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On Knörrer Periodicity for Quadric
Hypersurfaces in Skew Projective Spaces

Kenta Ueyama

Abstract. We study the structure of the stable category CMZ
(S/( f )) of graded maximal Cohen–

Macaulay module over S/( f ) where S is a graded (±1)-skew polynomial algebra in n variables of
degree 1, and f = x2

1 + ⋅ ⋅ ⋅ + x2
n . If S is commutative, then the structure of CMZ

(S/( f )) is well
known by Knörrer’s periodicity theorem. In this paper, we prove that if n ⩽ 5, then the structure of
CMZ

(S/( f )) is determined by the number of irreducible components of the point scheme of S which
are isomorphic to P1 .

1 Introduction

hroughout this paper, we ûx an algebraically closed ûeld k of characteristic 0.
Knörrer’s periodicity theorem ([5,heorem 3.1]) plays an essential role in Cohen–

Macaulay representation theory of Gorenstein rings. As a special case of Knörrer’s
periodicity theorem, the following result is well known (see also [3]).

heorem 1.1 Let S = k[x1 , . . . , xn] be a graded polynomial algebra generated in de-
gree 1 and let f = x2

1 + x2
2 + ⋅ ⋅ ⋅ + x2

n . Let CMZ(S/( f )) denote the stable category of
gradedmaximal Cohen-Macaulay module over S/( f ).
(i) If n is odd, then CMZ(S/( f )) ≅ CMZ(k[x]/(x2)) ≅ Db(mod k).
(ii) If n is even, then CMZ(S/( f )) ≅ CMZ(k[x , y]/(x2 + y2)) ≅ Db(mod k2).

he purpose of this paper is to study a “(±1)-skew” version ofheorem 1.1.

Deûnition 1.2 Let n ∈ N+.
(i) We say that S is a graded skew polynomial algebra if

S = k⟨x1 , . . . , xn⟩/(x ix j − α i jx jx i)1≤i , j≤n ,

where α i i = 1 for every 1 ≤ i ≤ n, α i jα ji = 1 for every 1 ≤ i , j ≤ n, and deg x i = 1
for every 1 ≤ i ≤ n.

(ii) We say that S is a graded (±1)-skew polynomial algebra if

S = k⟨x1 , . . . , xn⟩/(x ix j − ε i jx jx i)1≤i , j≤n
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is a graded skew polynomial algebra such that ε i j equals either 1 or −1 for every
1 ≤ i , j ≤ n, i ≠ j.

Clearly, a graded polynomial algebra k[x1 , . . . , xn] generated in degree 1 is an ex-
ample of a graded (±1)-skew polynomial algebra. Consider the element

f = x2
1 + x2

2 + ⋅ ⋅ ⋅ + x2
n

of a graded skew polynomial algebra S = k⟨x1 , . . . , xn⟩/(x ix j−α i jx jx i). henwe no-
tice that f is normal if and only if f is central if and only if S is a (±1)-skew polynomial
algebra.

Let S = k⟨x1 , . . . , xn⟩/(x ix j − ε i jx jx i) be a graded (±1)-skew polynomial algebra
so that f = x2

1 + x2
2 + ⋅ ⋅ ⋅ + x2

n ∈ S is a homogeneous regular central element. Let
A be the graded quotient algebra S/( f ). Since S is a noetherian AS-regular algebra
of dimension n and A is a noetherian AS-Gorenstein algebra of dimension n − 1, A
is regarded as a homogeneous coordinate ring of a quadric hypersurface in a (±1)-
skew projective space. he main focus of this paper is to determine the structure of
CMZ(A) from a geometric data associatedwith S, called the point scheme of S. Based
on our experiments, we propose the following conjecture.

Conjecture 1.3 Let S = k⟨x1 , . . . , xn⟩/(x ix j − ε i jx jx i) be a graded (±1)-skew poly-
nomial algebra, let f = x2

1 + x2
2 + ⋅ ⋅ ⋅ + x2

n ∈ S, and let A = S/( f ). Let ℓ be the number
of irreducible components of the point scheme of S that are isomorphic to P1.

(i) If n is odd, then

(2m − 1
2

) < ℓ ≤ (2m + 1
2

)⇐⇒ CMZ(A) ≅ Db(mod k22m)

for m ∈ N where we consider (−1
2 ) = −∞, (1

2) = 0.
(ii) If n is even, then

(2m
2

) < ℓ ≤ (2m + 2
2

)⇐⇒ CMZ(A) ≅ Db(mod k22m+1)

for m ∈ N where we consider (02) = −∞.

We prove the following result.

heorem 1.4 (heorem 3.10) Let S = k⟨x1 , . . . , xn⟩/(x ix j − ε i jx jx i) be a graded
(±1)-skew polynomial algebra, let f = x2

1 +x2
2 +⋅ ⋅ ⋅+x2

n ∈ S, and let A = S/( f ). Assume
that n ≤ 5. Let ℓ be the number of irreducible components of the point scheme of S that
are isomorphic to P1.

(i) If n is odd, then ℓ ≤ 10 and

ℓ = 0⇐⇒ CMZ(A) ≅ Db(mod k),
0 < ℓ ≤ 3⇐⇒ CMZ(A) ≅ Db(mod k4),
3 < ℓ ≤ 10⇐⇒ CMZ(A) ≅ Db(mod k16).

On Knörrer Periodicity 897

https://doi.org/10.4153/S0008439518000607 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000607


(ii) If n is even, then ℓ ≤ 6 and

0 ≤ ℓ ≤ 1⇐⇒ CMZ(A) ≅ Db(mod k2),
1 < ℓ ≤ 6⇐⇒ CMZ(A) ≅ Db(mod k8).

his theorem asserts that Conjecture 1.3 is true if n ≤ 5.

