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On Knorrer Periodicity for Quadric
Hypersurfaces in Skew Projective Spaces

Kenta Ueyama

Abstract. We study the structure of the stable category CM%(S/(f)) of graded maximal Cohen-
Macaulay module over S/(f) where S is a graded (+1)-skew polynomial algebra in n variables of
degree 1, and f = x? + --- + x2. If S is commutative, then the structure of CMZ(S/(f)) is well
known by Knérrer’s periodicity theorem. In this paper, we prove that if n < 5, then the structure of
CMZ(S/(f)) is determined by the number of irreducible components of the point scheme of § which
are isomorphic to P'.

1 Introduction

Throughout this paper, we fix an algebraically closed field k of characteristic 0.

Knoérrer’s periodicity theorem ([5, Theorem 3.1]) plays an essential role in Cohen-
Macaulay representation theory of Gorenstein rings. As a special case of Knorrer’s
periodicity theorem, the following result is well known (see also [3]).

Theorem 1.1 Let S = k[xi,...,x,] be a graded polynomial algebra generated in de-
greeland let f = x? + x2 +--- + x2. Let CM%(S/(f)) denote the stable category of
graded maximal Cohen-Macaulay module over S/(f).

(i) Ifnisodd, then CMZ(S/(f)) = CM%(k[x]/(x%)) = D*(mod k).
(i) Ifnis even, then CM%(S/(f)) = CM*(k[x, y]/(x* + y*)) = DP(mod k?).

The purpose of this paper is to study a “(+1)-skew” version of Theorem 1.1.

Definition 1.2 Letn e N*.
(i) Wesaythat S is a graded skew polynomial algebra if

S= k(xl, cee xn)/(xixj - aijxjxi)lsi,an’

where a;; = 1forevery 1< i <n, a;ja;; =1foreveryl1<i,j<n,and degx; =1
foreveryl1<i<n.
(ii) We say that S is a graded (£1)-skew polynomial algebra if

S=k{xi,... ,xn>/(xixj - sijxjxi)lsi,an
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is a graded skew polynomial algebra such that ¢;; equals either 1 or —1 for every
1<i,j<m,i#j.

Clearly, a graded polynomial algebra k[xi, ..., x, | generated in degree 1 is an ex-
ample of a graded (+1)-skew polynomial algebra. Consider the element

2

2.2
f=xi+x+ - +x,

of a graded skew polynomial algebra S = k(x1, ..., x,)/(xixj—a;jx;jx;). Then we no-
tice that f is normal if and only if f is central if and only if § is a (+1)-skew polynomial
algebra.

Let S = k(x1,...,%,)/(xixj — €;jxjx;) be a graded (+1)-skew polynomial algebra
so that f = x7 + x2 +--- + x> € S is a homogeneous regular central element. Let
A be the graded quotient algebra S/(f). Since S is a noetherian AS-regular algebra
of dimension #n and A is a noetherian AS-Gorenstein algebra of dimension n — 1, A
is regarded as a homogeneous coordinate ring of a quadric hypersurface in a (£1)-
skew projective space. The main focus of this paper is to determine the structure of
CM”(A) from a geometric data associated with S, called the point scheme of S. Based
on our experiments, we propose the following conjecture.

Conjecture 1.3 Let S = k(xy,...,x,)/(xix; — €ijxjx;) be a graded (+1)-skew poly-
nomial algebra, let f = x} + x3 + -+ x% € S, and let A = S/(f). Let £ be the number
of irreducible components of the point scheme of S that are isomorphic to P'.

(i) Ifnisodd,then

(2m2— 1) << (2m2+ 1) — CM%(A) = D®(mod kzzm)

for m € N where we consider (_21) = —o0, (;) =0.
(ii) If n is even, then

(Z;n) << (2m2+ 2) — CM%(A) = D®(mod k22m+1)

for m € N where we consider (g) = —o0.
We prove the following result.

Theorem 1.4 (Theorem 3.10) LetS = k(xi,...,x,)/(xixj — €ijx;x;) be a graded
(1)-skew polynomial algebra, let f = x} +x3+---+x2 € S, and let A = S/(f). Assume
that n < 5. Let € be the number of irreducible components of the point scheme of S that
are isomorphic to P*.

