1),

C(x , y; t) = ∑
n≥0

∑
(i , j)∈C

c i , j(n)x i y j tn ,

was proved to be D-finite for both models. It then became natural to explore more
three-quadrant problems, in particular to understand whether the D-finiteness of
C(x , y; t)was again related to the finiteness of the associated group—or even whether
the series C(x , y; t) and Q(x , y; t) would always lie in the same class of the hier-
archy (1.2) (with the exception of five “singular” models that are nontrivial for the
quadrant problem but become trivial, with a rational series, for the three-quadrant
cone). �is conjecture of Dreyfus and Trotignon [17] holds so far for all solved cases,
and will only be reinforced by this paper.1

1In a very recent preprint [20], Elvey Price proves this conjecture for the dependence in x.
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1568 M. Bousquet-Mélou

Figure 1: Two walks with Kreweras steps↗,←, ↓, one in the first quadrant Q (le�), and one in

the three-quadrant cone C (right). �e associated generating functions are algebraic.

Using an asymptotic argument, Mustapha [28] quickly proved that the 51 three-
quadrant problems associated with an infinite group have, as their quadrant coun-
terparts, a non-D-finite solution. Regarding exact solutions, Raschel and Trotignon
obtained in [31] sophisticated integral expressions for C(x , y; t) for the step sets S of
Table 1 (apart from the diagonal model). �e first four have a finite group, and the
expressions of [31] imply that C(x , y; t) is indeed D-finite for these models (at least in
x and y). �e other four have an infinite group, and C(x , y; t) is non-D-finite by [28].
�ese four non-D-finite models, labeled from #6 to #9 in Table 1, were further studied
by Dreyfus and Trotignon [17]: they proved that C(x , y; t) is D-algebraic for the first
one (#6), but not for the other three. More recently, the method used in the original
paper [9] was adapted to solve the so-called king model where all eight steps are
allowed [11, 12], again with a D-finite solution (and a finite group). Finally, remarkable
results of Budd [13] and Elvey Price [19] on the winding number of various families of
plane walks provide explicit D-finite expressions for several series counting walks in
C with prescribed endpoints.

1.3 Invariants

One of the many approaches that have been applied to quadrant walks relies on the
notion of invariants, introduced by William Tutte in the seventies and eighties in his
study of colored planar triangulations [33].�ese invariants come by pairs and consist
of two series I(x; t) and J(y; t) satisfying some properties (precise definitions will be
given later). It follows from [2, 4, 15, 16, 22] that invariants play a crucial role in the
classification of quadrant models. In particular, it was first proved in [2] that:

• among the 79 nontrivial quadrant models, exactly 13 admit invariants involving the
seriesQ(x , y; t): four of thesemodels have a finite group and nine an infinite group;

• one can use these invariants to prove, in a uniform manner, that Q(x , y; t) is
algebraic for the four models with a finite group (and invariants);

• one can use these invariants to prove, in a uniform manner, that Q(x , y; t) is D-
algebraic for the nine models with an infinite group (and invariants).

Moreover, it was already known at that time that the other 19modelswith a finite group
are transcendental (i.e., not algebraic) [4]. Hence, for finite group models, algebraicity
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is equivalent to the existence of invariants involving Q. Similarly, the D-algebraicity
results for the nine infinite groupmodels were complemented using differential Galois
theory [15, 16], proving that for infinite group models, D-algebraicity is equivalent to
the existence of invariants involvingQ.�is equivalence has recently been generalized
to quadrant walks with weighted steps (in the infinite group case) [22].

1.4 Main results

�e aim of this paper is to explore the applicability of invariants in the solution of
three-quadrant models. We focus on the nine models of Table 1, because the series
C(x , y; t) can then be described by an equation that is reminiscent of a quadrant
equation, although more complex. �ese models (apart from the diagonal one) are

Kreweras
Reverse
Kreweras

Double
Kreweras

Simple Diagonal

S

S

Gessel

CS(x , y; t) Alg. Alg. Alg. DF DF

Sec. 4 Sec. 5 Sec. 6 Sec. 8.1 Sec. 8.2

[9, 31] [9, 31]

#6 #7 #8 #9

S

S

CS(x , y; t) DA Non-DA Non-DA Non-DA

Sec. 7

[17] [17] [17] [17]

Table 1: �e nine models S considered in this paper. One is the diagonal model
(shaded column). �e others are the eight models with x/y-symmetry and no step
↖ nor↘. Each model is shown with its companion model S , with step polynomial
S(1/x , xy) (or S(1/√x ,

√
xy) for the diagonal model). �e first five models have a

finite group, and the other four an infinite group.
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already those considered in [31]. Our first contribution is, for this (admittedly small)
set of models, a collection of results that are perfect analogues of the above quadrant
results:

• Exactly four of these nine models admit invariants involving the series C(x , y; t):
three of them (those of the Kreweras trilogy on the le� of the top table) have a finite
group, and one (#6) has an infinite group. Moreover, these four models are also
those that admit invariants involving the series Q(x , y; t) (Proposition 3.1).

• We use these invariants to prove, in a uniform manner, that the series C(x , y; t) is
algebraic for the three models with a finite group (and invariants); this series was
already known to be D-finite in x and y [31], and conjectured to be algebraic [9].

• We use these invariants to (re)prove that the series C(x , y; t) is D-algebraic for the
(unique)modelwith an infinite group and invariants.�is serieswas already known
to be D-algebraic [17], but the expression that we obtain is new.

As in the quadrant case, these “positive” results are complemented by “negative” ones
from the existing literature, which imply a tight connection between invariants and
(D)-algebraicity: the series C(x , y; t) is transcendental for the fourth and fi�hmodels
with a finite group (simple walks and diagonal walks) [9], and non-D-algebraic for
the other three models with an infinite group [17]. �ese properties are summarized
in Table 1.

Our second contribution is a new solution of two (transcendental) D-finite models
via invariants: simple walks with steps →, ↑,←, ↓ and diagonal walks with steps ↗,
↖,↙,↘ (fourth and fi�h in the table). �is may seem surprising, since, for finite
group models, invariants have so far been used to prove algebraicity results. However,
as shown in [9] for bothmodels, it is natural to introduce a series A(x , y; t) that differs
from C(x , y; t) by a simple explicit D-finite series (expressed in terms of Q(x , y; t)),
and then the heart of the solution of [9] is to prove that A(x , y; t) is algebraic. What
we show here is how to reprove this algebraicity via invariants.

In the six cases that we solve via invariants (the first six in Table 1), what we
actually establish is an algebraic relation between the three-quadrant series C(x , y; t)
(or A(x , y; t) in the simple and diagonal cases) for the model S, and the quadrant
seriesQ(x , y; t) for a companionmodelS also shown inTable 1.�e (D)-algebraicity
of C(x , y; t) (or A(x , y; t)) then follows from the (D)-algebraicity of Q(x , y; t).
(Note that Q(x , y; t) is also D-algebraic for the three models that we do not solve,
but the lack of invariants involving C(x , y; t) prevents us from relating C(x , y; t)
and Q(x , y; t).) We thus obtain either explicit algebraic expressions of C(x , y; t) or
A(x , y; t), or, for themodel that is onlyD-algebraic, an expression in terms of theweak
invariant of [3].

Finally, for the five models S that are (at least) D-finite, we derive from our results
explicit algebraic expressions for the series ∑i , j H i , jx

i y j , where (H i , j)(i , j)∈C is a

discrete positive harmonic function in C associated with the reverse set of steps, S∗ ∶={(−i ,− j) ∶ (i , j) ∈ S}. It is widely believed that there exists a unique such function,
up to a multiplicative constant. As can now be expected, the above series is related to
the series describing the/a harmonic function associated with the step set S

∗ in the
quadrant. We prove that this relation still holds, under natural assumptions, for the
sixth model that we solve.
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1.5 Outline of the paper

�epaper is organized as follows. In Section 2, we introduce general tools, like basic
functional equations for walks in C, and also the key notion of pairs of invariants. For
each of the models S of Table 1, we give one or two pairs of S -invariants, borrowed
from [2]: one pair involves the generating function Q(x , y; t) of quadrant walks with
steps inS , and the other one, which only exists for finite groupmodels, is rational. In
Section 3, we construct, for models of the Kreweras trilogy and for the 6th model of
the table, a new pair of S -invariants involving the generating function of walks in C

with steps in S (note the change in the step set).�is construction is based on a certain
decoupling property in these models, which we relate to the decoupling property used
in the solution of quadrant walks with steps in S by invariants (Proposition 3.1). A
basic, but useful, invariant lemma (Lemma 2.6) allows us to relate these new invariants
to the known ones. �is connection is made explicit in Sections 4–7 for Kreweras
steps, reverse Kreweras steps, double Kreweras steps, and for the 6th model of Table 1,
respectively. We thus relate the generating function C(x , y; t) for three-quadrant S-
walks to the generating function Q(x , y; t) for quadrant S -walks. In Section 8, we
apply the same approach to solve the simple and diagonal models, proving that the
series A(x , y; t) is algebraic in both cases. We finish in Section 9 with comments and
perspectives.

�e paper is accompanied by six Maple sessions (one per step set) available on the
author’s web page (http://www.labri.fr/perso/bousquet/publis.html).

1.6 Kreweras’ model

To illustrate our results, we now present those that deal with Kreweras’ model,
S = {↗,←, ↓}. Note that we o�en omit the dependency in t of our series, denoting,
for instance, C(x , y) for C(x , y; t). We also use the notation x̄ = 1/x and ȳ = 1/y.
�eorem 1.1 �e generating function C(x , y) of walks with steps in {↗,←, ↓} starting
from (0, 0) and avoiding the negative quadrant is algebraic of degree 96. It is given by
the following identity:

(1 − t(x̄ + ȳ + xy))C(x , y) = 1 − t ȳC−(x̄) − tx̄C−( ȳ),
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where C−(x) is a series in t with polynomial coefficients in x, algebraic of degree 24. �is
series can be expressed explicitly in terms of the unique formal power series V ≡ V(t)
satisfying

V = t(2 + V 3).(1.3)

Indeed,

2(tx̄C−(x) + x − 1

2t
)2 =

(1 − V 3)3/2
V 2

+ (1 − xV)2 ( 1

V 2
− 1

x
) + (x̄ + V − 2x

V
)
√

1 − V 4 + V 3

4
x + V 2

4
x2 .

One recognizes, as announced, some ingredients of the quadrant generating func-
tion for the companion model S = {→, ↑,↙}, which satisfies [10, 26]

Q(x , 0) = V(4 − V 3)
16t

− t − x2 + tx3
2xt2

+ (x̄ + V − 2x

V
)
√

1 − V 4 + V 3

4
x + V 2

4
x2 .

(1.4)

Note, however, that Q(x , 0) has degree 6 only.
We can complement �eorem 1.1 with the following one, which counts walks in C

ending on the diagonal: as before, the variable t records the length, and the variable x
the abscissa of the endpoint. Note that the expressions in the two theorems only differ
by a sign in front of the square root.

�eorem 1.2 �e generating function D(x) of walks with steps in {↗,←, ↓} starting
from (0, 0), avoiding the negative quadrant, and ending on the first diagonal is algebraic
of degree 24. It can be written explicitly in terms of the series V defined by (1.3):

∆(x)
2
(xD(x) + 1

t
)2 =

(1 − V 3)3/2
V 2

+ (1 − xV)2 ( 1

V 2
− 1

x
) − (x̄ + V − 2x

V
)
√

1 − V 4 + V 3

4
x + V 2

4
x2 ,

where ∆(x) = (1 − tx)2 − 4t2 x̄.
�e generating function of excursions (that is, walks ending at (0, 0)) was conjec-

tured in [9] to be algebraic of degree 6. More generally, it is natural to ask about the
generating function C i , j of walks ending at a specific point (i , j). In order to describe
these series, we introduce an extension of degree 4 of Q(V) (hence of degree 12 over
Q(t)). First, due to the periodicity of the model (walks ending at position (i , j) have
length −i − j modulo 3), it makes sense to consider t3 as the natural variable for this
problem. Note that

V 3 = t3(2 + V 3)3 ,
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Series Defining equation Expression Degree overQ(t)
V V = t(2 + V 3) — 3

W 4W(1 −W) = V 3 , W(0) = 0 1−
√
1−V 3

2 6

Z 2Z =W(1 + Z2) 1−
√
1−W2

W
12

Table 2: Relevant extensions ofQ(t) for Kreweras (and reverse Kreweras) steps.

so that all series in t3 can be written as series inV 3. We then define the seriesW and Z
as described in Table 2. Both are formal power series in t3, and we have the following
tower of extensions:

Q(t3) 3↪ Q(V 3) 2↪ Q(W) 2↪ Q(Z).
Corollary 1.3 Let us define V ,W, and Z as above. For any (i , j) ∈ C, the generating
function C i , j of walks avoiding the negative quadrant and ending at (i , j) is algebraic of
degree (at most) 12, and belongs toQ(t, Z). More precisely, t i+ jC i , j belongs toQ(Z). If
i = j or i = j ± 1 with i , j ≥ 0, then t i+ jC i , j has degree 6 at most and belongs toQ(W).

For instance, we have

C0,0 = (1 + 2W − 2W
2) (3W3 − 2W2 − 4W + 4)
4(1 −W) ,(1.5)

tC0,1 = C0,0 − 1
2

= W (−6W4 + 10W3 + 7W2 − 18W + 8)
8(1 −W) ,

t2C1,1 = W (35W6 − 100W5 + 20W4 + 144W3 − 96W2 − 32W + 32)
64 (1 −W) (1 + 2W − 2W2) ,

t2C−1,0 = Z (Z3 + 3Z2 − 3Z + 1)
Z4 + 4Z3 − 6Z2 + 4Z + 1 .(1.6)

We can derive from such results asymptotic estimates for the number of walks ending
at (i , j) via singularity analysis [21, Chapter VII.7]. For instance,

c0,0(3m) ∼ − 27
√
3

4Γ(−3/4)33m(3m)−7/4 .
Note that this asymptotic behavior was already known, but only up to a constant [28].
More generally, we obtain an explicit description of a discrete positive harmonic
function associated with S∗-walks in the three-quadrant cone C, where we recall that
S∗ = {(−i ,− j), (i , j) ∈ S}.
Corollary 1.4 For (i , j) ∈ C, there exists a positive constant H i , j such that, as n →∞
with n + i + j ≡ 0 mod 3,

c i , j(n) ∼ − H i , j

Γ(−3/4) 3nn−7/4 .(1.7)
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�e function H is discrete harmonic for the step set S∗ = {↙,→, ↑}. �at is,

H i , j =
1

3
(H i−1, j−1 +H i+1, j +H i , j+1) ,(1.8)

where H i , j = 0 if (i , j) /∈ C. By symmetry, H i , j = H j, i . �e generating function

H(x , y) ∶= ∑
j≥0, i≤ j

H i , jx
j−i y j ,(1.9)

which is a formal power series in x and y, is algebraic of degree 16, given by

(1 + xy2 + x2 y − 3xy)H(x , y) =H−(x) + 1

2
(2 + xy2 − 3xy)Hd(y),(1.10)

where

H−(x) ∶=∑
i>0

H−i ,0x
i
=
9x

2

¿ÁÁÀ 1 + 2x
1 − x

√
4 − x
1 − x + 2(1.11)

and

Hd(y) ∶=H(0, y) =∑
i≥0

H i , i y
i
=

9

(1 − y)√y(4 − y)
¿ÁÁÀ 1 + 2y

1 − y
√

4 − y
1 − y − 2 .

(1.12)

Remark 1.5 It may seem surprising to read that we derive, from the asymptotic
enumeration of S-walks in C, the expression of a function H that is S∗-harmonic,
rather than S-harmonic. �is is simply due to the definition of discrete harmonic
functions (e.g., [30]): a function f i , j is harmonic for the (uniform) random walk with
steps in P if

f i , j =
1

∣P∣ ∑(a ,b)∈P f i+a , j+b .

A P-harmonic function typically occurs in the asymptotic enumeration of P-walks
starting (rather than ending) at (i , j). In many cases, this number behaves like
f i , jµ

nnγ , for constants µ and γ, where the function f is P-harmonic. As already
mentioned, it is widely believed (and proved in some cases [7, 18, 23, 29]) that formany
domainsD and step sets with zero dri�, there exists (up to a multiplicative constant)
a unique positive harmonic function inD that vanishes at the boundary.

�e first expression of a/the harmonic function, implying its algebraicity, was given
by Trotignon [32]. It is, however, less explicit than in Corollary 1.4. �e connection
between walks in Cwith steps in S and walks in Qwith steps in the companion model
S , already observed at the level of generating functions (see �eorem 1.1 and (1.4)),
is also visible at the level of harmonic functions. Indeed, the number of quadrant S -
walks of length n ending at (i , j) ∈ Q is

q̃ i , j(n) ∼ h i , j

Γ(−3/2)3nn−5/2(1.13)
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(for n ≡ i + jmod 3) with

∑
i≥0

h i ,0x
i
=
9

4

⎛
⎝
1 + 2x
1 − x

√
4 − x
1 − x + 2

⎞
⎠ .(1.14)

�is should be compared to (1.11) and (1.12).�is expression can be derived from (1.4)
by singularity analysis. See also [30] for a more general expression that applies to any
quadrantmodel with small steps and zero dri�.We explain in Remark 4.1 how one can
predict, under a natural assumption, the relation between the S∗-harmonic function
H i , j in C and the S

∗-harmonic function h i , j in Q. Note that (1.13) also describes
the asymptotic number of walks with steps in the original model S confined to the
nonpositive quadrant, joining (0, 0) to (−i ,− j).

Let us finally consider the total number of n-step walks avoiding the negative
quadrant, which we denote by cn .

Corollary 1.6 �e generating function C(1, 1) counting all walks confined to the three-
quadrant cone C is algebraic of degree 24, and given by

1

2
(1 − 3t)2 (C(1, 1) + 1

t
)2 = 2(tC−(1) + 1 − 1

2t
)2

=
(1 − V 3)3/2

V 2
+ (1 − V)2 ( 1

V 2
− 1) + (1 + V − 2

V
)
√

1 − V 4 + V 3

4
+ V 2

4
,

(1.15)

where V is the series defined by (1.3). �e series C(1, 1) has radius of convergence 1/3,
with dominant singularities at ζ/3, where ζ is any cubic root of unity. For the first-order
asymptotics of the coefficients cn , only the singularity at 1/3 contributes, and

cn ∼
33/4
√
2 −√2

Γ(5/8) 3nn−3/8 .(1.16)

2 General tools

We first introduce some basic notation. For a ring R, we denote by R[t] (resp. R[[t]])
the ring of polynomials (resp. formal power series) in t with coefficients in R. If R is
a field, then R(t) stands for the field of rational functions in t, and R((t)) for the
field of Laurent series in t, that is, series of the form ∑n≥n0

an t
n , with n0 ∈ Z and

an ∈ R. �is notation is generalized to several variables. For instance, the generating
function C(x , y; t) of walks confined to C belongs to Q[x , x̄ , y, ȳ][[t]], where we
denote x̄ = 1/x and ȳ = 1/y. We o�en omit in our notation the dependency in t of
our series, writing, for instance, C(x , y) instead of C(x , y; t). For a series F(x , y) ∈
Q[x , x̄ , y, ȳ][[t]] and two integers i and j, we denote by Fi , j the coefficient of x i y j in
F(x , y). �is is a series inQ[[t]]. Similarly, if F(x) ∈ Q[x , x̄][[t]], then Fi stands for
the coefficient of x i in F(x).
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We consider a set of “small” steps S in Z2, meaning that S ⊂ {−1, 0, 1}2/{(0, 0)}.
We define the step polynomial S(x , y) by

S(x , y) = ∑
(i , j)∈S

x i y j ,

and six (Laurent) polynomials H0, H−, H+, V0, V−, and V+ by

S(x , y) = ȳH−(x) +H0(x) + yH+(x) = x̄V−(y) + V0(y) + xV+(y).(2.1)

�e notation H (resp. V) recalls that these polynomials record horizontal (resp.
vertical) moves: for instance, H−(x) describes the horizontal displacements of steps
that move down. �e group associated with S can be easily defined at this stage, but
we do not use it in this paper, and simply refer the interested reader to, e.g., [10].