2 Preliminaries

2.1 Notation

For an algebra A,we denote byModA the category of right A-modules, and bymodA
the full subcategory consisting of ûnitely generated modules. he bounded derived
category ofmodA is denoted by Db(modA).
For a connected graded algebra A, that is, A =⊕i∈N A i with A0 = k, we denote by

GrModA the category of graded right A-modules with A-module homomorphisms
of degree zero, and by grmodA the full subcategory consisting of ûnitely generated
gradedmodules.

Let A be a noetherian AS-Gorenstein algebra of dimension n (see [4, Section 1]
for the deûnition). We deûne the local cohomology modules of M ∈ grmodA by
Hi

m(M) ∶= limn→∞ ExtiA(A/A≥n ,M). It is well known that Hi
m(A) = 0 for all i ≠ n.

We say that M ∈ grmodA is gradedmaximal Cohen–Macaulay if Hi
m(M) = 0 for all

i ≠ n. We denote by CMZ(A) the full subcategory of grmodA consisting of graded
maximal Cohen–Macaulay modules.

he stable category of graded maximal Cohen–Macaulay modules, denoted by
CMZ(A), has the same objects as CMZ(A) and themorphism set is given by

HomCMZ(A)(M ,N) = Homgrmod A(M ,N)/P(M ,N)

for any M ,N ∈ CMZ(A), where P(M ,N) consists of degree zero A-module ho-
momorphisms that factor through a projective module in grmodA. Since A is AS-
Gorenstein,CMZ(A) is a triangulated category with respect to the translation functor
M[−1] = ΩM (the syzygy of M) by [8,heorem 3.1].

2.2 The Algebra C(A)

hemethodwe use is due to Smith andVan den Bergh [8]; itwas originally developed
by Buchweitz, Eisenbud, andHerzog [3].

Let S be an n-dimensional noetherian AS-regular algebra with the Hilbert series
HS(t) = (1− t)−n . hen S is Koszul by [7,heorem 5.11]. Let f ∈ S be a homogeneous
regular central element of degree 2, and let A = S/( f ). hen A isKoszul by [8, Lemma
5.1 (1)], and there exists a central regular element w ∈ A!2 such that A!/(w) ≅ S ! by
[8, Lemma 5.1 (2)]. We can deûne the algebra

C(A) ∶= A![w−1]0 .

By [8, Lemma 5.1 (3)], we have dimk C(A) = dimk(S !)(2) = 2n−1.
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heorem 2.1 ([8, Proposition 5.2]) Let the notation be as above. hen CMZ(A) ≅
Db(modC(A)).

2.3 The Point Schemes of Skew Polynomial Algebras

Let S be a quantum polynomial algebra of dimension n (see [6, Deûnition 2.1] for the
deûnition).

Deûnition 2.2 A graded module M ∈ GrMod S is called a point module if M is
cyclic, generated in degree 0, and HM(t) = (1 − t)−1.

If M ∈ GrMod S is a point module, then M is written as a quotient S/(g1S +
g2S + ⋅ ⋅ ⋅ + gn−1S) with linearly independent g1 , . . . , gn−1 ∈ S1 by [6, Corollary 5.7,
heorem 3.8], so we can associate it with a unique point pM ∶= V(g1 , . . . , gn−1) in
P(S∗1 ) = Pn−1. hen the subset

E ∶= {pM ∈ Pn−1 ∣ M ∈ GrMod S is a point module}
has a k-scheme structure by [1], and it is called the point scheme of S. Point schemes
have a pivotal role in noncommutative algebraic geometry.

hanks to the following result, we can compute the point scheme of a graded skew
polynomial algebra.

heorem 2.3 ([9, Proposition 4.2], [2,heorem 1 (1)]) Let

S = k⟨x1 , . . . , xn⟩/(x ix j − α i jx jx i)
be a graded skew polynomial algebra. hen the point scheme of S is given by

E = ⋂
1≤i< j<k≤n
α i jα jkαki≠1

V(x ix jxk) ⊂ Pn−1 .

For 1 ≤ i0 , . . . , is ≤ n, we deûne the subspace

P(i1 , . . . , is) ∶= ⋂
1≤ j≤n

j≠i1 , . . . , j≠is

V(x j) ⊂ Pn−1 .

It is easy to see that the point scheme of a graded skew polynomial algebra in three
variables is isomorphic to P2 or P(2, 3) ∪ P(1, 3) ∪ P(1, 2). he following is the clas-
siûcation of the point schemes of graded skew polynomial algebras in four variables.

Proposition 2.4 ([9, Corollary 5.1], [2, Section 4.2]) Let

S = k⟨x1 , x2 , x3 , x4⟩/(x ix j − α i jx jx i)
be a graded skew polynomial algebra in four variables. hen the point scheme of S is
isomorphic one of the following:
● P3;
● P(1, 2, 4) ∪ P(1, 2, 3) ∪ P(3, 4);
● P(2, 3, 4) ∪ P(1, 4) ∪ P(1, 3) ∪ P(1, 2);
● P(3, 4) ∪ P(2, 4) ∪ P(2, 3) ∪ P(1, 4) ∪ P(1, 3) ∪ P(1, 2).
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3 Results

hroughout this section,
● S = k⟨x1 , . . . , xn⟩/(x ix j − ε i jx jx i) is a graded (±1)-skew polynomial algebra,
● E is the point scheme of S,
● f = x2

1 + x2
2 + ⋅ ⋅ ⋅ + x2

n ∈ S2 (a regular central element of S), and
● A = S/( f ).
Note that ε i j = ε ji holds for every 1 ≤ i , j ≤ n.

Lemma 3.1 (i) A! is isomorphic to

k⟨x1 , . . . , xn⟩/(ε i jx ix j + x jx i , x2
n − x2

i )1≤i , j≤n , i≠ j .

(ii) w = x2
n ∈ A!2 is a central regular element such that A!/(w) ≅ S !.