(i) Ifnisodd, then € <10 and
£=0<—= CM”*(A) = D®(mod k),
0<£<3 <« CM*(A) = D’(mod k%),
3<£<10 < CM”%(A) = D®(mod k'°).
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(ii) Ifnis even, then £ < 6 and

0< <1< CM*(A) = D®(mod k?),
1<£<6 <« CM*(A) = D®(mod k®).

This theorem asserts that Conjecture 1.3 is true if n < 5.

2 Preliminaries
2.1 Notation

For an algebra A, we denote by Mod A the category of right A-modules, and by mod A
the full subcategory consisting of finitely generated modules. The bounded derived
category of mod A is denoted by D®(mod A).

For a connected graded algebra A, thatis, A = @,y A; with Ay = k, we denote by
GrMod A the category of graded right A-modules with A-module homomorphisms
of degree zero, and by grmod A the full subcategory consisting of finitely generated
graded modules.

Let A be a noetherian AS-Gorenstein algebra of dimension » (see [4, Section 1]
for the definition). We define the local cohomology modules of M € grmod A by
H (M) := lim,_, o Ext,(A/As,, M). It is well known that H! (A) = 0 for all i # n.
We say that M € grmod A is graded maximal Cohen-Macaulay if H:, (M) = 0 for all
i # n. We denote by CMZ(A) the full subcategory of grmod A consisting of graded
maximal Cohen-Macaulay modules.

The stable category of graded maximal Cohen-Macaulay modules, denoted by
CMZ*(A), has the same objects as CMZ(A) and the morphism set is given by

HomCMZ(A) (M’N) = HomgrmodA(M> N)/P(M, N)

for any M,N € CM%(A), where P(M, N) consists of degree zero A-module ho-
momorphisms that factor through a projective module in grmod A. Since A is AS-

Gorenstein, CM”(A) is a triangulated category with respect to the translation functor
M[-1] = QM (the syzygy of M) by [8, Theorem 3.1].

2.2 The Algebra C(A)

The method we use is due to Smith and Van den Bergh [8]; it was originally developed
by Buchweitz, Eisenbud, and Herzog [3].

Let S be an n-dimensional noetherian AS-regular algebra with the Hilbert series
Hg(t) = (1-¢)7". Then S is Koszul by [7, Theorem 5.11]. Let f € S be a homogeneous
regular central element of degree 2, and let A = §/(f). Then A is Koszul by [8, Lemma
5.1 (1)], and there exists a central regular element w € A}, such that A'/(w) = S' by
[8, Lemma 5.1 (2)]. We can define the algebra

C(A) = A'[w™],.

By [8, Lemma 5.1 (3)], we have dim; C(A) = dim,(8') =271,
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Theorem 2.1 ([8, Proposition 5.2]) Let the notation be as above. Then mZ(A) ~
DP(mod C(A)).

2.3 The Point Schemes of Skew Polynomial Algebras

Let S be a quantum polynomial algebra of dimension # (see [6, Definition 2.1] for the
definition).

Definition 2.2 A graded module M € GrMod S is called a point module if M is
cyclic, generated in degree 0, and Hy(t) = (1-1t)7".

If M € GrModS is a point module, then M is written as a quotient S/(gS +
£S + -+ + g,15) with linearly independent g;,...,g,1 € S; by [6, Corollary 5.7,
Theorem 3.8], so we can associate it with a unique point py = V(g1,...,gs-1) in
P(S;) = P"!. Then the subset

E:={py eP"" | M e GrMod§ is a point module}

has a k-scheme structure by [1], and it is called the point scheme of S. Point schemes
have a pivotal role in noncommutative algebraic geometry.

Thanks to the following result, we can compute the point scheme of a graded skew
polynomial algebra.

Theorem 2.3 ([9, Proposition 4.2], [2, Theorem 1 (1)]) Let
S =k(x1,...,xn) [ (xixj — aijxx;)

be a graded skew polynomial algebra. Then the point scheme of S is given by
E= () V(xixjxy) <Pl

1<i<j<k<n
oo Ok F1

For1< iy,..., is < n, we define the subspace
. . . n—1
P(iy,....is):= () V(x;) cP".
1<j<n
JFisns JFis

It is easy to see that the point scheme of a graded skew polynomial algebra in three
variables is isomorphic to P? or P(2,3) uP(1,3) UP(1,2). The following is the clas-
sification of the point schemes of graded skew polynomial algebras in four variables.