2.1 Functional equations for walks avoiding a quadrant

In this subsection, we first restrict our attention to step sets S satisfying the following
two assumptions:

(2.2)
q S is symmetric in the first diagonal.
q S does not contain the steps (1,−1) nor (−1, 1).

�is corresponds to the models shown in Table 1, apart from the diagonal model. As
we shall explain, the latter model should still be considered in the same class, as the
associated generating function satisfies the same kind of functional equation.

It is easy to write a functional equation defining the series C(x , y), based on a step-
by-step construction of the walks:

C(x , y) = 1 + tS(x , y)C(x , y) − t ȳH−(x)C−(x̄)
− tx̄H−(y)C−( ȳ) − tx̄ ȳC0,01(−1,−1)∈S ,

where the series C−(x̄) counts walks ending on the negative x-axis:

C−(x̄) = ∑
i<0,n≥0

c i ,0(n)x i tn .(2.3)

In the above functional equation, each term with a minus sign corresponds to a
forbiddenmove:moving down from the negative x-axis, moving le� from the negative
y-axis, or performing a South-West step from the point (0, 0). Observe that we have
exploited the x/y-symmetry of S. �e above equation rewrites as

K(x , y)C(x , y) = 1 − t ȳH−(x)C−(x̄) − tx̄H−(y)C−( ȳ) − tx̄ ȳC0,01(−1,−1)∈S ,
(2.4)

where K(x , y) ∶= 1 − tS(x , y) is the kernel of the equation.
Following [31], we will now work in convex cones by splitting the three-quadrant

cone in two symmetric halves.�e rest of this subsection simply rephrases Section 2.2
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Figure 2: �e series D(xy) counts walks ending on the diagonal, and x̄U(x̄ , xy) those ending
above the diagonal.

of [31], with a slightly different presentation. (Another strategy, namely splitting in
three quadrants, is applied in [9, 11, 12, 20].) We write

C(x , y) = x̄U(x̄ , xy) + D(xy) + ȳU( ȳ, xy),(2.5)

with D(y) ∈ Q[y][[t]] and U(x , y) ∈ Q[x , y][[t]]. Observe that these properties,
together with the above identity, define the series D and U uniquely: the series
x̄U(x̄ , xy) (resp. D(xy), ȳU( ȳ, xy)) counts walks ending strictly above (resp. on,
strictly below) the diagonal (see Figure 2). We will now write functional equations
for U and D, based again on a step-by-step construction (we could also derive them
algebraically from (2.4), but we prefer a combinatorial argument). �is requires to
classify steps of S according to whether they lie above, on or below the main diagonal.
We write accordingly

S(x , y) = x̄ V+(xy) + V0(xy) + xV−(xy).(2.6)

Note that this is only possible because we have forbidden steps (1,−1) and (−1, 1),
which would contribute terms of the form x2(x̄ ȳ) and x̄2(xy), respectively. Let us
explain the notationV+,V0 ,V−, which is reminiscent of (2.1).Wedefine the companion
set of steps

S ∶= {( j − i , j) ∶ (i , j) ∈ S},(2.7)

with step polynomial S (x , y) = S(x̄ , xy) (we hope that using the same notation S

for the set of steps and its generating polynomial will not cause any inconvenience).
�en

S (x , y) = S(x̄ , xy) = xV+(y) + V0(y) + x̄ V−(y),
which is indeed the decomposition of S along horizontal moves. Note that the
transformation S↦S maps Kreweras steps to reverse Kreweras steps, and vice
versa, and leaves double Kreweras steps globally unchanged. �e full correspondence
between S and S is shown in Table 1.
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We claim that the generating function of walks ending on the diagonal satisfies

D(xy) = 1 + tV0(xy)D(xy) − tx̄ ȳD01(−1,−1)∈S
+ 2t (xV−(xy)) (x̄U(0, xy)) − 2tx̄ ȳU0,01(0,−1)∈S .

�e two terms involving D on the right-hand side count walks whose last step starts
from the diagonal, and those involving U count walks whose last step starts from
the lines j = i ± 1. For instance, x̄U(0, xy) counts walks ending on the line j = i + 1,
and the multiplication by t (xV−(xy)) corresponds to adding a subdiagonal step.�e
factor 2 accounts for the x/y-symmetry of the model. �e final term prevents from
moving from (−1, 0) to (−1,−1) (or symmetrically). For walks ending (strictly) above
the diagonal, we obtain

x̄U(x̄ , xy) = tx̄V+(xy)D(xy) + tS(x , y)x̄U(x̄ , xy)
− t ȳH−(x)x̄U(x̄ , 0) − t (xV−(xy)) x̄U(0, xy) + tx̄ ȳU0,01(0,−1)∈S .

Again, the terms involving D (resp. U) count walks whose last step starts on (resp.
above) the diagonal.�e term involvingH−(x) corresponds to walks that would enter
the negative quadrant through the negative x-axis, and the term involving V−(xy)
counts walks that would in fact end on the diagonal. �e final term corresponds to
walks ending at (−1, 0), extended by a South step: they have been subtracted twice,
once in each of the previous two terms.

We now perform the change of variables (x , y)↦ (x̄ , xy). �is gives

(1 − tV0(y))D(y) = 1 − t ȳD01(−1,−1)∈S
+ 2tV−(y)U(0, y) − 2t ȳU0,01(0,−1)∈S ,(2.8)

(1 − tS(x̄ , xy)) xU(x , y) = txV+(y)D(y) − t ȳH−(x̄)U(x , 0)
− tV−(y)U(0, y) + t ȳU0,01(0,−1)∈S .(2.9)

Using the first equation, we can eliminate U(0, y) (and U0,0) from the second.
Multiplying finally by 2y, we obtain the functional equation that we are going to
focus on:

2xyK (x , y)U(x , y) =
y + y (tV0(y) + 2txV+(y) − 1)D(y) − 2tH−(x̄)U(x , 0) − tD01(−1,−1)∈S ,

with K (x , y) = 1 − tS(x̄ , xy). It will be convenient to write it in terms of S only: we
thus observe that

(−1,−1) ∈ S⇔ (0,−1) ∈S and H−(x̄) = xH−(x),(2.10)

where we write

S (x , y) = x̄ V−(y) + V0(y) + xV+(y) = ȳH−(x) +H0 + yH+(x).(2.11)

Lemma 2.1 For a step set S satisfying the assumptions (2.2), the series U(x , y) and
D(y) defined by (2.5) are related by

2xyK (x , y)U(x , y) =
y + y (tV0(y) + 2txV+(y) − 1)D(y) − 2txH−(x)U(x , 0) − tD01(0,−1)∈S ,(2.12)
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with K (x , y) ∶= K(x̄ , xy) = 1 − tS(x̄ , xy). Note that K (x , y) is the kernel associated
with the step set S defined by (2.7), which may not be x/y-symmetric.

�is equation holds for the diagonal model S = {↗,↖,↙,↘} as well, provided we
define the series D and U by

C(x , y) = x̄2U(x̄2 , xy) + D(xy) + ȳ2U( ȳ2 , xy),(2.13)

and take S = {↗, ↑,↙, ↓}, that is,
K (x , y) = 1 − tS (x , y) = 1 − tS (√x̄ ,

√
xy) = 1 − t(xy + y + x̄ ȳ + ȳ).

Proof We have already justified the equation under the assumptions (2.2). Now,
consider the diagonal model. �e only points (i , j) that can be visited by a walk
starting from (0, 0) are such that i + j is even.�is allows us to write C(x , y) as (2.13),
where U(x , y) and D(y) are in Q[x , y][[t]] and Q[y][[t]], respectively. One then
writes basic step-by-step equations for D(xy) and x̄2U(x̄2 , xy), and then performs
the change of variables (x , y)↦ (√x̄ ,

√
xy). �is leads to the following counterparts

of (2.8) and (2.9):

(1 − t( ȳ + y))D(y) = 1 − t ȳD0 + 2t ȳU(0, y) − 2t ȳU0,0 ,(1 − t(y + ȳ + x̄ ȳ + xy)) xU(x , y) = tx yD(y) − t ȳ(1 + x)U(x , 0)
− t ȳU(0, y) + t ȳU0,0 .

�e combination of these two equations gives

2xy (1 − t(y + ȳ + xy + x̄ ȳ))U(x , y) =
y + y(t(y + ȳ) + 2tx y − 1)D(y) − 2t(1 + x)U(x , 0) − tD0 ,(2.14)

which coincides with (2.12). ∎
Remark 2.2 �e (single) equation in Lemma 2.1 really defines the two seriesU(x , y)
and D(y). Indeed, equation (2.8) relating D(y) and U(0, y) can be recovered by
setting x = 0 in (2.12).

Our solution of three-quadrant models will involve the generating function of
walks with steps in S confined to the first (nonnegative) quadrant Q. �is series
Q(x , y) ≡Q(x , y; t) ∈ Q[x , y][[t]] satisfies a similar looking equation [10]:

xyK (x , y)Q(x , y) = xy − txH−(x)Q(x , 0) − tyV−(y)Q(0, y) + tQ0,01(−1,−1)∈S ,
(2.15)

where we have used the notation (2.11). �is equation is simpler than (2.12), because
its right-hand side, apart from the simple term xy, is the sum of a function of x and a
function of y.�is is not the case in (2.12), because the factor (tV0(y) + 2txV+(y) − 1)
involves x. However, the square of this factor is a function of y only—moduloK (x , y).
�is property is already exploited in [31].

Lemma 2.3 Let S be a collection of small steps, and define V+,V0, and V− by (2.11).
�en

(tV0(y) + 2txV+(y) − 1)2 = ∆(y) − 4txV+(y)K (x , y),
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where K (x , y) = 1 − tS (x , y) and
∆(y) = (1 − tV0(y))2 − 4t2V−(y)V+(y)(2.16)

is the discriminant (in x) of xK (x , y).
�e proof is a simple calculation, which we leave to the reader.

2.2 Invariants

We now define the notion of invariant that we use in this paper. We refer to [1, 2] for
a slightly different notion that applies to rational functions only. �e definition that
we adopt here allows us a uniform treatment of all the models that we solve, whereas
in [2], quadrant walks with reverse Kreweras steps had to be handled by a different
argument. We will only use our notion of invariants for small step models, but this
subsection could actually be applied to any model in {−1, 0, 1, 2, 3, . . .}2.

For reasons that are related to the form of the functional equation (2.12), we
consider in this subsection a set of steps that we denote S rather than S. Before all,
observe that the series

1

K (x , y) = 1

1 − tS (x , y) = ∑n≥0 tnS (x , y)n(2.17)

counts all walks with steps in S , starting from the origin, by the length (variable t)
and the coordinates of the endpoint (variables x and y). �e coefficient of tn in this
series is a Laurent polynomial in x and y. As soon asS is not contained in a half-plane,
the collection of these polynomials has unbounded degree and valuation.

Recall thatQ(x , y)((t)) is the field of Laurent series in t with rational coefficients
in x and y. We denote by Qmult(x , y)((t)) the subring consisting of series in which
for each n, the coefficient of tn is of the form p(x , y)/(d(x)d′(y)), where p(x , y) ∈
Q[x , y], d(x) ∈ Q[x], and d′(y) ∈ Q[y]. �e reason why we focus on this subring is
that:

• all the series that we handle are of this type;
• later (in the proof of Lemma 2.6) we will expand their coefficients as Laurent
series in x and y, and with this condition the two expansions can be performed
independently, without having to prescribe an order on x and y (as would be the
case if we had to expand 1/(x − y), for instance).

Definition 2.1 A Laurent series H(x , y) in Qmult(x , y)((t)) is said to have poles of
bounded order at 0 if the collection of its coefficients (in the t-expansion) has poles
of bounded order at x = 0, and also at y = 0. In other words, there exists a monomial
x i y j such that x i y jH(x , y) expands as a series in t whose coefficients have no pole at
x = 0 nor at y = 0.

Clearly, the series 1/K (x , y) shown in (2.17) lies inQmult(x , y)((t)), but does not
have poles of bounded order at 0 (unless S is contained in the first quadrant).

Definition 2.2 (Divisibility) Fix a step set S with kernel K (x , y) = 1 − tS (x , y).
A Laurent series F(x , y) in Qmult(x , y)((t)) is said to be divisible by K (x , y) if the
ratio F(x , y)/K (x , y) has poles of bounded order at 0.
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Note that if F(x , y) is inQmult(x , y)((t)), the ratio F(x , y)/K (x , y) is always an
element of Qmult(x , y)((t)) (by (2.17)). �e following alternative characterization of
divisibility will not be used, but it may clarify the notion.

Lemma 2.4 Assume that K (x , y) has valuation −1 and degree 1 in x and in y. �e
Laurent series F(x , y) inQmult(x , y)((t)) is divisible by K (x , y) if and only if:
(1) F(x , y) has poles of bounded order at 0;
(2) if X ≡X (y) (resp. Y ≡ Y (x)) denotes the unique root of K (⋅, y) (resp.

K (x , ⋅)) that is a formal power series in t (with coefficients in some algebraic closure
ofQ(y) orQ(x)), then F(X , y) = F(x ,Y ) = 0.

Proof Assume that F(x , y) is divisible by K (x , y), and write

F(x , y) =K (x , y)H(x , y),(2.18)

whereH(x , y)has poles of bounded order at 0. SinceK (x , y) is a Laurent polynomial
in x, y, and t, then F(x , y) has poles of bounded order at 0 as well. Regarding
Property (2), it suffices to prove it for X , by symmetry. Observe that the equation
K (x , y) = 0 can be rewritten as

x = txS (x , y) = t (V−(y) + xV0(y) + x2V+(y)) .
�is shows that exactly one of the roots of K (⋅, y), denoted by X , is a formal power
series in t; moreover, it has constant term 0 and coefficients in Q(y). Since F(x , y)
and H(x , y) have poles of bounded order at 0, the series F(X , y) and H(X , y) are
well defined and belong to Q(y)((t)). We now specialize x to X in (2.18), and this
proves that F(X , y) = 0.

Now, assume that the two conditions of the lemma hold, and let us prove that
the series H(x , y) defined by (2.18) has poles of bounded order at 0. By symmetry,
it suffices to prove this for the variable x. �e second root of K (⋅, y) is

X
′(y) = V−(y)

V+(y)
1

X (y) .
It is a Laurent series in t of valuation −1, with coefficients in Q(y). A partial fraction
expansion of 1/K (x , y) (in the variable x) gives

1

K (x , y) = 1√
∆(y) (

1

1 − x̄X (y) + x

1 − x/X ′(y)) ,
where ∆(y) is given by (2.16). By assumption, F(x , y) has poles of bounded order at
x = 0. SinceX (y) = O(t) and 1/X ′(y) = O(t), only the first part of the above series
has poles at x = 0, and it suffices to prove that

F(x , y)
1 − x̄X (y) = F(x , y)∑n≥0 x̄nX (y)n ,(2.19)

has poles of bounded order at x = 0. By assumption, there exists an integer i such that

x iF(x , y) = ∑
n≥0

pn(x , y)
dn(x)d′n(y) tn ,
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for polynomials pn , dn , and d′n such that dn(0) /= 0. �en, by the assumption
F(X , y) = 0, we have
x iF(x , y)
1 − x̄X

=
x iF(x , y) −X

iF(X , y)
1 − x̄X

=∑
n≥0
(pn(x , y)

dn(x) −
pn(X , y)
dn(X ) )

x

x −X

tn

d′n(y) .
�e nth summand can be written

xqn(x ,X , y)
dn(x)dn(X ) ⋅

tn

d′n(y) ,
for some trivariate polynomial qn . As a series in t, it belongs to Qmult(x , y)((t)),
and its coefficients have no pole at x = 0 since d(0) /= 0 (they are even multiples
of x). We thus conclude that the series (2.19), as claimed, has poles of bounded order
at x = 0. ∎

Definition 2.3 (Invariants) Fix a step setS with kernelK (x , y) = 1 − tS (x , y). Let
I(x) and J(y) be Laurent series in t with coefficients inQ(x) andQ(y), respectively.
We say that (I(x), J(y)) is a pair of S -invariants if I(x) − J(y) is divisible by
K (x , y), in the sense of Definition 2.2.

Note that I(x) − J(y) is always an element of Qmult(x , y)((t)). Furthermore, if(I(x), J(y)) is a pair of invariants, then I(x) and J(y) have poles of bounded order
at 0.

For any series A ∈ Q((t)), the pair (A,A) is a (trivial) invariant. More interesting
examples will be given in the next subsection (see, for instance, (2.20)).

�e term invariant comes from the fact that, if both roots X and X
′ of K (⋅, y)

can be substituted for x in I(x), then I(X ) = I(X ′). Of course, a similar observation
holds for J(y).
Lemma 2.5 �e componentwise sum of two pairs of invariants (I1(x), J1(y)) and(I2(x), J2(y)) is still a pair of invariants. �e same holds for their componentwise
product.

Proof �e first result is obvious by linearity. For the second, we observe that

I1(x)I2(x) − J1(y)J2(y) = (I1(x) − J1(y)) I2(x) + J1(y) (I2(x) − J2(y))
=K (x , y) (H1(x , y)I2(x) + J1(y)H2(x , y)) ,

where Hk(x , y) = (Ik(x) − Jk(y))/K (x , y), for k = 1, 2. �e result follows because
series with poles of bounded order at 0 form a ring. ∎

�e following lemma is a key tool when playing with invariants.

Lemma 2.6 (Invariant lemma) Let I(x) and J(y) be Laurent series in t with coeffi-
cients in Q(x) and Q(y), respectively. Assume that for all n, the coefficient of tn in the
ratio series

I(x) − J(y)
K (x , y)

vanishes at x = 0 and at y = 0.�en (I(x), J(y)) is a pair of invariants byDefinition 2.3,
but in fact I(x) and J(y) depend only on t, and are equal.�at is, the above ratio is zero.
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Proof �e argument is adapted from Lemma 4.13 in [2]. Let us assume, without loss
of generality, that I(x) and J(y) contain no negative power of t. By assumption, we
have

I(x) − J(y) = xyK (x , y)G(x , y),
where for each n, the coefficient of tn in G(x , y) is of the form p(x , y)/(d(x)d′(y))
and has no pole at x = 0 nor y = 0. Hence, this coefficient expands as a formal power
series in x and y, andwe considerG(x , y) itself as an element ofQ[[x , y, t]].We define
a total order on monomials tnx i y j , with (n, i , j) ∈ N3, by the lexicographic order
on the exponents (n, i , j). Observe that xyK (x , y) ∈ Q[t, x , y], and the smallest
monomial that occurs in it is xy. Assume that G(x , y) /= 0, and letM be the smallest
monomial in G(x , y). �en xyM is the smallest monomial in xyK (x , y)G(x , y),
and hence in I(x) − J(y) (once expanded as a series in t, whose coefficients are
Laurent series in x or in y). However, the latter series cannot contain monomials
involving both x and y. Hence, G(x , y) = 0 and the lemma is proved. ∎

2.3 Some known invariants

For eachmodelS of Table 1, at least one nontrivial pair of invariants is already known
from [2, Section 4], as we now review.