(iii) C(A) ∶= A![w−1]0 is isomorphic to

k⟨t1 , . . . , tn−1⟩/(t i t j + εni ε i jε jn t j t i , t2i − 1)1≤i , j≤n−1, i≠ j .

Proof (i) and (ii) follow from direct calculation.
(iii) Since S has a k-basis {x i1

1 x
i2
2 ⋅ ⋅ ⋅ x in

n ∣ i1 , i2 , . . . , in ≥ 0}, and

(xnx iw−1)(xnx jw−1) = xnx ixnx jw−2 = −εnix2
nx ix jw−2 = −εnix ix jw−1

in C(A) for 1 ≤ i , j ≤ n − 1, i ≠ j, it follows that {xnx1w−1 , . . . , xnxn−1w−1} is a set of
generators of C(A). Put t i ∶= xnx iw−1 for 1 ≤ i ≤ n − 1. Since

t i t j = (xnx iw−1)(xnx jw−1) = −εnix ix jw−1 = εni ε jix jx iw−1

= −εni ε i jε jn(−εn jx jx iw−1) = −εni ε i jε jn(xnx jw−1)(xnx iw−1)
= −εni ε i jε jn t j t i ,

for 1 ≤ i , j ≤ n − 1, i ≠ j, and

t2i = (xnx iw−1)(xnx iw−1) = −εnix2
i w

−1 = −εnix2
nw

−1 = −εni

for 1 ≤ i ≤ n − 1, we have a surjection k⟨t1 , . . . , tn−1⟩/(t i t j + εni ε i jε jn t j t i , t2i + εni)→
C(A). his is an isomorphism, because the algebras have the same dimension. Since
εni ≠ 0 for 1 ≤ i ≤ n − 1, the homomorphism deûned by t i →

√−εni t i induces the
isomorphism

k⟨t1 , . . . , tn−1⟩/(t i t j + εni ε i jε jn t j t i , t2i + εni)
∼Ð→

k⟨t1 , . . . , tn−1⟩/(t i t j + εni ε i jε jn t j t i , t2i − 1). ∎

Proposition 3.2 (i) If E = Pn−1, then C(A) is isomorphic to

C+ ∶= k⟨t1 , . . . , tn−1⟩/(t i t j + t j t i , t2i − 1)1≤i , j≤n−1, i≠ j .

(ii) E = ⋃1≤i< j≤n P(i , j) if and only if C(A) is isomorphic to

C− ∶= k⟨t1 , . . . , tn−1⟩/(t i t j − t j t i , t2i − 1)1≤i , j≤n−1, i≠ j .
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Proof First note that

ε i jε jkεki = (εni ε i jε jn)(εn jε jkεkn)(εnkεki ε in)(3.1)

for 1 ≤ i < j < k ≤ n.
(i) By heorem 2.3, (3.1), and Lemma 3.1(iii), it follows that

E = Pn−1 ⇐⇒ ε i jε jkεki = 1 for every 1 ≤ i < j < k ≤ n
⇐⇒ εni ε i jε jn = 1 for every 1 ≤ i < j ≤ n
Ô⇒ C(A) ≅ C+ .

(ii) By heorem 2.3, (3.1), and Lemma 3.1(iii), it follows that

E = ⋃
1≤i< j≤n

P(i , j)⇐⇒ ε i jε jkεki ≠ 1 for every 1 ≤ i < j < k ≤ n

⇐⇒ ε i jε jkεki = −1 for every 1 ≤ i < j < k ≤ n
⇐⇒ εni ε i jε jn = −1 for every 1 ≤ i < j ≤ n
⇐⇒ C(A) ≅ C− .

Here the last⇐Ô is by commutativity of C(A). ∎

heorem 3.3 (i) If E = Pn−1 and n is odd, then CMZ(S/( f )) ≅ Db(mod k).
(ii) If E = Pn−1 and n is even, then CMZ(S/( f )) ≅ Db(mod k2).
(iii) E = ⋃1≤i< j≤n P(i , j) if and only if CMZ(S/( f )) ≅ Db(mod k2n−1).

Proof Since C+ is a Cliòord algebra over k, it is known that

C+ ≅
⎧⎪⎪⎨⎪⎪⎩

M2(n−1)/2(k) if n is odd,
M2(n−2)/2(k)2 if n is even,

(3.2)

so

modC+ ≅
⎧⎪⎪⎨⎪⎪⎩

modM2(n−1)/2(k) ≅ mod k if n is odd,
modM2(n−2)/2(k)2 ≅ mod k2 if n is even.

hus, (i) and (ii) follow from heorem 2.1 and Proposition 3.2(i).
We next show (iii). If E = ⋃1≤i< j≤n P(i , j), then C(A) ≅ C− by Proposition 3.2(ii).

Since C− is isomorphic to the group algebra of (Z2)n−1 over k, we have C− ≅ k2n−1
,

so it follows that CMZ(S/( f )) ≅ Db(mod k2n−1) by heorem 2.1. Conversely, if
CMZ(S/( f )) ≅ Db(mod k2n−1), then Db(modC(A)) ≅ Db(mod k2n−1) by heo-
rem 2.1. Since dimk C(A) = 2n−1, it follows that C(A) ≅ k2n−1 ≅ C−. Hence, E =
⋃1≤i< j≤n P(i , j) by Proposition 3.2(ii). ∎

Note that heorem 3.3(i), (ii) recover heorem 1.1, andheorem 3.3(iii) shows that
a new phenomenon appears in the noncommutative case. We can now give an explicit
classiûcation of CMZ(A) in the case n ≤ 3 (the case n = 1 is clear; seeheorem 1.1(i)).

Corollary 3.4 (i) If n = 2, then E = P1 and CMZ(A) ≅ Db(mod k2).