Proposition 2.4 ([9, Corollary 5.1], [2, Section 4.2]) Let
S = k(x1, %2, X3, X4) [ (XiXj — a;jxjx;)
be a graded skew polynomial algebra in four variables. Then the point scheme of S is
isomorphic one of the following:
. P3;
* P(1,2,4) UP(1,2,3) UP(3,4);
« P(2,3,4) UP(1,4) UP(1,3) UP(1,2);
* P(3,4)uP(2,4) uP(2,3) uP(1,4) uPP(1,3) UP(1,2).
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3 Results

Throughout this section,

o S=k(x1,...,x,)/(xixj - €ijxjx;) is a graded (+1)-skew polynomial algebra,
* E is the point scheme of S,
o f=x}+x3+---+x2 €S, (aregular central element of S), and

« A=S/(f).
Note that ¢;; = £;; holds for every 1 < i, j < n.
Lemma 3.1 (i) A'isisomorphic to
k(x1, ..o xn) [ (eijxixj + xjxi xﬁ - x?)lsi,jsn,iatj-

(i) w=x2e Al isa central regular element such that A'/(w) = S".
(iii) C(A):= A'[w™]y is isomorphic to

k(ti. ..o tao1)/(titj + eni€ijejntitis t; - Di<i,jen—1,i%j-

Proof (i) and (ii) follow from direct calculation.
(iii) Since S has a k-basis {x,'x5* -+ x}» | i1, i3, ..., i, > 0}, and

(x,,xiw_l)(x,,xjw_l) = x,,x,-x,,xjw_2 = —s,,,-xﬁxixjw_z = —s,,ix,-xjw_l

in C(A) for1<i,j<n—1,i# j, it follows that {x,x;w™", ..., x,x,_ 1w} is a set of
generators of C(A). Put t; := x,x;w " for 1< i < n - 1. Since

tit; = (Xaxiw ™) (Xaxw ™) = —enixixjw ' = gigixixiw
= —eni€ij€jn(—€njXjxiw ") = —eni&ij€jn(xaxw ) (xpx;w ")
= —é€ni€ij€jntjti,
for1<i,j<mn-1,i# j,and
1

t7 = (xpxiw ) (xuxiw ™) = —gnixiw ™ = —eixiw ™ = —ey;

for 1 <i < n—1,wehave a surjection k(ty, ..., t,_1)/(titj + €ni€ij€jntjti, 7+ €ni) —
C(A). This is an isomorphism, because the algebras have the same dimension. Since
e # 0forl < i < n—1, the homomorphism defined by t; - /—¢,;t; induces the
isomorphism

k(tl, e tn_l)/(t,'tj + e,,,-eijej,,tjt,-, f? + Sm‘) =

k(tl"”)tn—l)/(titj+£ni£ij£jntjti) tg—l). u

1

Proposition 3.2 (i) IfE =P""", then C(A) is isomorphic to
Ci=k(t, ..., tyr)/(titj + tjt;, t; - Dici,jsn-1,ij-
(i)  E = Ucicjen P(i, j) if and only if C(A) is isomorphic to

C_i=k(ti, ..., tasr)[(tit; = titi, £ = Digijen-1,iz-
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Proof First note that
(31 &ij€jkeki = (€ni€ij€jn)(€nj€jkekn) (Enkeki€in)

forl<i<j<k<n.
(i) By Theorem 2.3, (3.1), and Lemma 3.1(iii), it follows that

E=P"! — gjjejre; = 1foreveryl<i<j<k<n
< gy;€ij€j, = 1foreveryl<i<j<n
= C(A) 2 C,.
(ii) By Theorem 2.3, (3.1), and Lemma 3.1(iii), it follows that

E= |J P(i,j) < eijejrei # Lforeveryl<i< j<k<n

1<i<j<n
<= ¢jjejker; = —1foreveryl<i<j<k<n
> €4i€ij€jy = —Lforeveryl<i<j<nm
— C(A)=zC..
Here the last < is by commutativity of C(A). |

Theorem 3.3 (i) IfE =P" " and n is odd, then CMZ(S/(f)) = D*(mod k).
(i) IfE=P"" and n is even, then CM*(S/(f)) = DP(mod k?).
(iii) E = Uncicjen P(is j) if and only if CM*(S/(f)) = D*(mod k> ).