Consider, for instance, the set S = {↗,←, ↓} of Kreweras’ steps, with K (x , y) =
1 − t(xy + x̄ + ȳ).�efirst pair of invariants exhibited in [2] is rational, and symmetric
in x and y:

I0(x) = x̄2 − x̄/t − x , J0(y) = I0(y).
Indeed, it is elementary to check that

I0(x) − J0(y) =K (x , y)x − y
tx y

,(2.20)

and the “series”
x−y
tx y

has poles of bounded order at 0. To describe the second pair, let

Q(x , y) be the generating function of quadrant walks with steps inS . �enQ(x , y)
satisfies the functional equation

xyK (x , y)Q(x , y) = xy − txQ(x , 0) − tyQ(0, y),(2.21)

and the x/y-symmetry entails that Q(x , 0) =Q(0, x). Observe that
xy =

1

t
− x̄ − ȳ −

1

t
K (x , y).(2.22)

�en the second pair of invariants (I1(x), J1(y)) is derived from (2.21) and (2.22):

I1(x) = txQ(x , 0) + x̄ − 1

2t
, J1(y) = −I1(y) = −tyQ(0, y) − ȳ + 1

2t
.
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Table 3: RationalS -invariants (I0 , J0), andS -decoupling of xy by f and g for finite
group models.�e associated invariants I1(x), J1(y) defined by (2.24) are algebraic.

Table 4: S -decoupling of xy by f and g for infinite group models. �e associated
invariants I1(x), J1(y) defined by (2.24) are D-algebraic.
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Indeed,

I1(x) − J1(y) = −K (x , y) (xyQ(x , y) + 1

t
) .

More generally, it is proved in [2] that among the ninemodelsS of Table 1, exactly
the first five (those associated with a finite group) admit a pair of rational invariants(I0(x), J0(y)). We make them explicit in Table 3. On the other hand, the above
construction of theQ-related pair (I1(x), J1(y)) generalizes to all nine models, upon
noticing that for each of them, the monomial xy decouples explicitly as the sum of a
function of x and a function of y—modulo K :

xy = f (x) + g(y) + h(x , y)K (x , y),(2.23)

for rational series f (x), g(y), and h(x , y) having poles of bounded order at 0. A
possible choice of f (x) and g(y), borrowed from [2], is given in Tables 3 (for finite
groups) and 4 (for infinite groups).�e decoupling identity (2.23) allows us to rewrite
the quadrant equation (2.15) as

K (x , y) (h(x , y) − xyQ(x , y)) = I1(x) − J1(y),
where

I1(x) = txH−(x)Q(x , 0) − f (x),
J1(y) = −tyV−(y)Q(0, y) + tQ0,01(−1,−1)∈S + g(y).(2.24)

Since h(x , y) − xyQ(x , y) has poles of bounded order at 0, the pair (I1(x), J1(y)) is
indeed a pair of invariants.�is pair is used in [2] to prove thatQ(x , y; t) is algebraic
(for finite group models) or D-algebraic (for infinite group models), for all models S

in Table 1. �e same approach applies to five other models S that are not relevant for
this paper [2].

3 Decoupling and invariants for three-quadrant walks

3.1 A new type of decoupling

For the nine modelsS of Table 1, we have exhibited in the previous section invariants(I1(x), J1(y)) involving the generating function Q(x , y; t) for quadrant walks, by
combining the functional equation (2.15) with the decoupling of xymoduloK , given
by (2.23).

Consider now the three-quadrant equation (2.12). One main difference with (2.15)
is that the coefficient of yD(y), being (tV0(y) + 2txV+(y) − 1), involves both x and y.
Our aim will be to write the right-hand side of (2.12) as the sum of a function of x and
a function of y multiplied by (tV0(y) + 2txV+(y) − 1), modulo the kernel K (x , y).
Clearly, the only difficulty is to write the constant term y in this form. �is turns out
to be possible in exactly four of the nine cases, and this property is in fact related to
“classical” decoupling of xy modulo the original model S (not S !).

Proposition 3.1 LetS be one of the ninemodels of Table 1, andS its companionmodel,
with associated kernels K(x , y) and K (x , y), respectively. Define V−, V0, and V+ by
(2.11). �e following conditions are equivalent:
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Table 5: Decoupling of y in the form y = c(x , y)G(y) + F(x) +K (x , y)H(x , y),
with c(x , y) = tV0(y) + 2txV+(y) − 1, for four symmetric models in the three-
quadrant cone.

(a) �ere exist rational functions F(x) ∈ Q(x , t) and G(y) ∈ Q(y, t) such that the
numerator of

y − (tV0(y) + 2txV+(y) − 1)G(y) − F(x)(3.1)

contains a factor xyK (x , y).
(b) �ere exist rational functions f(x) ∈ Q(x , t) and g(y) ∈ Q(y, t) such that the

numerator of

x y − f(x) − g(y)(3.2)

contains a factor xyK(x , y).
�e only models of Table 1 for which these properties hold are the three models of the

Kreweras trilogy, and the 6th model. A solution is then given by

F(x) = x̄2 + K(x̄ , x̄)
tH−(x̄) , tG(y) = 1 +H−( ȳ)

yH+( ȳ) − 1,(3.3)

and

f(x) = g(x) = 1

2
(x2 + K(x , x)

tH−(x)) .(3.4)

For this choice, stronger properties hold, as the rational functions (3.1) and (3.2) are then
divisible by K (x , y) and K(x , y), respectively, in the sense of Definition 2.2.

�e explicit values of the rational functions F(x) andG(y) are given in Table 5 for
further reference.

Remark 3.2 It follows from Lemma 2.4 that if a rational function is divisible by
K(x , y), its numerator contains a factor xyK(x , y). However, the converse is wrong,
as shown by xyK(x , y)/(x − t). Hence, the term “stronger property” is used in the
proposition.
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Proof of Proposition 3.1 We first consider the eight models with no step ↖ nor↘.
Assume that the numerator of (3.1) contains a factor xyK (x , y). Since K(x , y) =
K (x̄ , xy), it is equivalent to say that the numerator of

xy − (tV0(xy) + 2tx̄V+(xy) − 1)G(xy) − F(x̄)
contains a factor xyK(x , y). Since K(x , y) = K(y, x), the same holds for the numer-
ator of

xy − (tV0(xy) + 2t ȳV+(xy) − 1)G(xy) − F( ȳ),
and, by summing the two previous rational functions, for the numerator of

2xy − 2 (tV0(xy) + t(x̄ + ȳ)V+(xy) − 1)G(xy) − F(x̄) − F( ȳ).
Since S(x , y) = S(y, x), it follows from the expression (2.6) of S(x , y) that ȳV+(xy) =
xV−(xy). Hence, the coefficient of G(xy) in the above function is in fact 2K(x , y).
Since the denominator of G(xy) cannot contain a factor xyK(x , y) (all steps of S
would be on the diagonal), we conclude that the numerator of 2xy − F(x̄) − F( ȳ)
contains a factor xyK(x , y), whichmeans thatCondition (b) holdswith f(x) = g(x) =
F(x̄)/2.

It is straightforward to adapt the above argument to the diagonal case,
where now S(x , y) =S (x̄2 , xy) = x2V−(xy) + V0(xy) + x̄2V+(xy), with
ȳ2V+(xy) = x2V−(xy). One then finds a solution to Problem (b) with
f(x) = g(x) = F(x̄2)/2.

Conversely, assume that Condition (b) holds. As proved in [2, Section 4.2], then
S is either one of three models of the Kreweras trilogy, or the 6th model of Table 1.
Moreover, Condition (b) then holds for a pair (f, g) such that f = g: it suffices to
take for f the half-sum of the two functions F and G of [2, Tables 4 and 5], and this
yields (3.4).We leave it to the reader to check that the functions F(x) andG(y)defined
by (3.3), and listed inTable 5, then satisfyCondition (a) of the lemma. Finally, since f, g,
F, andG are Laurent polynomials in t, the same holds when dividing (3.1) byK (x , y)
or (3.2) by K(x , y), and the resulting ratios thus have poles of bounded order at zero.
�is establishes the claimed divisibility properties. ∎

3.2 A new pair of invariants

Wenow restrict our attention to the fourmodels of Table 5, for which the conditions of
Proposition 3.1 hold. We return to the functional equation (2.12) that relates U(x , y)
and D(y). We rewrite the first term y in the right-hand side using Proposition 3.1, and
obtain

K (x , y) (2xyU(x , y) −H(x , y)) = (tV0(y) + 2txV+(y) − 1)S(y) − R(x),(3.5)

with

H(x , y) = y − (tV0(y) + 2txV+(y) − 1)G(y) − F(x)
K (x , y)
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and

S(y) = yD(y) +G(y), R(x) = 2txH−(x)U(x , 0) − F(x) + tD01(0,−1)∈S .
(3.6)

�e functions F(x), G(y), and H(x , y) are those of Table 5. Upon multiplying (3.5)
by

(tV0(y) + 2txV+(y) − 1) S(y) + R(x),
and using Lemma 2.3, we exhibit a new pair of invariants.

Proposition 3.3 With the above notation, the pair (I(x), J(y)) ∶= (R(x)2 ,
∆(y)S(y)2) is a pair of invariants for the step set S , in the sense of Definition
2.3. More precisely,

I(x) − J(y)
K (x , y) = −4txV+(y)S(y)2
+ (H(x , y) − 2xyU(x , y)) ( (tV0(y) + 2txV+(y) − 1) S(y) + R(x)),(3.7)

where we recall that ∆(y) = (1 − tV0(y))2 − 4t2V−(y)V+(y).
Proof �e identity is straightforward, and we only need to check that all series that
occur on the right-hand side of (3.7) have poles of bounded order at 0. First, this
holds for the series F, G, and H (see Proposition 3.1 or Table 5). �en D(y) belongs
toQ[y][[t]],U(x , y) toQ[x , y][[t]], andH−(x) is a Laurent polynomial in x. �us,
the series R(x) and S(y) defined by (3.6) have poles of bounded order at 0. Since
V0(y) and V+(y) are Laurent polynomials in y, the conclusion follows. ∎

Remark 3.4 �ere is a useful alternative expression of R(x), and thus of I(x) =
R(x)2. Let us return to the basic functional equation (2.4) for C(x , y), written at(x̄ , x̄), and observe that C−(x) = xU(x , 0) and C0,0 = D0 (see (2.5)). �is gives

K(x̄ , x̄)C(x̄ , x̄) = 1 − 2tx2H−(x̄)U(x , 0) − tx2D01(−1,−1)∈S

= 1 − x2 (R(x) + F(x)) by (3.6) and (2.10)

= −x2 (R(x) + K(x̄ , x̄)
tH−(x̄)) by (3.3).

We conclude that

R(x) = −K(x̄ , x̄)(x̄2C(x̄ , x̄) + 1

tH−(x̄)) .
In particular, for x = 1, we obtain

R(1) = −(1 − ∣S∣t)(C(1, 1) + 1

tH−(1)) .(3.8)

Since we are going to provide the value of I(x) = R(x)2 explicitly, we will obtain an
expression for the square of the above series. �is is reflected in the characterization
of C(1, 1) already given for Kreweras’ model (see (1.15)). Further illustrations are (5.5),
(6.9), and (7.7).
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3.3 General strategy

Let us nowdescribe the strategy that we are going to apply to each of the fourmodels of
Table 5, in Sections 4–7. For each of these models, we have at hand two, or sometimes
three, pairs of S -invariants:

• the pair (I(x), J(y)) from Proposition 3.3; it involves the series U(x , 0) = x̄C−(x)
and D(y), which are keys in the determination of the generating function C(x , y)
of walks avoiding the negative quadrant;

• a rational one, (I0(x), J0(y)), for the threemodels of theKreweras trilogy (Table 3);
• for all four models, the pair (I1(x), J1(y)) defined by (2.24), where the functions
f and g are given in Tables 3 and 4.�is pair of invariants involves series counting
quadrant walks with steps in S , and these series are known.�ey are algebraic for
the Kreweras trilogy [10], and D-algebraic for the last model [2].

Using Lemma 2.5, we are going to form polynomial combinations of these pairs to
construct a new pair of invariants involving U(x , 0) and D(y) and satisfying the
condition of Lemma 2.6—and thus trivial. �is will give us expressions of I(x) and
J(y), and hence U(x , 0) and D(y), in terms of some known quadrant series. For
the Kreweras trilogy, an alternative would be to construct trivial invariants based
on (I(x), J(y)) and (I0(x), J0(y)) only, as is done in [1, 2] to (re)derive quadrant
generating functions. However, exploiting the three pairs that we have at hand yields
more direct derivations.

4 Kreweras steps

In this section, we take S = {↗,←, ↓}, so that S = {→, ↑,↙}. We prove the results
that were stated at the end of the introduction (Section 1.6): first the exact results in
Section 4.1, then the asymptotic ones in Section 4.2. We refer to the Maple session
available on the author’s web page (http://www.labri.fr/perso/bousquet/publis.html)
for the details of the calculations.

4.1 Generating functions

To begin with, we establish the expressions of U(x , 0) and D(y).
Proof of�eorems 1.1 and 1.2 �e first equation in�eorem 1.1 is of course the basic
functional equation (2.4). �e S -invariants of Proposition 3.3 are

I(x) = (2tU(x , 0) + 2x − 1

t
)2 , J(y) = ∆(y) (yD(y) + 1

t
)2(4.1)

with ∆(y) = (1 − ty)2 − 4t2 ȳ. �e rational invariants (I0 , J0) are given in Table 3 (but
we will not use them, in fact). �e invariants related to quadrant walks with steps in
S , defined by (2.24), are

I1(x) = tQ(x , 0) − x/t + x2 , J1(y) = −tQ(0, y) − ȳ + tQ0,0 .(4.2)

�ey satisfy

I1(x) − J1(y) = −x
t
K (x , y) (1 + tyQ(x , y)) .(4.3)
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We want to construct a pair (Ĩ(x), J̃(y)) of invariants satisfying the condition of

Lemma 2.6: the ratio (Ĩ(x) − J̃(y))/K (x , y) should be a multiple of xy (here we
are abusing terminology, since the property that we actually require involves the
coefficient of tn for each n).�e ratio (I(x) − J(y))/K (x , y) is the right-hand side of
(3.7). It is easily seen to be a Laurent series in t with coefficients inQ[x , y], and in fact
a multiple of x. It equals −4x/t at y = 0. Similarly, the ratio (I1(x) − J1(y))/K (x , y),
derived from (4.3), is amultiple of x and equals−x/t at y = 0.�is leads us to introduce
the following pair of invariants:

(Ĩ(x), J̃(y)) ∶= (I(x) − 4I1(x), J(y) − 4J1(y)),
which satisfies the condition of Lemma 2.6.�is pair is thus of the form (A,A), where
A is a series in t. Returning to the explicit values (4.1) and (4.2) of our invariants, this
gives

I(x) − 4I1(x) = (2tU(x , 0) + 2x − 1

t
)2 − 4tQ(x , 0) + 4x/t − 4x2 = A,

J(y) − 4J1(y) = ∆(y) (yD(y) + 1

t
)2 + 4tQ(0, y) + 4 ȳ − 4tQ0,0 = A.

(4.4)

To complete the solution, it suffices to:

• inject the known algebraic expressions of Q(x , 0) =Q(0, x) and Q0,0, taken, for
instance, fromProposition 14 in [10].�ese expressions involve a series in t denoted
byW in [10], which is the seriesV of�eorem 1.1. We refer to the Maple session for
details;

• specialize the second identity obtained in this way, of the form

∆(y) (yD(y) + 1

t
)2 − 4J1(y) = A,

(where J1(y) is now explicit), at y = V 2, which is the (only) root of ∆(y) lying in
Q[[t]].�is gives

A = −4J1(V 2) = 2 (1 − V 3)3/2
V 2

+

V 6
+ 12V 3

+ 8

4V 2
.

�ese two ingredients yield, a�er elementary manipulations involving the equation
V = t(2 + V 3), the expressions announced in�eorems 1.1 and 1.2, which are those of
I(x)/2 and J(x)/2 (recall that U(x , 0) = x̄C−(x)).

Since V has degree 3 over Q(t), it follows from these expressions that C−(x)
and D(x) have degree at most 24. �is bound is proved to be tight by computing
explicit minimal polynomials, at x = 2 for instance (this is lighter than keeping the
indeterminate x). Now, the identities of �eorem 1.1 show that C(x , y) will have
degree 24 × 4 = 96 at most, and at any rate the same degree as xC−(x̄) + yC−( ȳ) =
U(x̄ , 0) +U( ȳ, 0). So we only need to determine the degree of U(x , 0) +U(y, 0),
which we do at x = 2 and y = 3 (by successive eliminations as before). We find it to be
96 indeed, which concludes the proof of �eorems 1.1 and 1.2. ∎

Now,we prove the results that deal withwalks ending at a prescribed position (i , j).
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Proof of Corollary 1.3 We begin with walks ending on the diagonal, the generating
function of which is given in�eorem 1.2. We consider the series

xD(x/V) + V

t
,(4.5)

which, due to the periodicity of the model and the fact that V/t is a series in t3, is also
a series in t3 (or equivalently, in V 3) with coefficients inQ[x]. Using�eorem 1.2 and
the identity t = V/(2 + V 3), we can write

(xD(x/V) + V

t
)2 = V 2 J(x/V)

∆(x/V)
=

2(2 + V 3)2(x − V 3)(4 − 4x − xV 3
+ x2)

×

⎛⎝x(1 − V 3)3/2 + (1 − x)2(x − V 3) − (V 3
+ xV 3

− 2x2)
√

1 −
4 + V 3

4
x +

x2

4

⎞⎠ .
�e right-hand side appears as a formal power series in x, with constant term (2 +
V 3)2 and coefficients in Q[√1 − V 3 , 1/V 3]. Upon taking square roots, we conclude

that the series (4.5) is also a series in x with coefficients in Q[√1 − V 3 , 1/V 3]. For
i ≥ 0, the coefficient of x i+1 in this series is C i , i/V i . We have thus proved that

D i = C i , i ∈ V
iQ [√1 − V 3 , 1/V 3] , so that C i , i ∈ t

iQ [√1 − V 3 , 1/V 3] .(4.6)

Since V = t(2 + V 3), and √1 − V 3 = 1 − 2W by definition of W, the part of the
corollary dealing with walks that end on the diagonal follows. We still retain the
above more precise statement for further use. We obtain in particular the values
of C0,0 and C1,1 given below Corollary 1.3. To obtain the claimed result for walks
ending just above or below the diagonal ( j − i = ±1, with i , j ≥ 0), it suffices to note
that C i , i − tC i−1, i−1 = 2tC i , i+1 + 1i=0 due to the choice of steps. In particular, we thus
obtain the value of C0,1 given below Corollary 1.3.

We go on with walks ending on the negative x-axis, the generating function of
which is given in�eorem 1.1. By periodicity, the series

V (2tU(x/V) + 2x/V − 1

t
) = V (2tx̄VC−(x/V) + 2x/V − 1

t
)(4.7)

is a series in t3 with coefficients inQ[x]. Using �eorem 1.1, and the definition ofW,
we first rewrite its square in terms of x andW:

V 2 (2tx̄VC−(x/V) + 2x/V − 1

t
)2 = V 2I ( x

V
)

= 2x̄
⎛⎝x(1 − V 3)3/2 + (1 − x)2(x − V 3) + (V 3

+ xV 3
− 2x2)

√
1 −

4 + V 3

4
x +

x2

4

⎞⎠ .
�e right-hand side is a formal power series in x with constant term 2(1 − V 3)3/2 +
2 + 5V 3

− V 6/4 = 4(1 −W2)(1 +W)2, whereas the coefficients of higher powers of x
are polynomials in V 3. Given that V 3

= 4W(1 −W), we conclude that (4.7) has its
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coefficients in
√
1 −W2 Q[W , 1/(1 −W2)]. For i ≥ 1, the coefficient of x i−1 in (4.7) is

2tV 2C−i ,0/V i
−

V

t
1i=1 + 21i=2 .