On Knörrer Periodicity 901

https://doi.org/10.4153/S0008439518000607 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000607


(ii) If n = 3, then

E = P2 ⇐⇒ CMZ(A) ≅ Db(mod k),
E = P(2, 3) ∪ P(1, 3) ∪ P(1, 2) ⇐⇒ CMZ(A) ≅ Db(mod k4).

Proof hese follow from heorem 2.3 andheorem 3.3. ∎

As we will see later, the converse of heorem 3.3(i), (ii) does not hold in general.
So, in order to give a classiûcation for the cases n = 4 and n = 5, we need a precise
computation.
For a permutation σ ∈Sn , we have an isomorphism

S = k⟨x1 , . . . , xn⟩/(x ix j − ε i jx jx i)
∼Ð→
φ

k⟨x1 , . . . , xn⟩/(xσ(i)xσ( j) − ε i jxσ( j)xσ(i)) =∶ Sσ

between graded (±1)-skew polynomial algebras,whichwe call a permutation isomor-
phism. Since φ preserves f , it induces an isomorphism

A = S/( f ) ∼Ð→ Sσ/( f ),
which we also call a permutation isomorphism.

Lemma 3.5 If n = 4, then, via a permutation isomorphism, S is isomorphic to a
graded (±1)-skew polynomial algebra whose point scheme is one of the following:
(4a) P3;
(4b) P(1, 2, 4) ∪ P(1, 2, 3) ∪ P(3, 4);
(4c) P(3, 4) ∪ P(2, 4) ∪ P(2, 3) ∪ P(1, 4) ∪ P(1, 3) ∪ P(1, 2).

Proof First, via a permutation isomorphism, S is isomorphic to one of the following:

(4i) a graded (±1)-skew polynomial algebra with ε41ε12ε24 = ε41ε13ε34 =
ε42ε23ε34 = 1;

(4ii) a graded (±1)-skew polynomial algebra with ε41ε12ε24 = ε41ε13ε34 = 1,
ε42ε23ε34 = −1;

(4iii) a graded (±1)-skew polynomial algebra with ε41ε12ε24 = 1, ε41ε13ε34 =
ε42ε23ε34 = −1;

(4iv) a graded (±1)-skew polynomial algebra with ε41ε12ε24 = ε41ε13ε34 =
ε42ε23ε34 = −1.

Note that the above follows from (3.1) and the classiûcation of simple graphs of order 3:

3 1

2

3 1

2

3 1

2

3 1

2

(we deûne ε4i ε i jε j4 = −1 if {i , j} is an edge in the graph, and ε4i ε i jε j4 = 1 otherwise).
he point scheme of an algebra in the case (4i) is P3, so this is (4a).
he point scheme of an algebra in the case (4iii) is

V(x1x3x4) ∩V(x2x3x4) = V(x3) ∪V(x4) ∪V(x1 , x2),
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so this is (4b). he point scheme of an algebra in the case (4ii) is V(x1x2x3) ∩
V(x2x3x4) = V(x2) ∪ V(x3) ∪ V(x1 , x4), so an algebra in the case (4ii) is isomor-
phic to an algebra in the case (4iii) via the permutation isomorphism induced by
σ = ( 1 2 3 4

1 4 3 2 ).
he point scheme of an algebra in the case (4iv) is ⋂1≤i< j<k≤4 V(x ix jxk) =

⋃1≤i< j≤4 V(x i , x j), so this is (4c). ∎

Remark 3.6 It follows from Lemma 3.5 that not every point scheme in Proposi-
tion 2.4 appears as the point scheme of a graded (±1)-skew polynomial algebra.

Lemma 3.7 If n = 5, then, via a permutation isomorphism, S is isomorphic to a
graded (±1)-skew polynomial algebra whose point scheme is one of the following:
(5a) P4;
(5b) P(1, 2, 3, 5) ∪ P(1, 2, 3, 4) ∪ P(4, 5);
(5c) P(1, 2, 3, 4) ∪ P(3, 4, 5) ∪ P(1, 2, 5);
(5d) P(3, 4, 5) ∪ P(1, 4, 5) ∪ P(1, 2, 5) ∪ P(1, 2, 3) ∪ P(2, 3, 4);
(5e) P(1, 3, 5) ∪ P(1, 3, 4) ∪ P(1, 2, 5) ∪ P(1, 2, 4) ∪ P(4, 5) ∪ P(2, 3);
(5f) P(1, 2, 5) ∪ P(1, 2, 4) ∪ P(1, 2, 3) ∪ P(4, 5) ∪ P(3, 5) ∪ P(3, 4);
(5g) P(4, 5) ∪ P(3, 5) ∪ P(3, 4) ∪ P(2, 5) ∪ P(2, 4) ∪ P(2, 3) ∪ P(1, 5) ∪ P(1, 4)

∪ P(1, 3) ∪ P(1, 2).

Proof First, via a permutation isomorphism, S is isomorphic to one of the following:
(5i) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = 1, ε51ε14ε45 = 1,
ε52ε23ε35 = 1, ε52ε24ε45 = 1, ε53ε34ε45 = 1;

(5ii) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = 1, ε51ε14ε45 = 1,
ε52ε23ε35 = 1, ε52ε24ε45 = 1, ε53ε34ε45 = −1;

(5iii) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = 1, ε51ε14ε45 = 1,
ε52ε23ε35 = 1, ε52ε24ε45 = −1, ε53ε34ε45 = −1;

(5iv) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = −1, ε51ε13ε35 = 1, ε51ε14ε45 = 1,
ε52ε23ε35 = 1, ε52ε24ε45 = 1, ε53ε34ε45 = −1;

(5v) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = 1, ε51ε14ε45 = −1,
ε52ε23ε35 = 1, ε52ε24ε45 = −1, ε53ε34ε45 = −1;

(5vi) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = −1, ε51ε14ε45 = 1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = 1;
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(5vii) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = −1, ε51ε14ε45 = −1,
ε52ε23ε35 = 1, ε52ε24ε45 = 1, ε53ε34ε45 = −1;

(5viii) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = −1, ε51ε14ε45 = −1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = 1;

(5ix) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = 1, ε51ε14ε45 = −1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = −1;

(5x) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = 1, ε51ε13ε35 = −1, ε51ε14ε45 = −1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = −1;

(5xi) a graded (±1)-skew polynomial algebra with

ε51ε12ε25 = −1, ε51ε13ε35 = −1, ε51ε14ε45 = −1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = −1.