Proof Since C, is a Clifford algebra over k, it is known that

Myan2(k)  ifnisodd,
3.2 C,=
G.2) i {Mz(n2)/2(k)2 if n is even,

SO

mod My-ns2 (k) = mod k if n is odd,

mod C,; =
’ {mod My (k)? 2 mod k*  if n is even.

Thus, (i) and (ii) follow from Theorem 2.1 and Proposition 3.2(i).

We next show (iii). If E = Ui<i<j<n P(i, j), then C(A) = C_ by Proposition 3.2(ii).
Since C_ is isomorphic to the group algebra of (Z,)"™" over k, we have C_ = K
so it follows that CM*(S/(f)) = DP(mod kzn_l) by Theorem 2.1. Conversely, if
CMZ(S/(f)) = DP(modk*""), then D*(mod C(A)) = DP(mod k?"") by Theo-
rem 2.1. Since dimy C(A) = 2", it follows that C(A) = k" = C_. Hence, E =
Ui<i<jen P(i, j) by Proposition 3.2(ii). ]

Note that Theorem 3.3(i), (ii) recover Theorem 1.1, and Theorem 3.3(iii) shows that
anew phenomenon appears in the noncommutative case. We can now give an explicit
classification ofCMZ(A) in the case n < 3 (the case n = 1is clear; see Theorem 1.1(i)).

Corollary 3.4 (i) Ifn=2, then E = P' and CM*(A) = D°(mod k?).

https://doi.org/10.4153/50008439518000607 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439518000607

902 K. Ueyama

(ii) Ifn =3, then

E = P? — CM?%(A) 2 D (mod k),
E=P(2,3) UP(1,3) UP(1,2) — CM?%(A) = D°(mod k*).
Proof These follow from Theorem 2.3 and Theorem 3.3. ]

As we will see later, the converse of Theorem 3.3(i), (ii) does not hold in general.
So, in order to give a classification for the cases n = 4 and n = 5, we need a precise
computation.

For a permutation ¢ € &,,, we have an isomorphism

S=k{xi,...,xn)/(xixj — €ijxjx;) —
9

k(x1, .. x) [ (Xo(i)Xo(j) — €ij%a(j)Xa(i)) = So

between graded (+1)-skew polynomial algebras, which we call a permutation isomor-
phism. Since ¢ preserves f, it induces an isomorphism

A=S/(f) = So/(f);

which we also call a permutation isomorphism.

Lemma 3.5 Ifn = 4, then, via a permutation isomorphism, S is isomorphic to a
graded (£1)-skew polynomial algebra whose point scheme is one of the following:

(4a) P%

(4b) P(1,2,4) UP(1,2,3) UP(3,4);

(4c) P(3,4) UP(2,4) UP(2,3) UP(1,4) UP(1,3) UP(1,2).

Proof First, via a permutation isomorphism, S is isomorphic to one of the following:
(4i) agraded (+1)-skew polynomial algebra with e41€12624 = €41€13€34 =
€42€23834 = 15
(411) a graded (il)-SkeW polynomial algebra with E41€12€24 = €41€13E34 = 1,
€42€23€34 = —1;
(4iii) a graded (+1)-skew polynomial algebra with eg€12624 = 1, 41613634 =
€42€23€34 = —1;
(4iv) a graded (+1)-skew polynomial algebra with e41€12624 = €41€13634 =
€42€23834 = —1.
Note that the above follows from (3.1) and the classification of simple graphs of order 3:

3 1 3 1 3—1 3—1

| | g /

2 2 2

(we define e4;¢;j€j4 = —1if {1, j} is an edge in the graph, and 4;¢;j¢j4 = 1 otherwise).
The point scheme of an algebra in the case (4i) is P?, so this is (4a).
The point scheme of an algebra in the case (4iii) is

V(x1x3x4) N V(x2x3x4) = V(Xy,) @] V(X4) @] V(Xl,XZ),
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so this is (4b). The point scheme of an algebra in the case (4ii) is V(x1x2x3) N
V(x2x3x4) = V(x2) U V(x3) U V(x1,x4), s0 an algebra in the case (4ii) is isomor-

phic to an algebra in the case (4iii) via the permutation isomorphism induced by

o=(1132)

The point scheme of an algebra in the case (4iv) is Nicicjeres V(xixjxx) =
Ulsi<jg4 V(X,’,x]'), so this is (4c).