Hence, using once again V = t(2 + V 3), we find that

C−i ,0 ∈ t
iQ [√1 −W2 ,W , 1/V 3 , 1/(1 −W2)] .(4.8)

We now introduce the series Z, which satisfies
√
1 −W2 = (1 − Z2)/(1 + Z2). �e

corollary now follows forwalks that end on the negative x-axis.We obtain in particular
the expression (1.6) of C−1,0.

Let us finally prove the corollary for any point (i , j) in the three quadrant cone.
Without loss of generality, we assume j ≥ i and argue by induction on j ≥ −1. If j = −1,
then i < 0 and the result is obvious becauseC i , j = 0.�e corollary has also been proved
for j = 0, j = i, and j = i + 1. Now, assume that j ≥ 1 and j ≥ i + 2. We clearly have

C i , j−1 = t (C i−1, j−2 + C i+1, j−1 + C i , j) ,(4.9)

and the result holds for the three series C i , j−1 ,C i−1, j−2, and C i+1, j−1 by the induction
hypothesis. �us, it holds for C i , j as well. ∎

4.2 Asymptotics

We go on with the determination of the harmonic function.

Proof of Corollary 1.4 Let us first assume that we have established an estimate of
the form (1.7) for i = j ≥ 0 and for i < 0, j = 0. For (i , j) ∈ C, fix a walk w from (0, 0)
to (i , j) in C, and let k be its length, with k + i + j ≡ 0 mod 3. �en c i , j(3m + k) ≥
c0,0(3m) (because one can concatenate w with a walk in C starting and ending at(0, 0), translated so that its starting point is (i , j)). Given the estimation of c0,0(3m),
the numbers c i , j(n) cannot be o(3nn−7/4).

Now, for i ≥ 0,

c i , i(n + 1) = c i−1, i−1(n) + 2c i , i+1(n).
�is identity implies that an estimate of the form (1.7) also holds for j = i + 1 ≥ 1, with

3H i , i = H i−1, i−1 + 2H i , i+1 .(4.10)

Here, we use the fact that 3H i , i −H i−1, i−1 /= 0; otherwise, c i , i+1(n) would be
o(3nn−7/4), which we have excluded.�en the induction on j, with j ≥ i, that we have
just used in the proof of the previous corollary, establishes (1.7) for all i and j, based
on the following version of (4.9):

c i , j−1(n + 1) = c i−1, j−2(n) + c i+1, j−1(n) + c i , j(n).
�e identity (1.8) saying that H is S∗-harmonic similarly follows from

c i , j(n + 1) = c i−1, j−1(n) + c i+1, j(n) + c i , j+1(n).
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Let us now defineH(x , y),H−(x), andHd(y) in terms of the numbers H i , j as in
Corollary 1.4. �en, using the harmonicity of H, we have

H(x , y) = 1

3
∑

j≥0, i≤ j
(H i−1, j−1 +H i+1, j +H i , j+1) x j−i y j

=
1

3
∑

j≥−1, i≤ j
H i , jx

j−i y j+1
+

1

3
∑

j≥0, i≤ j+1
H i , jx

j−i+1 y j

+

1

3
∑

j≥1, i≤ j−1
H i , jx

j−i−1 y j−1

=
y

3
H(x , y) + x

3

⎛⎝H(x , y) + x̄∑j≥0H j+1, j y
j⎞⎠

+

x̄ ȳ

3
(H(x , y) −∑

i>0
H−i ,0x

i
−∑

i≥0
H i , i y

i)
=
1

3

⎛⎝(y + x + x̄ ȳ)H(x , y) +∑j≥0H j+1, j y
j
− x̄ ȳH−(x) − x̄ ȳHd(y)⎞⎠

=
1

3
((y + x + x̄ ȳ)H(x , y) + 3 − y

2
Hd(y) − x̄ ȳH−(x) − x̄ ȳHd(y)) ,

where we have used (4.10) to express the final sum. �is gives (1.10) upon regrouping
terms.

At this stage, it remains to prove (1.7) for i = j ≥ 0 and for i < 0, j = 0, and to
establish the announced values of the corresponding generating functionsHd(y) and
H−(x). Let us begin with the numbers c i , i(n), for n of the form i + 3m. Recall the
formofC i , i/t i given by (4.6). An elementary singularity analysis of the seriesV 3 (seen
as a function of t3) shows that it has a unique dominant singularity, located at t3 = 1/27.
It increases on the interval [0, 1/27], and we have the following singular expansions:

V 3
= 1 −

√
3
√
1 − 27t3 +O(1 − 27t3),(4.11) √

1 − V 3 = 31/4(1 − 27t3)1/4 +O ((1 − 27t3)3/4) .
Moreover, the equation V = t(2 + V 3) shows that V cannot vanish on its disk of con-
vergence. In sight of (4.6),C i , i/t i is thus an algebraic series in t3, with radius of conver-
gence at least 1/27, taking a finite value at this point, and we expect a singular behavior
in (1 − 27t3)α for some α ≥ 1/4. Note that there cannot be any singularity other than
1/27 on the circle of radius 1/27, because this is the only value of t3 for which V
equals 1.

We now use �eorem 1.2 to express the series (yD(y/t) + 1)2 (which is a series
in t3) in terms ofV 3. Plugging in this expression, the above expansion ofV 3 then gives

(yD(y/t) + 1)2 = t2 J(y/t)
∆(y/t)

= 2
1 − 3y

4 − 3y
+

1 + 6y√(1 − 3y)(4 − 3y) − 6 ⋅ 33/4 y
(1 − 27t3)3/4

(1 − 3 y)2 (4 − 3 y) +O(1 − 27t3).
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We refer once again to the Maple session for details. It follows that as t3 approaches
1/27,

D(y/t) = c0(y) + c1(y)(1 − 27t3)3/4 +O(1 − 27t3),(4.12)

where c0(y) is an algebraic function of y that we do not need to make explicit, and

c1(y) = − 1

31/4(1 − 3y)√y(4 − 3y)
¿ÁÁÀ 1 + 6y

1 − 3y

√
4 − 3y

1 − 3y
− 2.

By extracting from (4.12) the coefficient of y i , we obtain

C i , i = t
i[y i]c0(y) + t i[y i]c1(y)(1 − 27t3)3/4 +O(1 − 27t3),

so that, for n = i + 3m,

c i , i(n) ∼ [y i]c1(y)
Γ(−3/4) 27mm−7/4

∼
3−i+7/4[y i]c1(y)

Γ(−3/4) 3nn−7/4

∼ −
H i , i

Γ(−3/4) 3nn−7/4 ,
where H i , i = −3

7/4[y i]c1(y/3). �e announced expression ofHd(y) = −37/4c1(y/3)
follows.

Note that the above argument would fail if the coefficient of y i in c1(y) were zero.
However, in this case, c i , i(n) would be o(3nn−7/4), which we have excluded at the
beginning of the proof.

We proceed similarly for walks ending on the negative x-axis. Equation (4.8)
gives the form of C−i ,0/t i in terms of the series V and W. As V 3, the series W has
a unique dominant singularity at t3 = 1/27. It increases on the interval [0, 1/27] and
as t3 approaches 1/27,

W =
1

2
−

31/4

2
(1 − 27t3)1/4 +O ((1 − 27t3)3/4) ,

1 −W2
=
3

4
+

31/4

2
(1 − 27t3)1/4 +O(√1 − 27t3) .(4.13)

SinceW has nonnegative coefficients, and equals 1/2 when t3 = 1/27, it remains away
from the values ±1 on the disk ∣t3∣ < 1/27. Hence, by (4.8), the series C−i ,0/t i has
radius of convergence at least 1/27, and no other singularity of modulus 1/27.

�en we consider the series 2C−(x/t) + 2x2/t3 − x/t3 = x2I(x/t)/t4, which is a
series in t3. We express its square in terms of V 3 using �eorem 1.1, and inject the
singular expansion of V 3. �is gives

(2C−(x/t) + 2x2/t3 − x/t3)2 = 27x(1 − 3x)(1 + 6x)√(1 − 3x)(4 − 3x)
− 54x(1 − 3x)3 + 162 ⋅ 33/4 x2(1 − 27t3)3/4 +O(1 − 27t3).(4.14)
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We must be a bit careful with the sign when taking square roots. Indeed, both sides
are O(x2), the coefficient of x2 in the right-hand side is

2, 187

4
+O((1 − 27t3)3/4),

and this is the singular expansion of (2C−1,0/t − 1/t3)2 at t3 = 1/27.However, it follows
from the expression (1.6) of C−1,0, evaluated at t = 1/3 (where Z = 2 −√3), that at this
point, 2C−1,0/t − 1/t3 = −27√3/2, with a minus sign. Hence, the square root of the
right-hand side of (4.14) is −(2C−(x/t) + 2x2/t3 − x/t3), and as t3 approaches 1/27,

C−(x/t) = c̃0(x) + c̃1(x)(1 − 27t3)3/4 +O(1 − 27t3),
where

c̃1(x) = −35/4x
2

¿ÁÁÀ 1 + 6x

1 − 3x

√
4 − 3x

1 − 3x
+ 2.

As we have just done for walks ending on the diagonal, we conclude that for n of the
form i + 3m and i > 0,

c−i ,0(n) ∼ − H−i ,0
Γ(−3/4) 3nn−7/4 ,

where H−i ,0 = −3
7/4[x i]c̃1(x/3). �e announced expression of H−(x) =

−37/4 c̃1(x/3) follows. ∎

Remark 4.1 An invariant approach for harmonic functions. Let us now explain
how we can predict the relation that we observed below Corollary 1.4 between the
S∗-harmonic function H i , j in C and the S

∗-harmonic function h i , j in Q.
As soon as an asymptotic estimate of the form (1.7) holds for the numbers c i , j(n),

the function H i , j is S
∗-harmonic in C, symmetric in the first diagonal, and the series

H(x , y) defined by (1.9) satisfies (1.10). Denoting by c(x , y) ∶= 1
2 (2 + xy2 − 3xy) the

coefficient ofHd(y) in this equation, we observe that

c(x , y)2 = x2δ(y)
4

− 3xyK (x , y; 1/3) = x2δ(y)
4

+ (1 + xy2 + x2 y − 3xy),
where δ(y) = y(y − 4)(y − 1)2 is the discriminant of 3xyK (x , y; 1/3) with respect
to x. �is identity is of course closely related to Lemma 2.3. A�er multiplying (1.10) by

x̄2 (H−(x) − c(x , y)Hd(y)) ,
we obtain

(1 + xy2 + x2 y − 3xy)H (x , y) = x̄2 H−(x)2 − δ(y)
4

Hd(y)2 ,(4.15)

where

H (x , y) ∶= x̄2 H(x , y) (H−(x) − c(x , y)Hd(y)) + x̄2 Hd(y)2 .(4.16)
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Using the functional equation (1.10) satisfied byH(x , y), we can check that H (x , y)
is a formal power series in x and y, and that, moreover,

H (x , 0) = x̄2 H−(x)2 and H (0, y) = −δ(y)
4

Hd(y)2 +H2
−1,0 .(4.17)

In particular, if we denote H (x , y) = ∑i , j≥0 h̄ i , jx
i y j , we have H (0, 0) = h̄0,0 =

H2
−1,0. Equation (4.15) thus reads

(1 + xy2 + x2 y − 3xy)H (x , y) =H (x , 0) +H (0, y) −H (0, 0),
which precisely means that the function (h̄ i , j)(i , j)∈Q is S

∗-harmonic in the
quadrant Q.

Now, assume that there exists a unique positive S
∗-harmonic function h i , j in Q

(up to a multiplicative constant). �e associated generating function is H (x , y) =∑i , j≥0 h i , jx
i y j , whereH (x , 0) =H (0, x) is given by (1.14). Hence, if we assume that

the above seriesH (x , y) has positive coefficients, then there exists a positive constant
κ such that H (x , y) = κ2

H (x , y). Returning to (4.17), we thus predict in particular
that

H−(x) = κx√H (x , 0) and Hd(y) = 2κ
¿ÁÁÀ
−

H (0, y) −H (0, 0)
δ(y) ,

where the constant κmust be

κ =
H−1,0√
h0,0
=

H0,0√
h0,1

.

Using the expression (1.14) of H (x , 0) =H (0, x), we can now check from the
expressions (1.11) and (1.12) of H−(x) and Hd(y) that this prediction indeed holds
true, with κ = 3.

We finally complete this section with the enumeration of all walks avoiding the
negative quadrant, regardless of their final position.

Proof of Corollary 1.6 We specialize the equations of �eorem 1.1 at x = y = 1. �e
first one gives the link between C(1, 1) and C−(1) shown on the first line of (1.15) (this
is in fact I(1)/2), and the second one yields the expression on the second line. �e
degree of C(1, 1) is found to be 24 by elimination, first of the two square roots, and
finally of V.

Now, for the asymptotics, we needmore details aboutV than what we have used so
far, which only involved V 3 (seen as a series in t3). �e series V has three dominant
singularities, located at ζ/3 where ζ is any cubic root of unity.�e singular expansions
of V at these points can be computed by combining V = t(2 + V 3) with the known
expansion of V 3 around 1/27 (see (4.11)). Denoting ζ0 = 1 and ζ± = (−1 ± i√3)/2, we
find that around any dominant singularity ζ/3,

V

ζ
= 1 − (1 − 3t/ζ)1/2 + (1 − 3t/ζ)/3 − 4/9(1 − 3t/ζ)3/2 +O((1 − 3t/ζ)2) .(4.18)
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Observe that in the expression (1.15) of (1 − 3t)2 (C(1, 1) + 1/t)2, the square root term
involving

1 − V
4 + V 3

4
+

V 2

4
=
(1 − V)(2 + V)(2 − V + V 2)

4

does not vanish for ∣V ∣ < 1 (but does vanish atV = 1 of course).We now plug the above

expansion ofV in the expression of (1 − 3t)2 (C(1, 1) + 1/t)2, extract square roots, and
find the following behaviors, respectively, at t = ζ0/3 = 1/3 and t = ζ±/3:

(1 − 3t) (C(1, 1) + 1/t) = 33/4√2 −
√
2 (1 − 3t)3/8 +O((1 − 3t)7/8),

(1 − 3t) (C(1, 1) + 1/t) = a± + b±(1 − 3ζ∓t)3/4 +O (1 − 3ζ∓t) ,
for some nonzero constants a± and b±. In sight of the factor (1 − 3t) on the le�-hand
side, we conclude that, as far as the first order of cn is concerned, the only singularity
that contributes is 1/3, and that cn satisfies (1.16). ∎

5 Reverse Kreweras steps

In this section, we take S = {→, ↑,↙}, so that S = {↗,←, ↓}.
5.1 Statements of the results

We will establish the following counterpart of �eorems 1.1 and 1.2.

�eorem 5.1 �e generating function C(x , y) of walks with steps in {→, ↑,↙} starting
from (0, 0) and avoiding the negative quadrant is algebraic of degree 96. It is given by
the following equation:

(1 − t(x + y + x̄ ȳ))C(x , y) = 1 − tx̄ ȳC−(x̄) − tx̄ ȳC−( ȳ) − tx̄ ȳC0,0 ,

where C0,0 is algebraic of degree 6 and C−(x) is algebraic of degree 24. �ese series can
be expressed explicitly in terms of the series V,W, and Z defined in Section 1 (seeTable 2).
Indeed,

C0,0 =
V

t
⋅

4 − 4W − 2W2
+ 3W3

8(1 −W) ,

and

(2tC−(x) + x̄2 − x̄

t
+ x + tC0,0)2 =

(x̄2 − x̄

t
− x)2 + A2 (x̄2 − x̄

t
− x) + A1 ( 1

x
−

1

V
)√1 − xV 2

+ A0 ,(5.1)

where the series A0, A1, and A2 belong toQ(t, Z), with respective degrees 6, 12, and 6:
A0

V 2
= −

8 + 18W − 20W2
+ 5W3

− 6W4
+ 4W5

8W(1 −W) ,

A1 =
(2 −W)3(1 +W)

2

√
1 +W

1 −W
=
(2 −W)3(1 +W)

2
⋅

1 + Z

1 − Z
,
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and

A2

V
=
4 − 4W − 2W2

+ 3W3

4(1 −W) .

�e generating function D(x) of walks ending on the diagonal is algebraic of degree 24,
given by

∆(x) (xD(x) + 1

tx
)2 = (x̄2 − x̄

t
− x)2 + A2 (x̄2 − x̄

t
− x)

− A1 ( 1
x
−

1

V
)√1 − xV 2

+ A0 ,(5.2)

with the above values of A0 ,A1 ,A2, and

∆(x) = (1 − tx̄)2 − 4t2x .(5.3)

For walks ending at a prescribed position, we obtain the following result.

Corollary 5.2 Let us define V ,W, and Z as above. For any (i , j) ∈ C, the generating
function of walks avoiding the negative quadrant and ending at (i , j) is algebraic of
degree (at most) 12 and belongs toQ(t, Z). More precisely, C i , j/t i+ j belongs toQ(Z).

�is holds obviously for the series C0,0 given in �eorem 5.1. Note that this series
coincides with the series C0,0 obtained for Kreweras walks (it suffices to rewrite V/t
in terms of W to obtain the form (1.5)): this is clear, upon reversing the direction of
steps. Other examples are

tC1,1 =
2Z (2Z9

− Z8
− 4Z7

+ 10Z6
− 10Z4

+ 6Z3
+ 4Z2

− 4Z + 1)
(1 − Z)2 (1 + Z2)4 ,(5.4)

tC−1,0 =
A1

4
− 1 =

(2 −W)3(1 +W)
8

⋅

1 + Z

1 − Z
− 1.

�e length generating function C(1, 1) of walks avoiding the negative quadrant can
be characterized using the first two results of �eorem 5.1.

Corollary 5.3 �e generating function C(1, 1) is algebraic of degree 24 overQ(t). It is
given by

(1 − 3t)2(1 + tC(1, 1))2 = 1 − tA2 + t
2A1 (1 − 1

V
)√1 − V 2

+ t2A0 ,(5.5)

where the series V, A0, A1, and A2 are those of �eorem 5.1. �e asymptotic behavior of
its nth coefficient cn can be obtained via singularity analysis:

cn ∼
9

4Γ(5/8) (92 − 3
√
2)1/4 3nn−3/8 .