Note that the above follows from (3.1) and the classiûcation of simple graphs of
order 4:

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

(we deûne ε5i ε i jε j5 = −1 if {i , j} is an edge in the graph, and ε5i ε i jε j5 = 1 otherwise).
he point scheme of an algebra in the case (5i) is P4, so this is (5a).
he point scheme of an algebra in the case (5v) is

V(x1x4x5) ∩V(x2x4x5) ∩V(x3x4x5) = V(x4) ∪V(x5) ∪V(x1 , x2 , x3),
so this is (5b). he point scheme of an algebra in the case (5ii) is V(x1x3x4) ∩
V(x2x3x4) ∩ V(x3x4x5) = V(x3) ∪ V(x4) ∪ V(x1 , x2 , x5), so an algebra in the case
(5ii) is isomorphic to an algebra in the case (5v) via the permutation isomorphism
induced by σ = ( 1 2 3 4 5

1 2 5 4 3 ).
he point scheme of an algebra in the case (5viii) is

V(x1x3x5) ∩V(x1x4x5) ∩V(x2x3x5) ∩V(x2x4x5) = V(x5) ∪V(x1 , x2) ∪V(x3 , x4),
so this is (5c). he point scheme of an algebra in the case (5iii) is V(x1x2x4) ∩
V(x1x3x4) ∩ V(x2x4x5) ∩ V(x3x4x5) = V(x4) ∪ V(x1 , x5) ∪ V(x2 , x3), so an alge-
bra in the case (5iii) is isomorphic to an algebra in the case (5viii) via the permutation
isomorphism induced by σ = ( 1 2 3 4 5

1 4 3 5 2 ).
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he point scheme of an algebra in the case (5vi) is

V(x1x2x4) ∩V(x1x3x4) ∩V(x1x3x5) ∩V(x2x3x5) ∩V(x2x4x5) =
V(x1 , x2) ∪V(x2 , x3) ∪V(x3 , x4) ∪V(x4 , x5) ∪V(x5 , x1),

so this is (5d).
he point scheme of an algebra in the case (5ix) is

V(x1x2x3) ∩V(x1x4x5) ∩V(x2x3x4) ∩V(x2x3x5) ∩V(x2x4x5) ∩V(x3x4x5) =
V(x2 , x4) ∪V(x2 , x5) ∪V(x3 , x4) ∪V(x3 , x5) ∪V(x1 , x2 , x3) ∪V(x1 , x4 , x5),

so this is (5e). he point scheme of an algebra in the case (5iv) is V(x1x2x3) ∩
V(x1x2x4)∩V(x1x2x5)∩V(x1x3x4)∩V(x2x3x4)∩V(x3x4x5) = V(x1 , x3)∪V(x1 , x4)∪
V(x2 , x3)∪V(x2 , x4)∪V(x1 , x2 , x5)∪V(x3 , x4 , x5), so an algebra in the case (5iv) is
isomorphic to an algebra in the case (5ix) via the permutation isomorphism induced
by σ = ( 1 2 3 4 5

3 2 5 4 1 ).
he point scheme of an algebra in the case (5x) is

V(x1x3x4) ∩V(x1x3x5) ∩V(x1x4x5) ∩V(x2x3x4) ∩V(x2x3x5)
∩V(x2x4x5) ∩V(x3x4x5)

= V(x3 , x4) ∪V(x3 , x5) ∪V(x4 , x5) ∪V(x1 , x2 , x3) ∪V(x1 , x2 , x4)
∪V(x1 , x2 , x5),

so this is (5f). he point scheme of an algebra in the case (5vii) is V(x1x2x3) ∩
V(x1x2x4)∩V(x1x3x4)∩V(x1x3x5)∩V(x1x4x5)∩V(x2x3x4)∩V(x3x4x5) = V(x1 , x3)
∪ V(x1 , x4) ∪ V(x3 , x4) ∪ V(x1 , x2 , x5) ∪ V(x2 , x3 , x5) ∪ V(x2 , x4 , x5), so an algebra
in the case (5vii) is isomorphic to an algebra in the case (5x) via the permutation iso-
morphism induced by σ = ( 1 2 3 4 5

5 2 3 4 1 ).
he point scheme of an algebra in the case (5xi) is ⋂1≤i< j<k≤5 V(x ix jxk) =

⋃1≤i< j<k≤5 V(x i , x j , xk), so this is (5g). ∎

To describe the algebras C(A) appearing in Lemma 3.1,we show that the following
algebras are isomorphic to algebras of the form M i(k) j .

Lemma 3.8 (i) Ci ∶= k⟨t1 , t2 , t3⟩/(t1 t2 + t2 t1 , t1 t3 + t3 t1 , t2 t3 − t3 t2 , t21 − 1, t22 − 1,
t23 − 1) is isomorphic to M2(k)2.

(ii) Cii ∶= k⟨t1 , t2 , t3⟩/(t1 t2+t2 t1 , t1 t3−t3 t1 , t2 t3−t3 t2 , t21 −1, t22−1, t23−1) is isomorphic
to M2(k)2.

(iii) Ciii ∶= k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 + t3 t1 , t1 t4 − t4 t1 , t2 t3 + t3 t2 , t2 t4 − t4 t2 ,
t3 t4 − t4 t3 , t21 − 1, t22 − 1, t23 − 1, t24 − 1) is isomorphic to M2(k)4.