Harmonic function

We have also derived the counterpart of Corollary 1.4, that is, an explicit harmonic
function on C associated with the Kreweras step set S∗ = {←, ↓,↗}. We still have an
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asymptotic behavior of the form (1.7), this time with n ≡ i + j mod 3. We do not give
here all details of the numbers H i , j , but simply the values of

H−(x) ∶=∑
i>0

H−i ,0x
i
=
27
√
3

8

⎛⎜⎝
¿ÁÁÀ1 +

3
√
3x

2(1 − x)3/2 − 1
⎞⎟⎠

and

Hd(y) ∶=∑
i≥0

H i , i y
i
=

27
√
3

4(1 − y)√1 − 4y
¿ÁÁÀ1 −

3
√
3y

2(1 − y)3/2 ,
from which all numbersH i , j can be reconstructed via an equation that is the counter-
part of (1.10). �e proof is analogous to Kreweras’ case. Once again, details of the cal-
culations can be found in ourMaple session. For comparison, the number of quadrant
S -walks of length n going from (0, 0) to (i , j) is asymptotic to h i , j3

nn−5/2/Γ(−3/2),
with

∑
i≥0

h i ,0x
i
=

9(1 − x)3/2 .
5.2 Proofs for reverse Kreweras steps

Proof of �eorem 5.1 �e first equation of the theorem is of course the basic
functional equation (2.4).�e functional equations (2.8) and (2.9) defining D(y) and
U(x , y) read

(1 − t ȳ)D(y) = 1 − t ȳD0 + 2tU(0, y),(5.6)

x(1 − t(x̄ + ȳ + xy))U(x , y) = tx yD(y) − tx ȳU(x , 0) − tU(0, y).(5.7)

�e S -invariants of Proposition 3.3 are

I(x) = (2txU(x , 0) + 1

x2
−

1

tx
+ x + tD0)2 , J(y) = ∆(y)(yD(y) + 1

ty
)2 ,

(5.8)

with ∆ defined by (5.3). �e rational invariants (I0 , J0) are given in Table 3:

I0(x) = x̄2 − x̄/t − x , J0(y) = I0(y).(5.9)

�ey satisfy

I0(x) − J0(y)
K (x , y) =

x − y

tx y
.(5.10)

�e invariants related to quadrant walks with steps in S , defined by (2.24), are

I1(x) = txQ(x , 0) + x̄ − 1

2t
, J1(y) = −tyQ(0, y) − ȳ + 1

2t
= −I1(y).(5.11)
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�ey satisfy

I1(x) − J1(y)
K (x , y) = −xyQ(x , y) − 1

t
.(5.12)

Applying the invariant lemma

As in the previous section, we want to combine the pair of invariants (I(x), J(y))
defined by (5.8) with those of (5.9) and (5.11) to form a pair (Ĩ(x), J̃(y)) satisfying
the condition of Lemma 2.6. Since the conclusion of this lemma is that Ĩ(x) and J̃(y)
belong to Q((t)), we must look for a polynomial combination of I(x), I0(x), and
I1(x) that, at least, has no pole at x = 0. In sight of the expansions of these three series
at x = 0, we are led to consider

Ĩ(x) ∶= I(x) − I0(x)2 − A2I0(x) − A1I1(x),(5.13)

with

A2 = 2tD0 , A1 = 4(1 + tU0,0),(5.14)

which indeed has no pole at x = 0. Let us define accordingly

J̃(y) ∶= J(y) − J0(y)2 − A2 J0(y) − A1 J1(y),(5.15)

and examine whether (Ĩ(x) − J̃(y))/K (x , y) is a multiple of xy. Denoting by Rat,
Rat0, and Rat1 the right-hand sides of (3.7), (5.10), and (5.12), respectively, we have

Ĩ(x) − J̃(y)
K (x , y) = Rat−(I0(x) + J0(y))Rat0 −A2 Rat0 −A1 Rat1 .(5.16)

�is ratio has poles of bounded order at 0.We first expand it around x = 0, and observe
that it isO(1/x). In order to prove that the coefficient of 1/x is in fact 0, we use (5.6) (see
our Maple session for details). In order to prove that the coefficient of x0 is also 0, we
usemoreover the first term in the expansion of (5.7) at x = 0,which gives an expression
of U ′x(0, y) in terms of U(0, y), D(y), and U0,0. Similarly, in order to prove that
the ratio (5.16) is a multiple of y, we inject in its y-expansion (which is O(y0)) the
expansion at y = 0 of (5.6), which relates D0, D1, and U0,0, and the first term in the
expansion of (5.7) at y = 0, which gives an expression of U ′y(x , 0) in terms of U(x , 0)
and U0,0. �en we happily conclude that the pair (Ĩ(x), J̃(y)) is independent of x
and y, equal to (A0 ,A0) for some series A0 that depends on t only.
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Recall the expression (5.11) of I1(x) in terms of the generating function Q(x , 0)
of quadrant walks with Kreweras steps. �is series is known, and we obtain from
Proposition 13 in [10]

I1(x) = ( 1
x
−

1

V
)√1 − xV 2 = −J1(x).(5.17)

�is gives the expressions (5.1) and (5.2) announced in �eorem 5.1, which are those
of I(x) and J(x), but we still need to determine the three series A0 ,A1, and A2.

The series A0, A1, and A2

In the Kreweras case (Section 4), we only had one unknown series to determine,
denoted by A (see (4.4)). We derived it using the (only) root of ∆(y) that was finite at
t = 0 for this model. Now, with the new value of ∆(y), we have two such roots—but
three series to determine.�e third identity between the A i ’s will follow from the fact
that I(x) has a double root (see (5.8)).

We begin with a useful property, which tells us that I0(x) is (almost) the square
of I1(x). Indeed, the expressions of I0(x) and I1(x), together with the definition (1.3)
of V, imply that

I1(x)2 = I0(x) + 1

V 2
+ 2V .(5.18)

�e series J1(y) = −I1(y) and J0(y) = I0(x) are related by the same identity. (If
we did not know the explicit expression (5.17) of I1(x), we could still derive this
identity from the invariant lemma, which gives a polynomial relation between the
pairs (I1(x), J1(y)) and (I0(x), J0(y)); this is how quadrant walks with steps in S

are solved in [2].)
Using this, and the definitions (5.13) and (5.15) of Ĩ and J̃, the fact that Ĩ(x) =

J̃(y) = A0 translates into

I(x) = P4(I1(x)), J(y) = P4(J1(y)),(5.19)

where

P4(u) = (u2
−

1

V 2
− 2V)2 + A2 (u2

−

1

V 2
− 2V) + A1u + A0 .

Note that the identities of (5.19) are those that we would obtain from the invariant
lemma by playing with the pairs (I(x), J(y)) and (I1(x), J1(y)) only, with no refer-
ence to (I0(x), J0(y)).

As already mentioned, two roots of ∆(y) are finite at t = 0. We denote them by Y+
and Y−:

Y± = t ± 2t
5/2
+ 6t4 ± 21t11/2 +O(t7).

By replacing t by its expression in terms of V in ∆(y), we see that Y± are the roots of
the following quadratic polynomial in Y :

4Y 2
− V(V 3

+ 4)Y + V 2 .
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1602 M. Bousquet-Mélou

�e third root of ∆ is 1/V 2. From this, and the expression (5.17) of I1(x) = −J1(x), we
conclude that the values J1(Y±) are roots of

P̃4(u) = 4u4V 4
+ V 2(V 6

− 20V 3
− 8)u2

− 4V 9
+ 12V 6

− 12V 3
+ 4.

Since J(y) contains a factor ∆(y) and equals P4(J1(y)), the values J1(Y±) are also
roots of P4(u), and hence of the following quadratic polynomial:

P2(u) = 4V 2P4(u) − P̃4(u)/V 2

= V 2(4A2 − V
4
+ 4V)u2

+ 4V 2A1u

+ 4(V 7
− 2A2V

3
+ V 4

+ A0V
2
− A2 + 7V).

Hence, P4(u) contains a factor P2(u).
Now, consider the equation I(X) = 0, that is,

X = t (1 + X3
+ tX2D0 + 2tX

3U(X , 0)) .
From the form of this equation, we see that it admits a unique solution X in the ring
Q[[t]]. �e first terms in its expansion are

X = t + 2t4 + 16t7 +O(t10).
Since I(X) = 0 and I′(X) = 0, it follows from (5.19) that I1(X) is a root of P4(u),
and even a double root, unless I′1(X) = 0. However, I′1(X) = −1/t2 +O(t), and hence
P4(u) admits indeed I1(X) as a double root. Moreover, we easily check that I1(X) /=
J1(Y±).�us,we have found all roots of P4(u), andwehave the following factorization:

P4(u) = 1

V 2(4A2 − V 4
+ 4V)(u − I1(X))2P2(u).

(�e multiplicative constant is adjusted using the leading coefficients of P2 and P4.)
By extracting the coefficients of u3 , . . . , u0 in this identity, we obtain four polynomial
equations that relate I1(X), A0, A1, and A2. By eliminating the first three series, we
obtain a polynomial equation for A2. We determine which of its factors vanishes
thanks to the first coefficients of A2 = 2tD0 (see (5.14)), and, a�er introducing the
series W, we obtain the value of A2 given in �eorem 5.1. �e values of A1 and A0

follow similarly. We refer to our Maple session for details. Finally, the expression
of C0,0 follows from C0,0 = D0 = A2/(2t).
Degrees

Let us now discuss the algebraic degrees of our generating functions. �e expression
of C0,0 shows that it has degree at most 6, and this is easily checked to be tight by
elimination ofW and V. �e expression of I(x) shows that it belongs to an extension
of degree 12 of Q(t, x): this can be seen by extending this field first by V (degree 3),

then W (degree 2), and finally by A1

√
1 − xV 2; the square of the latter series being

in Q(x , t,V ,W) (because 1+Z
1−Z =

√
1+W
1−W ), this yields another extension of degree 2,

resulting in total into a degree 12 atmost for I(x). SinceC0,0 ∈ Q(W), this implies that
U(x , 0) has degree at most 24. An effective elimination procedure shows that these
bounds are tight.�e same argument shows that J(x) has degree 12, and D(x) degree
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24. In fact, I(x) and J(x) satisfy the same equation over Q(t, x), as shown by their
respective expressions. Finally, the basic functional equation implies that the degree
of C(x , y) is the degree of C−(x) + C−(y) + C0,0. We have seen that C0,0 belongs to
Q(t,V ,W), and that C−(x) belongs to an extension of degree 4 of Q(t, x ,V ,W).
Hence, the above sum belongs to an extension ofQ(t, x ,V ,W) of degree at most 4 ×
4 = 16, and thus has degree at most 16 × 6 = 96. We compute its minimal polynomial
overQ(t) for x = 2 and y = 3, and find this bound to be tight. ∎

Next, we establish the results that dealwithwalks ending at a prescribed point (i , j).
Proof of Corollary 5.2 We begin with walks ending on the diagonal, the generating
function of which is given in�eorem 5.1. We consider the series

xD(x/V 2) + V 4

tx
,(5.20)

which, due to the periodicity of the model and the properties of V, is a series in t3 (or
equivalently, in V 3) with coefficients in Q[x̄ , x]. Using the second part of �eorem
5.1, we first rewrite its square in terms of x and the series Z (this series is only needed
because of the term A1, otherwise we could do withW as in Kreweras’ case). We thus
obtain a (Laurent) series in x with rational coefficients in Z. �e coefficient of x−2 in
this series isV 8/t2. Hence, the square root of this series, which is (5.20), is also a series
in x with coefficients inQ(Z). �e coefficient of x i in (5.20) is C i−1, i−1/V 2i−2 as soon
as i > 0.�e corollary thus follows for walks ending on the diagonal. In particular, for
i = 2, we obtain the expression (5.4) of C1,1.

�e same argument, starting now from

2C− ( x

V 2
) + V 4

tx2
−

V 2

t2x
+

x

tV 2
+ C0,0 ,

establishes the result for walks ending on the negative x-axis, thanks to the expression
of I(x). Indeed, one can show that this is a (Laurent) series in x with rational
coefficients in Z, and the coefficient of x i in this series, for i > 0, is 2C−i ,0/V 2i

+

1/(tV 2)1i=1. We obtain in particular the expression of C−1,0 = U0,0 given below
Corollary 5.2 (but it also follows from (5.14) and the expression of A1).

We can now prove the corollary for any point (i , j) in the three-quadrant cone.
Without loss of generality, we assume that j ≥ i, and argue by induction on j ≥ −1.
�e result is obvious when j = −1 (because then i < 0 and C i , j = 0), and has just been
established for j = 0. Since it has also been proved for j = i, we assume that j ≥ i + 1
and j ≥ 1. We have

C i−1, j−1 = t (C i−1, j−2 + C i−2, j−1 + C i , j) ,
and the result holds for the three seriesC i−1, j−1 ,C i−1, j−2 , andC i−2, j−1 by the induction
hypothesis. �us, it holds for C i , j as well. ∎

We conclude this section with the series C(1, 1).
Proof of Corollary 5.3 �e value of C(1, 1) is obtained by specializing at x = y = 1
the first and third identities of �eorem 5.1. �e fact that the degree of C(1, 1) is
24 follows either by direct elimination, or by using the connection (3.8) between
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I(1) = R(1)2 and C(1, 1) and the polynomial equation (of degree 12) overQ(t, x) that
we have established for I(x) in the proof of �eorem 5.1.

�e asymptotic result is obtained through singularity analysis, using the expres-
sions of A0, A1, and A2, and the singular properties of V and W (see (4.11), (4.13),
(4.18), and the proof of Corollary 1.6 at the end of Section 4). ∎

6 Double Kreweras steps

In this section, we take S = {→, ↑,↙,↗,←, ↓}, so that S = S.
6.1 Statements of the results

In order to state the counterparts of �eorems 1.1 and 1.2, we first need to introduce
an extension ofQ(t) of degree 16, illustrated in Figure 3.

First, we define M ≡ M(t) as the unique formal power series in t satisfying

M = t(1 + 2M + 4M2).
�e coefficient of tn+1 in M is 2n times the nth Motzkin number, hence the notation
M. �e series M/t is known to count walks with steps in S confined to the North-
West quadrant {(i , j) ∶ i ≤ 0, j ≥ 0} (see [10, Proposition 10]). Note that Q(t,M) =
Q(M). �en we consider an extension of degree 4 of Q(M), generated by the series
P1 = t +O(t2) satisfying

P1 =
M (1 +M)3
(1 + 4M)3 ⋅

(1 + P1)4(1 − P1)2 .
Finally, we define

A1 = 4(1 +M)
√(1 +M)P1

M
=

4 (1 +M)3(1 + 4M)3/2 ⋅ (1 + P1)
2

1 − P1
,

which has degree 8 above Q(M) and degree 16 above Q(t). Between Q(M) and
Q(M ,A1) = Q(t,A1), there are three extensions of Q(M) of degree 2, respectively,
generated by

√
1 + 4M,

√
1 − 4M2, and

√(1 + 4M)(1 − 4M2). We shall consider, in

particular, a generator ofQ(√1 + 4M), denoted by N, defined by N = O(t) and
N = t

N4
− 2N3

+ 6N2
− 2N + 1(1 − N)2 , or equivalently N = M(1 − N)2 .(6.1)

Figure 3 gives a complete description ofQ(t,A1) and its subfields. �e series denoted
by P2 is the only solution of

P4
2 − (1 + 4M)3P2

2 + 4M(1 +M)3(1 + 4M)3 = 0,
satisfying P2 = 1 +O(t). It is related toM, P1, and A1 by

P2 = (1 + 4M)3/2 1 − P1
1 + P1

=
MA1

4
+ 4
(1 +M)3

A1
.(6.2)
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Figure 3: �e extension of Q(t) of degree 16 generated by A1 . All elementary extensions have

degree 2. �e series C(1, 1) has degree 16 over Q(t), as A1 , but lies in a different extension of

Q(t).

�eorem 6.1 �e generating function C(x , y) of walks with steps in {→, ↑,↙,
↗,←, ↓} starting from (0, 0) and avoiding the negative quadrant is algebraic of degree
256. It is given by the following equation:

(1 − t(x + y + xy + x̄ ȳ + x̄ + ȳ))C(x , y) = 1 − t ȳ(1 + x̄)C−(x̄)
− tx̄(1 + ȳ)C−( ȳ) − tx̄ ȳC0,0 ,

where C0,0 is algebraic of degree 16 and C−(x) is algebraic of degree 64. �ese series
can be expressed in terms of the series M, N, and A1 defined above. Indeed,

tC0,0 = 1 +
(1 + 2M)2

2M
−

3A1

8
−

2(1 +M)3
MA1

,(6.3)

and

(2t(1 + x̄)C−(x) + x̄ + 1 + x − 1 + 2t

t(1 + x) + tC0,0)2 = ( 1
x
− x −

1 + 2 t

t (x + 1))
2

+ Ã2 ( 1
x
− x −

1 + 2 t

t (x + 1)) + A1
N + 2xN/(1 − N) − x2

2x(1 + x)N
√
∆+(x) + Ã0 ,(6.4)

where ∆+(x) is the following polynomial in x:

∆+(x) = 1 − 2N(1 + N2)(1 − N)2 x + N2x2 ,(6.5)

and Ã2 and Ã0 are algebraic series of respective degree 8 and 16, both inQ(t,A1):
Ã2 =

(1 + 2M)2
M

−

A1

4
−

4(1 +M)3
MA1

=
(1 + 2M)2

M
−

P2
M

,

Ã0 =
A2
1

8
+ ( A1

8M
+ 2
(M + 1)3
A1 M2

)((1 + 4M)3/2 − (1 + 2M)2)
+

2M3
− 14M2

− 12M − 3

M
.
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�e generating function D(x) of walks ending on the diagonal is algebraic of degree
64, given by

∆(x)(xD(x) + 1

t(1 + x))
2

= ( 1
x
− x −

1 + 2 t

t (x + 1))
2

+ Ã2 ( 1
x
− x −

1 + 2 t

t (x + 1)) − A1
N + 2xN/(1 − N) − x2

2x(1 + x)N
√
∆+(x) + Ã0 ,(6.6)

with the above values of ∆+(x), Ã0 ,A1 , Ã2, and

∆(x) = (1 − t(x + x̄))2 − 4t2 x̄(1 + x)2 .(6.7)

For walks ending at a prescribed position, we obtain the following result.

Corollary 6.2 Let us define A1 as above. For any (i , j) ∈ C, the generating function of
walks avoiding the negative quadrant and ending at (i , j) is algebraic of degree (at most)
16 and belongs toQ(t,A1).

�e first example is provided by the expression of C0,0 in (6.3). A simpler one is

tC−1,0 =
A1

4
− 1.(6.8)

Now, for the generating function C(1,1) that counts all walks avoiding the negative
quadrant, it follows from�eorem 6.1 that

(1 − 6t)2 (C(1, 1) + 1

2t
)2 = ( 1 + 2 t

2t
)2 − Ã2

1 + 2 t

2t

+ A1
N + 2N/(1 − N) − 1

4N

√
∆+(1) + Ã0 .

Upon noticing that ∆+(1) = (1 − N)2(1 − 4M2), one sees that the right-hand side
belongs toQ(t,A1), and could thus be expected to have degree 16 (which would give
an expected degree 32 for C(1, 1)). However, the right-hand side belongs to Q(t,A2

1)
and has degree 8 only, as made explicit in the following corollary. Details of the
derivation are available in our Maple session.

Corollary 6.3 �e generating function C(1, 1) counting by their length all walks with
steps in S avoiding the negative quadrant is algebraic of degree 16 over Q(t), and of
degree 2 overQ(t,A2

1). More precisely,

(1 − 6t)2 (C(1, 1) + 1

2t
)2 = MA4

1

512 (M + 1)3 +(10M4
− 34M3

− 18M2
− 2M − 1)A2

1

32M (M + 1)3 −

14M4
− 22M3

− 6M2
+ 2M − 1

4M2 .(6.9)

It has radius 1/6, with a unique dominant singularity at 1/6. As t approaches this point,
C(1, 1) ∼ κ(1 − 6t)−5/8 ,

https://doi.org/10.4153/S0008414X22000487 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000487


Enumeration of three-quadrant walks via invariants 1607

with

κ = 21/439/8(√2 − 1).
Hence, the number of walks of length n avoiding the negative quadrant satisfies

cn ∼
κ

Γ(5/8)6nn−3/8 .
Harmonic function

We have also derived the counterpart of Corollary 1.4, that is, a harmonic function
onC associatedwith the doubleKreweras step setS = S∗ = {→,↗, ↑,←,↙, ↓}.We still
have an asymptotic behavior of the form (1.7), with the factor 3n replaced of course
by 6n , and without any periodicity condition. We do not give here all details of the
numbers H i , j , but simply the values of

H−(x) ∶=∑
i>0

H−i ,0x
i
=

37/4x
√√

2 − 1√
2(1 + x)

⎛⎜⎜⎝
¿ÁÁÀ√

2 +
2 −
√
3 + x

1 − x

√
7 + 4
√
3 − x

1 − x
−

√√
2 − 1

⎞⎟⎟⎠
and

Hd(y) ∶=∑
i≥0

H i , i y
i
=

37/4
√
2
√√

2 − 1

(1 − y)√1 − 14y + y2

¿ÁÁÁÀ√2 − 2 −
√
3 + y

1 − y

¿ÁÁÀ7 + 4
√
3 − y

1 − y
.