(iv) Civ ∶= k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 − t3 t1 , t1 t4 − t4 t1 , t2 t3 − t3 t2 , t2 t4 − t4 t2 ,
t3 t4 + t4 t3 , t21 − 1, t22 − 1, t23 − 1, t24 − 1) is isomorphic to M4(k).

(v) Cv ∶= k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 − t3 t1 , t1 t4 + t4 t1 , t2 t3 − t3 t2 , t2 t4 − t4 t2 ,
t3 t4 + t4 t3 , t21 − 1, t22 − 1, t23 − 1, t24 − 1) is isomorphic to M4(k).

(vi) Cvi ∶= k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 + t3 t1 , t1 t4 − t4 t1 , t2 t3 − t3 t2 , t2 t4 − t4 t2 ,
t3 t4 − t4 t3 , t21 − 1, t22 − 1, t23 − 1, t24 − 1) is isomorphic to M2(k)4.

(vii) Cvii ∶= k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 − t3 t1 , t1 t4 − t4 t1 , t2 t3 − t3 t2 , t2 t4 − t4 t2 ,
t3 t4 − t4 t3 , t21 − 1, t22 − 1, t23 − 1, t24 − 1) is isomorphic to M2(k)4.

On Knörrer Periodicity 905

https://doi.org/10.4153/S0008439518000607 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000607


Proof (i) Let

e1 =
1
4
(1 + t2 + t3 + t2 t3), e2 =

1
4
(1 − t2 + t3 − t2 t3),

e3 =
1
4
(1 + t2 − t3 − t2 t3), e4 =

1
4
(1 − t2 − t3 + t2 t3).

hen they form a complete set of orthogonal idempotents of Ci. Since

e1 t1 =
1
4
(1 + t2 + t3 + t2 t3)t1 =

1
4
t2(1 − t1 − t3 + t2 t3) = t1e4 ,

e2 t1 =
1
4
(1 − t2 + t3 − t2 t3)t1 =

1
4
t2(1 + t1 − t3 − t2 t3) = t1e3 ,

e3 t1 =
1
4
(1 + t2 − t3 − t2 t3)t1 =

1
4
t2(1 − t1 + t3 − t2 t3) = t1e2 ,

e4 t1 =
1
4
(1 − t2 − t3 + t2 t3)t1 =

1
4
t2(1 + t1 + t3 + t2 t3) = t1e1 ,

it follows that themap M2(k)2 → Ci;

( (a11 a12
a21 a22

) , (b11 b12
b21 b22

)) z→

a11e1 +a12e1 t1e4 +b11e2 +b12e2 t1e3
+a21e4 t1e1 +a22e4 +b21e3 t1e2 +b22e3

is an isomorphism of algebras.
(ii) Since t3 commutes with t1 , t2 in Cii, we have

Cii ≅ k⟨t1 , t2⟩/(t1 t2 + t2 t1 , t21 − 1, t22 − 1)⊗k k[t3]/(t23 − 1)
≅ M2(k)⊗k k2 ≅ M2(k)2

by (3.2).
(iii) Since t4 commutes with t1 , t2 , t3 in Ciii, we have

Ciii ≅ k⟨t1 , t2 , t3⟩/(t1 t2 + t2 t1 , t1 t3 + t3 t1 , t2 t3 + t3 t2 , t21 − 1, t22 − 1, t23 − 1)
⊗k k[t4]/(t24 − 1)

≅ M2(k)2 ⊗k k2 ≅ M2(k)4

by (3.2).
(iv) Since t3 , t4 commute with t1 , t2 in Civ, we have

Civ ≅ k⟨t1 , t2⟩/(t1 t2 + t2 t1 , t21 − 1, t22 − 1)
⊗k k⟨t3 , t4⟩/(t3 t4 + t4 t3 , t23 − 1, t24 − 1)

≅ M2(k)⊗k M2(k) ≅ M4(k)
by (3.2).

(v) Let

e1 =
1
4
(1 + t1 + t3 + t1 t3), e2 =

1
4
(1 − t1 + t3 − t1 t3),

e3 =
1
4
(1 + t1 − t3 − t1 t3), e4 =

1
4
(1 − t1 − t3 + t1 t3).
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hen they form a complete set of orthogonal idempotents of Cv. Similar to the proof
of (i), we have

e1 t4 = t4e4 , e1 t2 = t2e2 , e1 t4 t2 = t4 t2e3 ,
e2 t4 = t4e3 , e2 t2 = t2e1 , e2 t4 t2 = t4 t2e4 ,
e3 t4 = t4e2 , e3 t2 = t2e4 , e3 t4 t2 = t4 t2e1 ,
e4 t4 = t4e1 , e4 t2 = t2e3 , e4 t4 t2 = t4 t2e2 ,

so it follows that themap M4(k)→ Cv;

⎛
⎜⎜⎜
⎝

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎟⎟
⎠
z→

a11e1 +a12e1 t4e4 +a13e1 t2e2 +a14e1 t4 t2e3
+a21e4 t4e1 +a22e4 +a23e4 t4 t2e2 +a24e4 t2e3
+a31e2 t2e1 +a32e2 t4 t2e4 +a33e2 +a34e2 t4e3
+a41e3 t4 t2e1 +a42e3 t2e4 +a43e3 t4e2 +a44e3

is an isomorphism of algebras.
(vi) Since t4 commutes with t1 , t2 , t3 in Cvi, we have

Cvi ≅ k⟨t1 , t2 , t3⟩/(t1 t2 + t2 t1 , t1 t3 + t3 t1 , t2 t3 − t3 t2 , t21 − 1, t22 − 1, t23 − 1)
⊗k k[t4]/(t24 − 1)