�e proof is analogous to Kreweras’ case, and in fact a bit easier since the model S is
aperiodic. Once again, details of the calculations can be found in our Maple session.
�e number of quadrant S -walks of length n going from (0, 0) to (i , j) in the first
quadrant is now asymptotic to h i , j6

nn−5/2/Γ(−3/2), with
∑
i≥0

h i ,0x
i
=

3

2(1 + x) ⎛⎝2 −
√
3 + x

1 − x

√
7 + 4
√
3 − x

1 − x
+ 1
⎞⎠

(and in this case uniqueness of the positive harmonic function is proved [7]).

6.2 Proofs for double Kreweras steps

Proof of �eorem 6.1 Proof.�e first equation of the theorem is of course the basic
functional equation (2.4).�e functional equations (2.8) and (2.12) definingD(y) and
U(x , y) read

(1 − t(y + ȳ))D(y) = 1 − t ȳD0 + 2t(1 + ȳ)U(0, y) − 2t ȳU0,0 ,(6.10)

2xy(1 − t(x̄ ȳ + x + y + x̄ + ȳ + xy))U(x , y) =
y + y (t(y + ȳ) + 2tx(1 + y) − 1)D(y) − 2t(1 + x)U(x , 0) − tD0 .
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�e invariants of Proposition 3.3 are

I(x) = (2t(1 + x)U(x , 0) + 1

x
+ 1 + x −

1 + 2t

t(1 + x) + tD0)2 ,
J(y) = ∆(y)(yD(y) + 1

t(1 + y))
2

,

with ∆ defined by (6.7). Note that they have now poles at 0 and at −1. �e rational
invariants I0 , J0 are given by Table 3:

I0(x) = x̄ − x − 1 + 2t

t(1 + x) , J0(y) = I0(y).
�ey satisfy

I0(x) − J0(y) = x − y

t(1 + x)(1 + y)K (x , y).(6.11)

�e invariants (2.24) related to quadrant walks with steps in S are

I1(x) = t(1 + x)Q(x , 0) − x − t − tx2

t(1 + x) , J1(y) = −t(1 + y)Q(0, y) + tQ0,0 − ȳ.

�ey satisfy

I1(x) − J1(y) = −K (x , y)(xyQ(x , y) + x

t(1 + x)) .(6.12)

Applying the invariant lemma

Again, we want to combine these three pairs of invariants to form a pair satisfying
the condition of Lemma 2.6. As in the previous section, we look for a polynomial
combination of I(x), I0(x), and I1(x) that, at least, has no pole at x = 0 nor at x = −1.
We first eliminate poles at 0 using I0(x), and then poles at −1 using I1(x). We are thus
led to consider

Ĩ(x) ∶= I(x) − I0(x)2 − A2I0(x) − A1I1(x),
with

A2 = 2(1 + tD0 + 2tU0,0), A1 = 4(1 + tU0,0),(6.13)

which indeed has no pole at x = 0 nor at x = −1. Let us define accordingly

J̃(y) = J(y) − J0(y)2 − A2 J0(y) − A1 J1(y),
and examine whether the ratio (Ĩ(x) − J̃(y))/K (x , y) is a multiple of xy. We
proceed as in the previous section. Denoting by Rat, Rat0, and Rat1 the right-hand
sides of (3.7), (6.11), and (6.12), the expression (5.16) of (Ĩ(x) − J̃(y))/K (x , y) still
holds (because Ĩ(x) and J̃(y) have the same form for bothmodels). In order to see that
this ratio is indeed a multiple of x, we need to inject (6.10). Proving that it is a multiple
of y requires no additional information. We conclude that the pair (Ĩ(x), J̃(x)) is
constant, equal to (A0 ,A0) for some series A0 that depends on t only.
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Recall that I1(x) is expressed in terms of the generating function Q(x , 0) of
quadrant walks with double Kreweras steps.�is series is known, and we obtain from
Proposition 15 in [10]

I1(x) = − 1
2
I0(x) + I2(x) − 2N4

+ N3
+ 3N2

− N + 1

2N (1 − N)2 ,

where N is defined by (6.1) (this series is denoted by Z in [10]) and

I2(x) ∶= N + 2xN/(1 − N) − x2
2x(1 + x)N

√
∆+(x),

with ∆+(x) given by (6.5). In what follows, we use I2(x) rather than I1(x). �at is, we
rewrite the identity Ĩ(x) = A0, which reads

I(x) = I0(x)2 + A2I0(x) + A1I1(x) + A0

as

I(x) = I0(x)2 + Ã2I0(x) + A1I2(x) + Ã0 ,(6.14)

where the two new series Ã2 and Ã0 are

Ã2 = A2 − A1/2 = 2t(D0 +U0,0),(6.15)

Ã0 = A0 − A1
2N4

+ N3
+ 3N2

− N + 1

2N (1 − N)2 .

Similarly, we find that the quadrant invariant J1(y) is given by

J1(y) = − 1
2
J0(y) − I2(y) − 2N4

+ N3
+ 3N2

− N + 1

2N (1 − N)2 ,

and write

J(y) = J0(y)2 + Ã2 J0(y) − A1I2(y) + Ã0 ,(6.16)

with the above values of Ã2 and Ã0.
�is gives the expressions (6.4) and (6.6) announced in �eorem 6.1, which are

those of I(x) and J(x). However, we still need to determine the three series Ã0 ,A1,
and Ã2.

The series Ã0 ,A1, and Ã2

We cannot follow exactly the same approach as in the previous section, where we had
written all invariants as polynomials in I1(x) using the identity (5.18) (it is still possible
to write I(x) as a rational function of I1(x); see Section 9.1). Indeed, the counterpart
of this identity relates now I0 and I2, and is no longer linear in I0:

I2(x)2 = 1

4
I0(x)2 + c1I0(x) + c0 ,
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with

c1 =
1 + N + N2

− N3

2N(1 − N)2 and c0 =
(N2
+ 1) (4N4

− 9N3
+ 13N2

− N + 1)
4N2 (1 − N)3 .

However, compare the expressions (6.14) and (6.16) of I(x) and J(y), and recall that
J0(y) = I0(y). �is, as well as the above expression of I2(x)2, suggests to form the
product I(x)J(x), which will be a polynomial in I0(x):

I(x)J(x) = (I0(x)2 + Ã2I0(x) + Ã0)2 − A2
1 I2(x)2

= (I0(x)2 + Ã2I0(x) + Ã0)2 − A2
1 ( 14 I0(x)2 + c1I0(x) + c0)

=∶ P4(I0(x)),
where

P4(u) = (u2
+ Ã2u + Ã0)2 − A2

1 ( 14u2
+ c1u + c0) .

We can now apply the same ideas as in the previous case. �e product I(x)J(x)
vanishes:

• when x is one of the two roots of ∆(x), denoted by X+ and X−, that are finite at
t = 0;

• when x = X = t + 3t3 +O(t4) is the (only) root of I(x) lying inQ[[t]], that is,
X = t 1 + X

1 + 2t
(2t(1 + X)C−(X) + 1 + X + X2

+ tXC0,0) .
�e values I0(X±) are found to be the two roots of

P2(u) = N (1 − N)3 u2
+ 2N (1 − N) (N3

+ N2
+ N − 1)u

− (N2
+ 1) (N4

− N3
+ 13N2

− 9N + 4) .
(�is polynomial should not be mixed up with the series P2 of (6.2)!) �ey expand as

I0(X±) = ± 2√
t
+ 1 ±

√
t +O(t).

Now, the series I0(X) = −1 +O(t) is also a root of P4(u), distinct from I0(X±), and
in fact is even a double root of P4 (as before, one has to check that I

′
0(X) /= 0). Hence,

we have the following factorization:

P4(u) = 1

N (1 − N)3 (u − I0(X))2P2(u).
We now equate the coefficients of u3 , . . . , u0 in both sides of this identity. From the
coefficients of u3, we obtain

I0(X) = N3
+ N2

+ N − 1(1 − N)2 − Ã2 .
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We then replace every occurrence of I0(X) by this expression. �e coefficients of u2

give

Ã0 =
(N3
+ N2

+ N − 1) Ã2(1 − N)2 +

A1
2

8

−

N7
+ 4N6

− 3N5
+ 12N4

− 15N3
+ 10N2

− 5N + 2

N (1 − N)4 .(6.17)

We proceed with the coefficients of u1, a�er replacing every occurrence of Ã0 by the
above expression. �is gives

Ã2 = −2
(N3
− N2

− N − 1) (1 − N)4 A2
1 − 16 (N3

+ N2
+ N − 1) (N2

− N + 1)3
(1 − N)2 (A2

1N (1 − N)4 + 16 (N2
− N + 1)3) ,

(6.18)

and we finally derive by comparing constant terms that

N2 (1 − N)8 A4
1 + 4N (N + 1)3 (1 − N)7 A3

1 + 32N (N2
− N + 1)3 (1 − N)4 A2

1

− 64 (1 − N)3 (N + 1)3 (N2
− N + 1)3 A1 + 256 (N2

− N + 1)6 = 0.(6.19)

One can now check, using this equation and the first terms A1 = 4 + 4t
2
+O(t3), that

A1 is indeed the series described at the beginning of the section, and that the values of
Ã2 and Ã0 given in the theorem in terms of the seriesM and A1 coincide with those
derived from (6.18) and (6.17).

It also follows from (6.13) and (6.15) that

tC0,0 = tD0 = 1 −
A1

4
+

Ã2

2
,

and the expression (6.3) can again be checked using (6.18) and (6.19).

Degrees

From the identities in this theorem, it follows that C−(x , 0) and D(x) have degree
at most 16 × 4 = 64 above Q(t, x). To prove that this bound is tight, we compute by
elimination the minimal polynomials of C−(2, 0) and D(2). We proceed similarly for
the degree of C(x , y), for which the natural upper bound is 16 × 4 × 4 = 256. In this
case, we specialize not only x and y, but also t, in such a way that xyt < 1/6, which
guarantees the convergence of all series under consideration. ∎

Remark 6.4 It may be interesting for some readers to know how one can derive from
the polynomial equation (6.19) the description of the series A1, and of the subfields of
Q(t,A1), given at the beginning of the section (see Figure 3).�is is fully documented
in the Maple session that accompanies this paper, but here are a few details.

Recall that the series N arises from the earlier paper [10]. �e first step is to
investigate the subextensions of Q(t,N) and to discover the series M. �is can be
done, for instance, using the Subfields command.
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1612 M. Bousquet-Mélou

�en, it is easy to prove, by elimination of N, that A1 has degree 16 overQ(t). �e
idea of introducing the generator P1 comes by looking at the denominator of Ã2 in
(6.18), and observing that the defining equation (6.19) of A1 can also be written in the
form:

(A2
1N(1 − N)4 + 16(N2

− N + 1)3)2 +
4(1 + N)3(1 − N)3A1 (A2

1N(1 − N)4 − 16(N2
− N + 1)3) = 0,

or, in terms ofM,

(MA2
1 + 16(1 +M)3)2 + 4A1(1 + 4M)3/2 (MA2

1 − 16(1 +M)3) = 0.
Once P1 is thus defined, one explores the subfields of Q(t,A1) using the Subfields
command. ∎

We now consider number of walks ending at (i , j).
Proof of Corollary 6.2 �is model is aperiodic. �e right-hand side of (6.4) is a
(Laurent) series in x with coefficients in Q(t,A1), with first term 1/x2. So its square
root is a Laurent series in x, starting with 1/x, with coefficients inQ(t,A1) again.�is
proves the corollary for the coefficients ofU(x , 0), that is, for the seriesC i ,0 with i < 0.
�e value of C−1,0 given in (6.8) comes directly from (6.13).

A similar argument, based on (6.6), proves the result for the series C i , i . We then
prove the corollary for the points (i , i + 1), by induction on i ≥ 0, by writing

C i , i = 1i=0 + t (C i , i+1 + C i−1, i + C i−1, i−1 + C i , i−1 + C i+1, i + C i+1, i+1)
= 1i=0 + t (2C i , i+1 + 2C i−1, i + C i−1, i−1 + C i+1, i+1) .

We finally prove it for all points (i , j) with j ≥ i by induction on 2 j − i ≥ 0, using

C i , j−1 = t(C i , j−2 + C i , j + C i−1, j−1 + C i+1, j−1 + C i−1, j−2 + C i+1, j). ∎

7 A D-algebraic model

Let us now consider the 6th model of Table 1, with step polynomial S(x , y) = x + x̄ +
y + ȳ + xy. �e companion model is given by S (x , y) = x + x̄ + xy + x̄ ȳ + y. In this
case, there are no rational S -invariants, but there exists a pair of quadrant invariants
of the form (2.24) (see Table 4), namely (I1(x), J1(y)), with

I1(x) = tQ(x , 0) + x̄ , J1(y) = −t(1 + y)Q(0, y) + tQ0,0 +
y(1 − ty)
t(1 + y) .(7.1)

�is pair satisfies

I1(x) − J1(y) = −K (x , y)(xyQ(x , y) + y

t(1 + y)) .
�e series Q(x , y) is known to be D-algebraic, and admits an explicit expression in
terms of elliptic functions [2,�eorem5.7].Our approach relatesC(x , y) to this series.
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7.1 Generating functions

�eorem 7.1 Let I1(x) and J1(y) be defined as above.�e generating function C(x , y)
of walks with steps in {→,↗, ↑,←, ↓} starting from (0, 0) and avoiding the negative
quadrant is given by the following equation:

(1 − t(x + y + x̄ + ȳ + xy))C(x , y) = 1 − t ȳC−(x̄) − tx̄C−( ȳ),
where C−(x) can be expressed in terms of I1 and J1 by

(tx̄C−(x) + x + x̄ − 1

2t
)2 = (I1(x) − A)2 (I1(x) − J1(Y))

I1(x) .(7.2)

In the above expression, Y is the only root of

∆(y) ∶= (1 − ty)2 − 4t2 ȳ(1 + y)2(7.3)

that is a formal power series in t. �en,

A =

¿ÁÁÀ 1 − t2Q0,0 − t2Q0,1

tJ1(Y) .

�e generating function D(y) of walks ending on the diagonal satisfies

∆(y)
4
(yD (y) + 1 − y

t(1 + y))
2

=
(J1(y) − A)2 (J1(y) − J1(Y))

J1(y) .(7.4)

In particular, C−(x), D(y), and C(x , y) are D-algebraic in all variables.

Our D-algebraicity result is not effective, and it seems hard to obtain an explicit
differential equation in t for, say, the series C(1, 1). �is is already true in the quadrant
case [2]. However, we indicate in Section 7.2 how one can write a differential equation
in y for D(y).
Proof �e invariants of Proposition 3.3 are

I(x) = (2 tU (x , 0) + 2 x + 2x̄ − 1

t
)2 , J(y) = ∆(y)(yD (y) + 1 − y

t (1 + y))
2

,

(7.5)

where ∆(y) is defined by (7.3). We want to combine them polynomially with the
invariants (I1(x), J1(y)) given by (7.1) to form a pair of invariants (Ĩ(x), J̃(y)) to
which Lemma 2.6 would apply, thus proving that Ĩ(x) = J̃(y) is a series in t.

Observe that J(y) has a pole at y = 0 (coming from ∆(y)) and at y = −1. �e
modified invariant J̃(y) should have no poles. Observing that J1(0) = 0, we first form
the product J(y)J1(y) to remove the pole of J(y) at 0. �e resulting series now has a
triple pole at −1, which can be removed by subtracting a cubic polynomial in J1(y).
�is leads us to introduce

J̃(y) = J(y)J1(y) − 4J1(y)3 − A2 J1(y)2 − A1 J1(y),
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and to define accordingly

Ĩ(x) = I(x)I1(x) − 4I1(x)3 − A2I1(x)2 − A1I1(x),
for values of A2 and A1 that involve D(−1),D′(−1) and various by-products of
Q(x , y) (we refer to our Maple session for details). �en, we use the functional
equations satisfied by U(x , y), D(y) and Q(x , y) to check that the ratio

Ĩ(x) − J̃(y)
K (x , y)

is a multiple of xy, and conclude that Ĩ(x) = J̃(y) = A0, for some series A0 ∈ Q((t)).
Hence, denoting P(u) = 4u3

+ A2u
2
+ A1u + A0, we have

I(x)I1(x) = P(I1(x)), and J(y)J1(y) = P(J1(y)).(7.6)

Since the le�-hand sides of (7.2) and (7.4) in �eorem 7.1 are I(x)/4 and J(y)/4, the
proof will be complete if we can prove that

P(u) = 4(u − A)2(u − J1(Y)).
We will identify the roots of P(u) by looking at the values of y that cancel J(y), and
thus P(J1(y)). First, ∆(y) has a (unique) solution Y = O(t2) inQ[[t]].�us, J1(Y) =
4t +O(t3) must be a root of P. �en, another root of J(y) arises from the factor of
J(y) involving D(y). Indeed, the (unique) series Y0 = 1 + 2t +O(t2) such that Y0 =

1 + tY0(1 + Y0)D(Y0) is a double root of J(y), and thus J1(Y0) = 1/(2t) +O(1) is a
double root of P(u), unless J′1(Y0) = 0, which we readily check not to be the case. At
this stage, we can write

P(u) = 4 (u − J1(Y0))2 (u − J1(Y)) .
However, wewould like tomakeA ∶= J1(Y0)more explicit.�is can be done as follows:
we return to the second identity of (7.6), replace J(y) and J1(y) by their expressions in
terms of D(y) and Q(0, y), replace P by the above expression, and expand the result
around y = 0. �is gives

tJ1(Y)J1(Y0)2 = 1 − t2Q0,0 − t
2
Q0,1 ,

which concludes our derivation a�er choosing the correct (positive) sign for the
square root.

�e fact that all series under consideration are D-algebraic comes from the closure
properties of D-algebraic series [2, Section 6.1], and from the fact that Q(x , y) is D-
algebraic [2, Section 6.4]. ∎

We can now specialize the first two equations of �eorem 7.1 to relate the series
C(1, 1) to the quadrant series Q.

Corollary 7.2 �e generating function C(1, 1) counting walks with steps in {→,↗, ↑,
←, ↓} that start from (0, 0) and avoid the negative quadrant is given by

1

4
(1 − 5t)2 (C(1, 1) + 1

t
)2 = (tC−(1) + 2 − 1

2t
)2 = (I1(1) − A)2(I1(1) − J1(Y))

I1(1) ,

(7.7)
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where I1(x) and J1(y) are given by (7.1), and Y and A are defined in �eorem 7.1; in
particular, I1(1) = 1 + tQ(1, 0).