≅ M2(k)2 ⊗k k2 ≅ M2(k)4

by (i).
(vii) Since t4 commutes with t1 , t2 , t3 in Cvii, we have

Cvii ≅ k⟨t1 , t2 , t3⟩/(t1 t2 + t2 t1 , t1 t3 − t3 t1 , t2 t3 − t3 t2 , t21 − 1, t22 − 1, t23 − 1)
⊗k k[t4]/(t24 − 1)

≅ M2(k)2 ⊗k k2 ≅ M2(k)4

by (ii). ∎

heorem 3.9 (i) If n = 4, then

E ≅ P3 or P(1, 2, 4) ∪ P(1, 2, 3) ∪ P(3, 4)
⇐⇒ CMZ(A) ≅ Db(mod k2),

E = P(3, 4) ∪ P(2, 4) ∪ P(2, 3) ∪ P(1, 4) ∪ P(1, 3) ∪ P(1, 2)
⇐⇒ CMZ(A) ≅ Db(mod k8).

(ii) If n = 5, then
E ≅ (5a), (5c), or (5d)⇐⇒ CMZ(A) ≅ Db(mod k),
E ≅ (5b), (5e), or (5 f )⇐⇒ CMZ(A) ≅ Db(mod k4),

E = (5g)⇐⇒ CMZ(A) ≅ Db(mod k16),
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where
(5a) P4

(5b) P(1, 2, 3, 5) ∪ P(1, 2, 3, 4) ∪ P(4, 5)
(5c) P(1, 2, 3, 4) ∪ P(3, 4, 5) ∪ P(1, 2, 5)
(5d) P(3, 4, 5) ∪ P(1, 4, 5) ∪ P(1, 2, 5) ∪ P(1, 2, 3) ∪ P(2, 3, 4)
(5e) P(1, 3, 5) ∪ P(1, 3, 4) ∪ P(1, 2, 5) ∪ P(1, 2, 4) ∪ P(4, 5) ∪ P(2, 3)
(5f) P(1, 2, 5) ∪ P(1, 2, 4) ∪ P(1, 2, 3) ∪ P(4, 5) ∪ P(3, 5) ∪ P(3, 4)
(5g) P(4, 5)∪P(3, 5)∪P(3, 4)∪P(2, 5)∪P(2, 4)∪P(2, 3)∪P(1, 5)∪P(1, 4)

∪ P(1, 3) ∪ P(1, 2).

Proof (i) By Lemma 3.5, there exists a graded (±1)-skew polynomial algebra S′ such
that A ≅ S′/( f ) and the point scheme E′ of S′ is P3 ,P(1, 2, 4) ∪ P(1, 2, 3) ∪ P(3, 4),
or ⋃1≤i< j≤4 P(i , j). (Note that E ≅ E′.) By heorem 3.3(ii), (iii), we only consider the
case E′ = P(1, 2, 4) ∪ P(1, 2, 3) ∪ P(3, 4). In this case,

ε41ε12ε24 = 1, ε41ε13ε34 = −1, ε42ε23ε34 = −1
(see (4iii) in the proof of Lemma 3.5), so C(S′/( f )) is isomorphic to

k⟨t1 , t2 , t3⟩/(t1 t2 + t2 t1 , t1 t3 − t3 t1 , t2 t3 − t3 t2 , t2i − 1) ≅ M2(k)2

by Lemma 3.8(ii). hus, we have CMZ(A) ≅ CMZ(S′/( f )) ≅ Db(mod k2) by heo-
rem 2.1.

(ii) By Lemma 3.7, there exists a graded (±1)-skew polynomial algebra S′ such that
A ≅ S′/( f ) and the point scheme E′ of S′ is (5a), . . . , (5f), or (5g). Byheorem 3.3(i),
(iii), we only consider the cases (5b) to (5f).

If E is (5b), then

ε51ε12ε25 = 1, ε51ε13ε35 = 1, ε51ε14ε45 = −1,
ε52ε23ε35 = 1, ε52ε24ε45 = −1, ε53ε34ε45 = −1,

(see (5v) in the proof of Lemma 3.7), so C(S′/( f )) is isomorphic to

k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 + t3 t1 ,

t1 t4 − t4 t1 , t2 t3 + t3 t2 , t2 t4 − t4 t2 , t3 t4 − t4 t3 , t2i − 1) ≅ M2(k)4

by Lemma 3.8(iii). hus, we have CMZ(A) ≅ CMZ(S′/( f )) ≅ Db(mod k4) by heo-
rem 2.1.

If E is (5c), then

ε51ε12ε25 = 1, ε51ε13ε35 = −1, ε51ε14ε45 = −1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = 1,

(see (5viii) in the proof of Lemma 3.7), so C(S′/( f )) is isomorphic to

k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 − t3 t1 , t1 t4 − t4 t1 , t2 t3 − t3 t2 ,

t2 t4 − t4 t2 , t3 t4 + t4 t3 , t2i − 1) ≅ M4(k)

by Lemma 3.8(iv). hus, we have CMZ(A) ≅ CMZ(S′/( f )) ≅ Db(mod k) by heo-
rem 2.1.
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If E is (5d), then

ε51ε12ε25 = 1, ε51ε13ε35 = −1, ε51ε14ε45 = 1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = 1,

(see (5vi) in the proof of Lemma 3.7), so C(S′/( f )) is isomorphic to

k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 − t3 t1 , t1 t4 + t4 t1 , t2 t3 − t3 t2 ,

t2 t4 − t4 t2 , t3 t4 + t4 t3 , t2i − 1) ≅ M4(k)

by Lemma 3.8(v). hus, we have CMZ(A) ≅ CMZ(S′/( f )) ≅ Db(mod k) by heo-
rem 2.1.