7.2 An expression in terms of a weak invariant

Instead of using the quadrant-related invariants I1 and J1 of (7.1), one can use the
analytic approach of [2, Section 5] and express D(y) (say) in terms of an explicitweak
invariantw(y) (expressed itself in terms of elliptic functions). Let us give a few details,
using the notation of [2], which we will not redefine. First, the model denoted by S

here is model #5 in [2, Table 5]. �en, for t a small positive real number, the series
D(y) can be defined analytically in the domain GL, with finite limits on the boundary
curve L [31, Lemma 5]. �is curve is bounded because S contains a West step [2,
Lemma5.2].�epoints 0 and−1 both belong toGL, by [2, Lemmas 5.2 and 5.8].Hence,
the invariant J(y) defined by (7.5), which is a simple variation on D(y), is meromor-
phic in GL, with finite limits on L, and exactly two poles in GL, at 0 and −1. �e first
pole is simple, and the second is double. �us, J(y) is a weak invariant for the
model S , in the sense of [2, Definition 5.4]. We can apply the (analytic) invariant
lemma [2, Lemma 5.6]: there exists a polynomial P(u) (with complex coefficients
that depend on the value t), of degree at most 3, such that

J(y) = ∆(y)(yD(y) + 1 − y

t(1 + y))
2

=
P(w(y))(w(y) −w(0))(w(y) −w(−1))2 .

As before, we can obtain some information on the roots of P(u) by examining the
roots of J(y). First, the formal power series Y = O(t2) that cancels ∆(y) specializes
to the value denoted by y2 in [2, Lemma 5.1] (the value y1 is zero for this model). �is
is precisely the (unique) pole of w(y) in GL, by [2, Proposition 5.5], and we conclude
that P(u) has degree 2 at most.�e series Y0 = 1 + 2t +O(t3) that cancels the factor of
J(y) involving D(y) can also be shown to specialize to a value y0 of GL (because the
positive point where the curve L intersects the real axis, denoted by Y(x2) in [2], is
1/√t at first order, so that y0 is smaller), so that P(u) admits w(y0) as a double root.
Finally,

J(y) = ∆(y)(yD(y) + 1 − y

t(1 + y))
2

=
α(w(y) − a)2(w(y) −w(0))(w(y) −w(−1))2(7.8)

with a = w(y0). One can determine α and a in terms of w(0), w(−1), w′(0), and
w′(−1) by expanding this identity at first order around y = 0 and y = −1.

Alternatively, the above identity can be derived by combining the expression of
J(y)/4 given in (7.4) in terms of J1(y) (or equivalently, in terms of Q(0, y)) with the
following expression, borrowed from [2, �eorem 5.7]:

y(1 + t)Q(0, y) = −y − 1 + t

t(1 + y) − 1 + 1 + t

t
( w′(−1)
w(y) −w(−1) + w′′(−1)

2w′(−1)) .(7.9)

Indeed, the expression (7.1) of J1(y) then yields

J1(y) = 1 + t

t
⋅

w′(−1)
w(0) −w(−1) ⋅ w(y) −w(0)w(y) −w(−1) ,
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and, since Y = y2 is a pole of w(y),
J1(Y) = 1 + t

t
⋅

w′(−1)
w(0) −w(−1) .

We plug the latter two expressions in (7.4), and thus obtain the form (7.8), with values
of a and α expressed in terms of w(0), w(−1), w′(−1), and A. Another by-product of
this approach is an expression for the other series involved in the expression (7.4) of
J(y)/4:

A2
=

w′(0)
w(0) −w(−1) .

Remarks 1. In [2, Section 6.5], we worked out an explicit differential equation in y
for Q(0, y), of order 4, with polynomial coefficients in t and y, by combining the
expression (7.9) and a first-order differential equation satisfied by w(y). �e same
procedure could be applied to (7.8) to write down a differential equation, still of fourth
order, for J(y) or D(y).

2. It is interesting to note that, while quadrant generating functions, when they can
be expressed in terms of w(y), are in fact homographic functions of w(y), the above
expression of J(y) has degree 3 in w(y). Moreover, the three-quadrant generating
function D(y) is no longer rational, but algebraic in w(y). �is is another sign of the
higher difficulty of three-quadrant problems.

7.3 Harmonic functions

As already sketched in Remark 4.1 in the Kreweras case, we can relate the asymptotic
behaviors of S-walks in C and S -walks in Q, under highly plausible assumptions.

Let us begin with quadrant S -walks. �e number q̃ i , j(n) of S -walks of
length n in the quadrant Q ending at (i , j) is known to have the following asymptotic
form [6, 14]:

q̃ i , j(n) ∼ h i , j

Γ(−α) µnn−1−α ,

where µ ≃ 4.729 is the positive solution of µ3 + µ2 − 18µ − 43 = 0, and α =
π/ arccos(−c) ≃ 1.39, where c ≃ 0.626 satisfies 64 c6 − 64 c4 + 28 c2 − 5 = 0.�e num-
bers h i , j satisfy a 1/µ-harmonic relation

h i , j =
1

µ
(h i−1, j + h i+1, j + h i , j−1 + h i−1, j−1 + h i+1, j+1) ,

from which one derives the functional equation

(1 + y + xy2 + x2 y + x2 y2 − µxy)H (x , y) =H (x , 0) + (1 + y)H (0, y) −H (0, 0),(7.10)

where H (x , y) = ∑i , j≥0 h i , jx
i y j . As discussed in [30, Section 6], no simple expres-

sion is known for H (x , y) (the results of [30] only hold for walks with no dri�; the
same is true for the results of [32] on harmonic functions in C).
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�e number c i , j(n) of S-walks of length n in the three-quadrant cone C ending at(i , j) is widely believed to have the following asymptotic form:

c i , j(n) ∼ − H i , j

Γ(−α/2) µnn−1−α/2 ,

with µ and α as above. More precisely, what is known is a pair of lower and upper
bounds on c i , j(n) that have the above form and differ simply by a multiplicative
constant [28]. �e minus sign has been chosen so that H i , j > 0.

If this holds, then

H i , j = H j, i =
1

µ
(H i−1, j +H i+1, j +H i , j−1 +H i , j+1 +H i−1, j−1) ,

which yields for the generating functionH(x , y) = ∑ j≥0, j≥i H i , jx
j−i y j the functional

equation

(1 + y + xy2 + x2 y + x2 y2 − µxy)H(x , y) =H−(x) + 1

2
(2 + 2y + xy2 − µxy)Hd(y),

(7.11)

where as beforeH−(x) = ∑i>0 H−i ,0x
i andHd(y) =H(0, y).

We can now adapt the argument of Remark 4.1. �e term c(x , y) =(2 + 2y + xy2 − µxy) /2 satisfies
c(x , y)2 = δ(y)

4
x2 − µxy(1 + y)K (x , y; 1/µ)

=
δ(y)
4

x2 + (1 + y) (1 + y + xy2 + x2 y + x2 y2 − µxy) ,
where δ(y) = (µ2 y − 2µy2 + y3 − 4y2 − 8y − 4)y is the discriminant of
µxyK (x , y; 1/µ) with respect to x. Upon multiplying (7.11) by x̄2(H−(x) −
c(x , y)Hd(y)), we conclude that the series

H (x , y) ∶= x̄2H (x , y) (H− (x) − c(x , y)Hd (y)) + x̄2(1 + y)Hd (y)2
is a formal power series in x and y, which satisfies the same equation (7.10) asH (x , y),
as well as

H (x , 0) = x̄2H−(x)2 , and H (0, y) = − δ(y)
4(1 + y)H(0, y)2 + H2

−1,0
1 + y

.

In particular, H (0, 0) = H2
−1,0. Let us now assume that:

• H (x , y) is uniquely determined (up to a multiplicative factor) by equation (7.10)
and the positivity of its coefficients;

• the series H (x , y) has positive coefficients.
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Figure 4: Plots of the sequences (7.13) against 1/n, for n ≤ 150.

�en there exists a positive constant κ2 such that H (x , y) = κ2
H (x , y), which

implies in particular that

H−(x) = κx√H (x , 0) and Hd(y) = 2κ
¿ÁÁÀ
−

(1 + y)H (0, y) −H (0, 0)
δ(y) .

(7.12)

Expanding these predictions at x = 0 and y = 0 gives

κ =
H−1,0√
h0,0
=

H0,0√
h0,0 + h0,1

,

so that we expect

H0,0

H−1,0
=

√
1 +

h0,1
h0,0

.

�is seems to hold, as shown by Figure 4, where we have plotted against 1/n the
sequences

c0,0(n)
c−1,0(n) and

¿ÁÁÀ1 +
q̃0,1(n)
q̃0,0(n) .(7.13)

We have checked numerically more consequences of the prediction (7.12), like

H−1,0
H−2,0

= 2
h0,0
h1,0

and
H1,1

H0,0
=
µ2

8
− 1 +

1

2
⋅

h0,1 + h0,2
h0,0 + h0,1

,

each time with perfect agreement.
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8 The simple and diagonal models

In this section, we explain how the use of invariants also give new solutions of
three-quadrant walks when S1 = {→, ↑,←, ↓} (simple model) and S2 = {↗,↖,↙,↘}
(diagonal model). �is may seem unexpected, for the following reason.

For both models, the basic functional equation of Lemma 2.1 holds (with a slightly
different definition of U and D for the model S2); but by Proposition 3.1, there is
no way to decouple y in the desired form. Moreover, if we could still construct
a pair of invariants involving U(x , 0), and relate it polynomially to the invariants(I1(x), J1(y)) that involve quadrant generating functions with steps in S1 orS2 (the
so-called Gessel model for S1, or its reflection in the main diagonal for S2), then
U(x , 0) would be algebraic, because quadrant walks with steps in S1 (or S2) are
algebraic. However, it is known that U(x , 0) is transcendental for both models [9].

However, for both models (S = S1 or S2), it is natural [9, 12] to introduce the series
A(x , y) defined by

A(x , y) = C(x , y) − 1

3
(Q(x , y) − x̄2Q(x̄ , y) − ȳ2Q(x , ȳ)) ,(8.1)

where Q(x , y) counts quadrant S-walks. �e series A(x , y) is easily shown to satisfy
the same functional equation (2.4) as C(x , y), but with the initial term 1 replaced by(2 + x̄2 + ȳ2)/3. And then the heart of [9] is to prove that A(x , y) is algebraic, for both
models.

Hence, a natural idea is to try to apply the tools developed in this paper to A(x , y)
rather than C(x , y). We shall see that the new series U(x , y), defined from A(x , y)
rather than C(x , y), satisfies an equation similar to the one of Lemma 2.1, but with
an initial term y(1 + x e) instead of y (the exponent e is 2 for the simple model, and 1
for the diagonal model). And now this term decouples, whereas y does not. �is yields
new S -invariants, involving A(x , y), and ultimately a relation between A(x , y) and
the generating function of quadrant walks with Gessel’s steps.

We finally derive from this the harmonic functionsH i , j for the simple and diagonal
models in the three-quadrant plane. �e generating functions ∑(i , j)∈C H i , jx

i y j are
algebraic in both cases, even though the generating functions C(x , y) are D-finite but
transcendental. We do not work out more exact results (for instance, the degree of
A(x , y) or of the series A i , j), as such results already appear in [9].

8.1 The simple model

When S = {→, ↑,←, ↓}, the series A(x , y) defined by (8.1) satisfies

(1 − t(x + x̄ + y + ȳ))A(x , y) = (2 + x̄2 + ȳ2)/3 − t ȳA−(x̄) − tx̄A−( ȳ),(8.2)

where the series A−(x̄) is defined in a similar fashion as C−(x̄) (see (2.3)). �e series
A(x , y) has a simple combinatorial interpretation: it counts weighted walks in the
three-quadrant cone C, starting either from (0, 0), or from (−2, 0), or from (0,−2),
with a weight 2/3 in the first case, and 1/3 in the other two. We now define two series
U(x , y) and D(y) by

A(x , y) = x̄U(x̄ , xy) + D(xy) + ȳU( ȳ, xy).(8.3)
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Note that they do not have the same combinatorialmeaning as in the previously solved
fourmodels.We can reproduce the step-by-step arguments that led to Lemma 2.1, and
we thus obtain

2xyK (x , y)U(x , y) = 2

3
y(1 + x2) + y (2tx(1 + y) − 1)D(y) − 2tU(x , 0),(8.4)

where K (x , y) = 1 − tS (x , y) = 1 − t(x + x̄ + xy + x̄ ȳ) is the step polynomial of
Gessel’s model. Compared with the original functional equation (2.12), the only thing
that has changed is the initial term y, which has become 2y(1 + x2)/3.

For the model S , we know two pairs of invariants (see Table 3): one is rational,
and will not be used; the other takes the form (2.24) and involves quadrant generating
functions:

I1(x) = tQ(x , 0) + x̄ , J1(y) = −t(1 + y)Q(0, y) + tQ0,0 +
y

t(1 + y) .(8.5)

�ese two series are algebraic, and we refer to [5, 8] for explicit expressions. �ey
satisfy

I1(x) − J1(y) = −yK (x , y)(xQ(x , y) + 1

t(1 + y)) .
We will obtain expressions for U(x , 0) and D(y) in terms of I1(x) and J1(y), which
are reminiscent of those of the previous section (�eorem7.1). Given that a polynomial
identity relates (I0(x), J0(y)) and (I1(x), J1(y)), of degree 3 in the latter pair, we
could also decrease to 2 the degree in I1(x) and J1(y) of our expressions, upon
introducing I0(x) and J0(y).
�eorem 8.1 Let I1(x) and J1(y) be defined as above.�e generating function A(x , y)
defined by (8.1) satisfies equation (8.2), where A−(x) can be expressed in terms of I1 and
J1 by

(3tx̄A−(x) + 1 + x̄2 − x̄

t
)2 = I1(x) (I1(x) − B)2(I1(x) − J1(Y)).(8.6)

In the above expression, Y is the only root of

∆(y) = 1 − 4t2 ȳ(1 + y)2(8.7)

that is a formal power series in t, and

B =
1

t
+ 2tQ0,0 −

J1(Y)
2

.

�e generating function D(y) defined by (8.3) satisfies
9

4
∆(y)(yD(y) + 2y

3t2(1 + y)2 )
2

= J1(y) (J1(y) − B)2(J1(y) − J1(Y)).(8.8)

In particular, the series A−(x), D(y), and A(x , y) are algebraic.
Remark 8.2 Degrees and rational parametrizations of A−(x) and D(y). In [8],
the series Q(xt, 0) and Q(0, y) (involved in the expressions of I1(xt) and J1(y),
respectively) are expressed as rational functions in four algebraic series denoted by
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T, Z =
√
T ,U ≡ U(x), and V ≡ V(y). Here, T has degree 4 overQ(t), whereasU(x)

is cubic over Q(x , T) and V(y) is cubic over Q(y, T). All these series are series in
t2. Moreover, t2 ∈ Q(T), x ∈ Q(T ,U), and y ∈ Q(T ,V). One can derive from these

results rational expressions of I1(xt)/t and J1(y)/t in terms of
√
T ,U, andV, and well

as the following simple expressions:

J1(Y) = 256tT
√
T(T + 3)3 , B =

64t T
√
T (T2

+ 4T − 1)
(T − 1) (T + 3)3 .

Details of these calculations are given in our Maple session. Using (8.6) (resp. (8.8)),
we then obtain a rational expression of

(3x̄A−(xt) + 1 + x̄2

t2
−

x̄

t2
)2 ⎛⎝resp. (yD(y) + 2y

3t2(1 + y)2 )
2⎞⎠

in terms ofT andU (resp.T andV), showing that this series has degree 12 only (as
√
T

is not involved here). Moreover, this rational expression is of the form T Rat(T ,U)2
(resp. T Rat(T ,V)2) for some rational function Rat, so that

3x̄A−(xt) + 1 + x̄2

t2
−

x̄

t2
(resp. yD(y) + 2y

3t2(1 + y)2 )
belongs to

√
TQ(T ,U) (resp. √TQ(T ,V)), and hence to the same extension of

degree 24 of Q(t, x) (resp. Q(t, y)) as Q(xt, 0) (resp. Q(0, y)). �is is in contrast
with the Kreweras-like models solved in Sections 4–6, for which the degree of C−(x)
and D(y) is twice the degree of Q(x , 0) (or Q(0, y)).
Proof of �eorem 8.1 We start from the functional equation (8.4), and observe
that we have a decoupling relation:

y(1 + x2) = (2tx(1 + y) − 1)G(y) + F(x) +H(x , y)K (x , y),
where

F(x) = −1 − x̄2 + 1

tx
, G(y) = y

t2(1 + y)2 , H(x , y) = y (1 − t(x + x̄ + x̄ y + xy))
t2(1 + y)2 .

�is, together with Lemma 2.3, leads us to define a new pair of S -invariants(I(x), J(y)):
I(x) = (2tU(x , 0) + 2

3
(1 + x̄2 − x̄

t
))2 , J(y) = ∆(y)(yD(y) + 2y

3t2(1 + y)2 )
2

,

where ∆(y) is given by (8.7). We want to combine this new pair with the
pair (I1(x), J1(y)) given by (8.5) to form a pair of invariants (Ĩ(x), J̃(y)) to which
Lemma 2.6 would apply, thus proving that Ĩ(x) = J̃(y) is a series in t.

Observe that I1(x) and I(x) have poles at x = 0, whereas J1(y) and J(y) have poles
at y = −1 (only). More precisely, the series I(x) has a (quadruple) pole at 0, which can
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be removed by subtracting a well-chosen quartic polynomial in I1(x). �is leads us to
introduce

Ĩ(x) = I(x) − 4

9
I1(x)4 − B3I1(x)3 − B2I1(x)2 − B1I1(x),

and analogously

J̃(y) = J(y) − 4

9
J1(y)4 − B3 J1(y)3 − B2 J1(y)2 − B1 J1(y),

for values of B3, B2, and B1 that involveU0,0 ,U1,0 and various by-products ofQ(x , y)
(we refer to our Maple session for details; we have denoted the auxiliary series B i

instead of A i to avoid any confusion with the series A(x , y) or A−(x)). �en, we use
the functional equations satisfied by U(x , y), D(y), and Q(x , y) to check that the
ratio

Ĩ(x) − J̃(y)
K (x , y)

is a multiple of xy, and conclude that Ĩ(x) = J̃(y) = B0, for some series B0 ∈ Q((t)).
By expanding J̃(y) at y = 0, we realize that B0 = 0.Hence, denoting by P(u) = 4u3/9 +
B3u

2
+ B2u + B1, we have

I(x) = I1(x)P(I1(x)) and J(y) = J1(y)P(J1(y)).(8.9)

We can express the roots of P in terms of the series Q by looking at the formal power
series X ∈ Q[[t]] or Y ∈ Q[[t]] that cancel I(x) or J(y). First, ∆(y) has a unique
solution in Q[[t]], which we denote by Y = 4t2 +O(t4). �us, J1(Y) = 4t +O(t3)
must be a root of P. �en, another root of P arises from the series X = t +O(t3) such
that I(X) = 0, that is, X = 3t2U(X , 0)X2

+ tX2
+ t.�is series is a double root of I(x),

and thus I1(X) = 1/t +O(t3) is a double root of P(u), unless I′1(X) = 0, which we
readily check not to be the case. At this stage, we can write

P(u) = 4

9
(u − J1(Y))(u − I1(X))2 ,

but we still have to relate the double root B ∶= I1(X) to Q. We expand around x = 0
the first identity of (8.9), and obtain the expression of the root B given in the statement
of the theorem.

�e expressions (8.6) and (8.8), which are those of 9I(x)/4 and 9J(y)/4, are now
proved. ∎

Here is now our description of the harmonic function associated with simple walks
in C.

Corollary 8.3 For (i , j) ∈ C, there exists a positive constant H i , j such that, as n →∞
with n ≡ i + jmod 2,

c i , j(n) ∼ − H i , j

Γ(−2/3) 4nn−5/3 .(8.10)
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�e generating function

H(x , y) ∶= ∑
j≥0, i≤ j

H i , jx
j−i y j ,

which is a formal power series in x and y, is algebraic of degree 9, given by

(1 + y + x2 y + x2 y2 − 4xy)H(x , y) =H−(x) + (1 + y − 2xy)Hd(y),
where

H−(x) ∶=∑
i>0

H−i ,0x
i and Hd(y) ∶=∑

i≥0
H i , i y

i .

Each of these series is algebraic of degree 3. Let us define L ≡ L(x) =√3 +O(x) and
P ≡ P(y) = 1/3 +O(y) by

x = 9
3 − L2

(2 L − 3) (L2
− 12 L + 9) , y =

1 − 3 P

P2 (P − 3) .
�en

H−(x) = 128
√
3x (2 L − 3)

9 (L − 3)2 and Hd(y) = 64
√
3 (P + 1) (P − 3)2 P3

27 (1 − P)5 .

(8.11)

Note that an explicit expression of Hd(y) was given in [32, equation (53)] in
terms of radicals. �e fact that the degree is only 3 is not obvious on this alternative
expression.

(sketched) �e principle is the same as in the proof of Corollary 1.4, where we
determined a harmonic function for (reverse) Kreweras’ walks in three quadrants.
We focus on the asymptotic behavior of the coefficients a i , j(n) of the series A(x , y)
defined by (8.1), and establish for them the estimate (8.10): since the coefficients of
Q(x , y) grow like 4nn−3 only, the coefficients a i , j(n) and c i , j(n) are asymptotically
equivalent.

We start from the expressions of A−(x) and D(y) given in �eorem 8.1, and use
the results of [8] to express A−(xt) and D(y) rationally in terms of three algebraic

series denoted by
√
T , U(x), and V(y), as described in Remark 8.2.

We then perform the singular analysis of T, U(x), and V(y) in the neighborhood
of their dominant singularity, located at t2 = 1/16.�e series L(x) (resp. P(y)) occurs
in the singular expansion of U(x) (resp. V(y)). �e three series T, U(x), and V(y)
have a singular behavior in (1 − 16t2)1/3, but we need to work out more terms because
cancellations occur when moving from these series to A−(xt) and D(y), which are
found to have a singular behavior in (1 − 16t2)2/3. �is is how we finally obtain the
expressions ofH−(x) andHd(y). �e expression ofH(x , y) simply comes from the
harmonicity of H i , j . ∎

Remark 8.4 In passing, we have also determined the harmonic function for Gessel’s
walks in the first quadrant: for (i , j) ∈ Q and n ≡ i mod 2, the number of n-step walks
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ending at (i , j) is asymptotic to

h i , j

Γ(−4/3)4nn−7/3 ,
where

∑
i≥0

h i ,0x
i
= 48
√
3
(2 L − 3)2
(L − 3)4 and ∑

j≥0
h0, j y

i
=

32√
3

P3 (3 − P)
(P + 1) (P − 1)4 .

We observe that these two series are cubic over Q(√3), as the two univariate series
describing the harmonic function of simple walks in three quadrants (see (8.11)). �is
is in contrast with the previously solved models, where the degree of H−(x) and
Hd(y) is twice the degree of the corresponding quadrant harmonic function (see,
for instance, (1.11) and (1.14)). As already mentioned in Remark 8.2, a similar property
holds at the level of (counting) generating functions:Q(x , 0) andQ(0, y) have degree
24, and the same holds for A−(x) and D(y).

8.2 The diagonal model

When S = {↗,↖,↙,↘}, the series A(x , y) defined by (8.1) satisfies

(1 − t(x + x̄)(y + ȳ))A(x , y) = (2 + x̄2 + ȳ2)/3 − t ȳ(x + x̄)A−(x̄)
− tx̄(y + ȳ)A−( ȳ) − tx̄ ȳA0,0 .(8.12)

As before, this series counts weighted walks in the three-quadrant cone starting either
from (0, 0), or from (−2, 0), or from (0,−2), with a weight 2/3 in the first case, and
1/3 in the other two. As discussed in Lemma 2.1 for the corresponding series C(x , y),
it makes sense to define two series U(x , y) and D(y) by

A(x , y) = x̄2U(x̄2 , xy) + D(xy) + ȳ2U( ȳ2 , xy).(8.13)

Now, we can reproduce the step-by-step arguments that led to (2.14) for the series
C(x , y), and we thus obtain

2xyK (x , y)U(x , y) = 2

3
y(1 + x) + y (t(y + ȳ) + 2xyt − 1)D(y)
− 2t(1 + x)U(x , 0) − tD0 ,(8.14)

where K (x , y) = 1 − tS (x , y) = 1 − t(y + ȳ + xy + x̄ ȳ) is the kernel of Gessel’s
model, reflected in the first diagonal. Compared with the original functional equation
(2.14), the only thing that has changed is the initial term y, which has become 2y(1 +
x)/3.

For the model S , we know two pairs of invariants (see Table 3): one is rational,
and will not be used; the other takes the form (2.24) and involves quadrant generating
functions:

I1(x) = t(1 + x)Q(x , 0) − x

t(1 + x) , J1(y) = −tQ(0, y) + tQ0,0 − ȳ.(8.15)

�ese two series are algebraic, and we refer to [5, 8] for explicit expressions. Denoting
by (I g1 (x), J g1 (y)) the pair of invariants (8.5) that we used for Gessel walks, we observe
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that

I1(x) = −J g1 (x) + tQ0,0 , J1(y) = −I g1 (y) + tQ0,0 ,

in accordance with the fact that the two models differ by an x/y-symmetry.

�eorem 8.5 Let S = {↗,↖,↙,↘}, and let S = {↑,↗, ↓,↙} be the set of reflected
Gessel’s steps. Let C(x , y) be the generating function of walks with steps in S, confined
to the three-quadrant cone C. Let us define A(x , y) as (8.1).

Let I1(x) and J1(y) be the quadrant S -invariants defined by (8.15). �e
generating function A(x , y), which counts (weighted) walks in Cwith steps in S, satisfies
equation (8.12), where A−(x) can be expressed in terms of I1 and J1 by

9

4
(2t(x̄ + 1)A−(√x) + tD0 −

2

3t(1 + x))
2

= (I1(x) − J1(Y0))(I1(x) − J1(Y1)).
(8.16)

In this expression, the series Y0,1 are the two roots of

∆(y) = (1 − t2 ȳ(1 + y)2) (1 − t2 ȳ(1 − y)2)(8.17)

that are formal power series in t.
�e generating function D(y) defined by (8.13) satisfies

9

4
∆(y) (yD(y) + 2

3t
)2 = (J1(y) − J1(Y0))(J1(y) − J1(Y1)).(8.18)

In particular, the series D0 = D(0) involved in (8.16) satisfies

3t2D0 = 2 + t(J1(Y0) + J1(Y1)).
�e series A−(x), D(y), and A(x , y) are algebraic.
Remark 8.6 Degrees and rational parametrizations of A−(√x) andD(y). We
observe for this model the same phenomenon as for the simple model: the series
Q(x , 0) and Q(0, y) have degree 24, but A−(√x) and D(y) have also degree 24
(only). More precisely, using again the results and notation of [8], one can express
Q(x , 0) and Q(0, yt) (involved in the expressions of I1(x) and J1(yt), respectively)
as rational functions in the four algebraic series T, Z =

√
T ,U ≡ U(y), andV ≡ V(x)

(note the exchange of x and y, which comes from the diagonal reflection of steps). One
then derives from these results rational expressions of I1(x)/t and J1(yt)/t in terms

of
√
T , U, and V, as well as the following expressions:

J1(Y0) + J1(Y1) = 64 tZ3 (Z3
+ 3 Z2

− Z + 1)
(1 − Z) (Z2

+ 3)3 ,

J1(Y0)J1(Y1) = 4 Z7
+ 7 Z6

− 3 Z5
+ 19 Z4

− 45 Z3
+ 53 Z2

− Z + 1

(Z − 1) (Z2
+ 3)3 .
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Details of these calculations are given in our Maple session. Using (8.16) (resp. (8.18)),
we then obtain a rational expression of

2(x̄ + 1)A−(√x) + D0 −
2

3t2(1 + x) (resp. D(yt) + 2

3t2 y
)

of the form
√
T Rat(T ,V(x)) (resp.√T Rat(T ,U(y))).

Proof of �eorem 8.5 We start from the functional equation (8.14), and observe
that we have a decoupling relation:

y(1 + x) = (t(y + ȳ) + 2tx y − 1)G(y) + F(x) +H(x , y)K (x , y),
where

F(x) = 1

t(1 + x) , G(y) = 1

t
, H(x , y) = x

t(1 + x) .
�is, together with Lemma 2.3, leads us to define a new pair of invariants:

I(x) = (2t(1 + x)U(x , 0) + tD0 −
2

3t(1 + x))
2

, J(y) = ∆(y) (yD(y) + 2

3t
)2 ,

where ∆(y) is given by (8.17). We want to combine them polynomially with the
invariants (I1(x), J1(y)) given by (8.15) to form a pair of invariants (Ĩ(x), J̃(y)) to
which Lemma 2.6 applies.

Observe that I1(x) and I(x) have poles at x = −1, whereas J1(y) and J(y) have
poles at y = 0. More precisely, the series J(y) has a (double) pole at 0, which can be
removed by subtracting a well-chosen quadratic polynomial in J1(y). �is leads us to
introduce

J̃(y) = J(y) − 4

9
J1(y)2 − B1 J1(y),

and to define accordingly

Ĩ(x) = I(x) − 4

9
I1(x)2 − B1I1(x),

for a series B1 that involves D0 (we refer to our Maple session for details). �en, we
use the functional equations satisfied by U(x , y) and Q(x , y) to check that the ratio

Ĩ(x) − J̃(y)
K (x , y)

is a multiple of xy, and conclude that Ĩ(x) = J̃(y) = B0, for some series B0 ∈ Q((t)).
Hence, denoting by P(u) = 4u2/9 + B1u + B0, we have

I(x) = P(I1(x)), J(y) = P(J1(y)).
We can express the roots of P in terms of the seriesQ (and more precisely, in terms of
J1) by looking at the two roots of ∆(y), denoted by Yi , with i = 0, 1, that lie inQ[[t]].
For each of them, J1(Yi) is a root of P(u). �is gives the expressions of the theorem,
which are those of 9I(x)/4 and 9J(y)/4. ∎
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Let us finish with the harmonic function associated with diagonal walks in C

(known to be unique by [29]).

Corollary 8.7 For (i , j) ∈ C, there exists a positive constant H i , j such that, as n →∞
with n ≡ i + jmod 2,

c i , j(n) ∼ − H i , j

Γ(−2/3) 4nn−5/3 .
Clearly, H i , j = 0 if i /≡ j mod 2. �e generating function

H(x , y) ∶= ∑
j≥0, i≤ j

H i , jx
( j−i)/2 y j ,

which is a formal power series in x and y, is algebraic of degree 9, given by

(1 + x + xy2 + x2 y − 4xy)H(x , y) =
x

2
H0,0 + (1 + x)H−(x) + (1 − 2xy + x

2
(1 + y2))Hd(y),

where

H−(x) ∶=∑
i>0

H−i ,0x
i/2 and Hd(y) ∶=∑

i≥0
H i , i y

i .

Each of these series is algebraic of degree 3. Let L(x) and P(y) be defined as in
Corollary 8.3. �en

H−(x) = 32
√
3 (3 P(x) − 1)

9 (P(x) + 1) (P(x) − 1)2 and

Hd(y) = 144
√
3 L(y) (L(y)2 − 3)2

y2 (L(y)2 + 6 L(y) − 9) (3 − L(y))5 .
(�e exchange of x and y is intentional.)

Proof As in the proof of Corollary 8.3, one starts from the rational expressions

of A−(√x) and D(y) in terms of
√
T , U(y) and V(x) derived from �eorem 8.5

and [8], and then plugs in them the singular expansions of T,U(y), andV(x) around
t2 = 1/16.�is givesH−(x) andHd(y).�e expression ofH(x , y) simply comes from
the harmonicity of H i , j . ∎

9 Discussion and perspectives

9.1 Generic form of the results

For the last three models that we have solved (6th model of Table 1 in Section 7,
and simple and diagonal models in Section 8), we have directly written the invariant
I(x), involvingC−(x) or A−(x), as a rational function in the quadrant invariant I1(x)
involvingQ(x , 0); and analogously for J(y) and J1(y) (see�eorems 7.1, 8.1, and 8.5).
�e coefficients of these rational functions are series in t. �is is also possible for the
threemodels of the Kreweras trilogy, althoughwe have (sometimes) also used the pair

https://doi.org/10.4153/S0008414X22000487 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000487


1628 M. Bousquet-Mélou

(I0(x), J0(y)) to determine (I(x), J(y)). For the Kreweras model and the reverse
Kreweras model, I(x) is a polynomial in I1(x) (see (4.4) and (5.19)). For the double
Kreweras model, one can ignore the pair (I0(x), J0(y)) as well, and prove that

I(x) = P(I1(x))(I1(x) − I1(0))2 and J(y) = P(J1(y))(J1(y) − I1(0))2
for some polynomial P(u) of degree 4.

9.2 Solving more models via invariants?

Let us finally discuss if, and how, one could go further in the solution of three-quadrant
walks using the approach of this paper. Let us first recall that this approach, when
it works, relates invariants involving C(x , y) to pre-existing invariants (or to weak
invariants, in the sense of [2]), which so far are systematically D-algebraic. Hence,
there is little hope to solve with this approach models that would not be (at least) D-
algebraic.�ismeans that for the ninemodels of Table 1, invariants have done for us all
that we could hope for: they have solved the six models that were not already known
to be hypertranscendental (that is, non-D-algebraic).

If we want to go further, two different difficulties arise: the model may contain
NW and/or SE steps, and it may not be diagonally symmetric. Let us consider two
examples.

Diagonally symmetric models with NW and SE steps

Apart from the diagonal model, which we have actually solved via invariants, there
are eight models in this class, as shown in Table 6. �e first two are associated with a
finite group (orders 4 and 6) and the other six with an infinite group. Let us consider,
for instance, the fourth model of the table, S = {↗,↖,←, ↓,↘} (the scarecrow), and
write as before

C(x , y) = x̄U(x̄ , xy) + D(xy) + ȳU( ȳ, xy),
with D(y) ∈ Q[y][[t]] and U(x , y) ∈ Q[x , y][[t]].

We can write functional equations, first for D(xy) and x̄U(x̄ , xy), as we did in
Section 2.1. A step-by-step construction of walks gives

D(xy) = 1 + tx yD(xy) + 2t ȳ (x̄U(0, xy) − x̄U0,0) + 2tx ȳ (x̄2U1(xy) − x̄2U1,0) ,
where U1(y) is the coefficient of x in U(x , y). �e term involving U1 is new, and
corresponds to walks that jump from the lines j − i = ±2 to the diagonal, using an
NW of SE step. For walks ending above the diagonal, we find

x̄ (1 − tS(x , y))U(x̄ , xy) = tx̄(1 + y)D(xy) + tx̄ y ( ȳU(0, xy) − ȳU0,0)
− t ȳ(1 + x) (x̄U(x̄ , 0) + x̄U(0, xy) − x̄U0,0) − tx ȳ (x̄2U1(xy) − x̄2U1,0) ,

with S(x , y) = xy + x̄ y + x̄ + ȳ + x ȳ. �e second term on the first line accounts for
walks jumping from the line j = i − 1 to the line j = i + 1 by an NW step (we forbid
steps from (0,−1) to (−1, 0)). �e last term of the second line accounts for walks that
would jump from the line j = i + 2 to the diagonal.
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Diagonal King
Double
tandem

S

CS(x , y; t) DF DF DF ? Not DF in t [28]

Sec. 8.2 Not DA in x [20]

[9] [12] [12]

Table 6: �e nine models with x/y-symmetry and steps ↖ and ↘. �e first three
have a finite group and areWeyl models in the sense of [12]; the others have an infinite
group.

We can eliminate the series U1(xy) by taking a linear combination of the two
equations; but we still have U(0, xy) and D(xy), while we only had one of them
when the steps NW and SE were forbidden. Upon performing the change of variables(x , y)↦ (x̄ , xy), we finally obtain the following counterpart of (2.12):

2xyK (x , y)U(x , y) = y + y (ty + 2tx(1 + xy) − 1)D(y)
− 2t(1 + x̄)U(x , 0) + 2t(xy − x̄) (U(0, y) −U0,0) ,

with K (x , y) ∶= 1 − tS(x̄ , xy) = 1 − t(x + x̄ ȳ + y + x̄2 ȳ + x2 y). �e main two novel-
ties are the facts that the kernel has degree 2 and valuation −2 in x, and that the right-
hand side involves two series in y, namely D(y) and U(0, y). Hence, it seems that
the first step toward solving this three-quadrant model via invariants would be to
learn how to solve quadrantmodels with large steps via invariants—a question already
raised in [3].

Asymmetric models

�ere are 74 − 8 − 9 = 57 models that do not have the x/y-symmetry. Exactly 16 have
a finite group, among which 4 (at least) are conjectured to have a D-finite (even
algebraic, in one case) generating function [12]. �ey are shown in Table 7.

To illustrate the new difficulties that arise, let us work out functional equations for
Gessel’s model. Since symmetry is lost, we now write

C(x , y) = x̄U(x̄ , xy) + D(xy) + ȳL( ȳ, xy),
with D(y) ∈ Q[y][[t]] and U(x , y), L(x , y) ∈ Q[x , y][[t]]. �e equation for walks
ending on the diagonal reads

(1 − t(xy + x̄ ȳ))D(xy) = 1 − tx̄ ȳD0 + tx (x̄U(0, xy)) + tx̄ ( ȳL(0, xy) − ȳL0,0) .
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Table 7: Four interesting asymmetric models with a finite group. �e first three are
Weyl models in the sense of [12].

Now, for walks ending above the diagonal, we obtain

(1 − tS(x , y)) x̄U(x̄ , xy) = tx̄D(xy) − tx̄ ȳ (x̄U(x̄ , 0)) − tx (x̄U(0, xy)) ,
with S(x , y) = x + x̄ + xy + x̄ ȳ. Finally, for walks ending below the diagonal, we find

(1 − tS(x , y)) ȳL( ȳ, xy) = txD(xy) − tx̄(1 + ȳ) ȳL( ȳ, 0) − tx̄ ( ȳL(0, xy) − ȳL0,0) .
In the first two equations, we perform the same change of variables as before, namely(x , y)↦ (x̄ , xy). In the third equation, we apply (x , y)↦ (xy, x̄). �is gives

(1 − tS(x̄ , xy)) xU(x , y) = txD(y) − tx ȳU(x , 0) − tU(0, y),(1 − t(y + ȳ))D(y) = 1 − t ȳD0 + tU(0, y) + t ȳ (L(0, y) − L0,0) ,(1 − tS(xy, x̄)) xL(x , y) = tx yD(y) − t ȳ(1 + x)L(x , 0) − t ȳ (L(0, y) − L0,0) .
We now have a system with two trivariate series U(x , y) and L(x , y). In addition, the
kernels

1 − tS(x̄ , xy) = 1 − t(x + x̄ + y + ȳ) and 1 − tS(xy, x̄) = 1 − t(y + ȳ + xy + x̄ ȳ)
are not the same.

Acknowledgment I am grateful to Kilian Raschel for several interesting discussions
on discrete harmonic functions.
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