If E is (5e), then

ε51ε12ε25 = 1, ε51ε13ε35 = 1, ε51ε14ε45 = −1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = −1,

(see (5ix) in the proof of Lemma 3.7), so C(S′/( f )) is isomorphic to

k⟨t1 , t2 , t3 , t4⟩/(t1 t2 + t2 t1 , t1 t3 + t3 t1 , t1 t4 − t4 t1 ,

t2 t3 − t3 t2 , t2 t4 − t4 t2 , t3 t4 − t4 t3 , t2i − 1) ≅ M2(k)4

by Lemma 3.8(vi). hus, we have CMZ(A) ≅ CMZ(S′/( f )) ≅ Db(mod k4) by heo-
rem 2.1.

If E is (5f), then

ε51ε12ε25 = 1, ε51ε13ε35 = −1, ε51ε14ε45 = −1,
ε52ε23ε35 = −1, ε52ε24ε45 = −1, ε53ε34ε45 = −1,

(see (5x) in the proof of Lemma 3.7), so C(S′/( f )) is isomorphic to

k⟨t1 , t2 , t3 , t4⟩/( t1 t2 + t2 t1 , t1 t3 − t3 t1 , t1 t4 − t4 t1 ,

t2 t3 − t3 t2 , t2 t4 − t4 t2 , t3 t4 − t4 t3 , t2i − 1) ≅ M2(k)4

by Lemma 3.8(vii). hus, we have CMZ(A) ≅ CMZ(S′/( f )) ≅ Db(mod k4) by heo-
rem 2.1. ∎

Let ℓ denote the number of irreducible components of E that are isomorphic to
P1, that is, the number of irreducible components of the form P(i , j). Corollary 3.4
and heorem 3.9 imply the following result, which states that Conjecture 1.3 is true
for n ≤ 5.

heorem 3.10 Assume that n ≤ 5.
(i) If n is odd, then ℓ ≤ 10 and

ℓ = 0⇐⇒ CMZ(A) ≅ Db(mod k),
0 < ℓ ≤ 3⇐⇒ CMZ(A) ≅ Db(mod k4),
3 < ℓ ≤ 10⇐⇒ CMZ(A) ≅ Db(mod k16).
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(ii) If n is even, then ℓ ≤ 6 and

0 ≤ ℓ ≤ 1⇐⇒ CMZ(A) ≅ Db(mod k2),
1 < ℓ ≤ 6⇐⇒ CMZ(A) ≅ Db(mod k8).

At the end of paper, we collect some examples when n = 6 as further evidence for
Conjecture 1.3.

Example 3.11 (i) Let S = k⟨x1 , . . . , x6⟩/(x ix j − ε i jx jx i) with

ε12 = 1, ε13 = −1, ε14 = 1, ε15 = −1, ε16 = 1,
ε23 = −1, ε24 = −1, ε25 = −1, ε26 = 1, ε34 = 1,
ε35 = −1, ε36 = 1, ε45 = −1, ε46 = 1, ε56 = 1.

hen the point scheme of S isP(3, 4, 5)∪P(2, 3, 4)∪P(1, 4, 5)∪P(1, 2, 5)∪P(1, 2, 3)∪
P(3, 4, 6)∪P(1, 4, 6)∪P(1, 2, 6)∪P(5, 6), so ℓ = 1. On the other hand, one can check
that C(A) ≅ M4(k)2, so we have CMZ(A) ≅ Db(mod k2).

(ii) Let S = k⟨x1 , . . . , x6⟩/(x ix j − ε i jx jx i) with

ε12 = 1, ε13 = −1, ε14 = −1, ε15 = −1, ε16 = 1,
ε23 = 1, ε24 = −1, ε25 = −1, ε26 = 1, ε34 = −1,
ε35 = −1, ε36 = 1, ε45 = 1, ε46 = 1, ε56 = 1.

hen the point scheme of S is P(2, 3, 4, 5) ∪ P(1, 2, 4, 5) ∪ P(2, 3, 6) ∪ P(1, 2, 6) ∪
P(4, 5, 6) ∪ P(1, 3), so ℓ = 1. On the other hand, one can check that C(A) ≅ M4(k)2,
so we have CMZ(A) ≅ Db(mod k2).

(iii) Let S = k⟨x1 , . . . , x6⟩/(x ix j − ε i jx jx i) with

ε12 = 1, ε13 = −1, ε14 = −1, ε15 = −1, ε16 = 1,
ε23 = 1, ε24 = −1, ε25 = −1, ε26 = 1, ε34 = −1,
ε35 = −1, ε36 = 1, ε45 = −1, ε46 = 1, ε56 = 1.

hen the point scheme of S isP(2, 3, 5)∪P(2, 3, 4)∪P(1, 2, 5)∪P(1, 2, 4)∪P(1, 2, 6)∪
P(2, 3, 6)∪P(4, 5)∪P(1, 3)∪P(4, 6)∪P(5, 6), so ℓ = 4. On the other hand, one can
check that C(A) ≅ M2(k)8, so we have CMZ(A) ≅ Db(mod k8).

(iv) Let S = k⟨x1 , . . . , x6⟩/(x ix j − ε i jx jx i) with

ε12 = 1, ε13 = −1, ε14 = −1, ε15 = −1, ε16 = 1,
ε23 = −1, ε24 = −1, ε25 = −1, ε26 = 1, ε34 = −1,
ε35 = −1, ε36 = 1, ε45 = −1, ε46 = 1, ε56 = 1.

hen the point scheme of S is P(1, 2, 5)∪P(1, 2, 4)∪P(1, 2, 3)∪P(1, 2, 6)∪P(4, 5)∪
P(3, 5) ∪ P(3, 4) ∪ P(4, 6) ∪ P(3, 6) ∪ P(5, 6), so ℓ = 6. On the other hand, one can
check that C(A) ≅ M2(k)8, so we have CMZ(A) ≅ Db(mod k8).
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script and helpful comments.
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