Remark 3.6 It follows from Lemma 3.5 that not every point scheme in Proposi-
tion 2.4 appears as the point scheme of a graded (+1)-skew polynomial algebra.

Lemma 3.7 If n =5, then, via a permutation isomorphism, S is isomorphic to a

graded (£1)-skew polynomial algebra whose point scheme is one of the following:

(52) P%

(5b) P(1,2,3,5) UP(1,2,3,4) UP(4,5);

(5¢) P(1,2,3,4) UP(3,4,5) UP(1,2,5);

(5d) P(3,4,5) UP(1,4,5) UP(1,2,5) UP(1,2,3) UP(2,3,4);

(5e) P(1,3,5)uP(1,3,4) uP(1,2,5)uP(1,2,4) uP(4,5) UP(2,3);

(5f) P(1,2,5)uP(1,2,4) UP(1,2,3) UP(4,5) UP(3,5) UP(3,4);

(5g) P(4,5)uP(3,5)uUP(3,4) uP(2,5)UP(2,4) UP(2,3) UP(1,5) UP(1,4)
uP(1,3) uP(L,2).

Proof First, viaa permutation isomorphism, $ is isomorphic to one of the following:
(5i) agraded (+1)-skew polynomial algebra with

&s51€12€625 = 1, &s1€13€35 = 1, &s51€14845 = 1,

€52€23€35 = 1, €52€24€45 = 1, €53834€45 = 15
(5ii) a graded (+1)-skew polynomial algebra with

Es51€12€25 = 1, &s51€13€35 = 1, &51€14€45 = 1,

€52€23€35 = 1, €52€24€45 = 1, €53€34€45 = —1;
(5iii) a graded (+1)-skew polynomial algebra with

£51€12625 = 1, e51€13€35 = 1, €51€14€45 = 1,

€52€23€35 = 1, €52€24€45 = —1, €53€34845 = —1;
(5iv) a graded (+1)-skew polynomial algebra with

&51€12€25 = —1, &s51€13€35 = 1, &s51€14845 = 1,

€52€23835 = 1, €52€24€45 = 1, €53€34€45 = —1;
(5v) agraded (+1)-skew polynomial algebra with

&51€12825 = 1, &51€13€35 = 1, €51€14€45 = —1,

€52€23€35 = 1, €52€24€45 = —1, €53€34€45 = —1;
(5vi) a graded (+1)-skew polynomial algebra with

&s1€12825 = 1, &s51€13€35 = —1, Es51€14€45 = 1,

€52€23835 = —1, €52€24€45 = —1, €53€34€45 = 15
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(5vii) a graded (+1)-skew polynomial algebra with
&s51€12€25 = 1, &s51€13€35 = —1, &s51€14845 = —1,
€52€23€35 = 1, €52€24€45 = 1, €53€34&45 = —1;
(5viii) a graded (+1)-skew polynomial algebra with
£51€12625 = 1, &51€13€35 = —1, 51614845 = —1,
€52€23€35 = —1, €52€24€45 = —1, €53€34€45 = 15
(5ix) agraded (+1)-skew polynomial algebra with
&51€12€625 = 1, &s1€13€35 = 1, 51614845 = —1,
€52€23€35 = —1, €52€24€45 = —1, €53€34€45 = —1;
(5x) agraded (+1)-skew polynomial algebra with
&51€12825 = 1, &51€13€35 = —1, €51€14€45 = —1,
€52€23835 = —1, €52€24€45 = —1, €53€34€45 = —1;
(5xi) agraded (+1)-skew polynomial algebra with
&s51€12€25 = —1, &51€13€35 = —1, Es51€14€45 = —1,
€52€23€35 = —1, &52€24€45 = —1, €53€34€45 = 1.

Note that the above follows from (3.1) and the classification of simple graphs of

order 4:

4 1 4 1 4 1 4 1 4—1 4 >< 1
3 2 3 2 3 2 3 2 3—2

4—1 4—1 4—1 4—1 4
3

L/Z ><2 .la>2 ?‘>>—<2

3 2
(we define es;¢;¢j5 = —1if {i, j} is an edge in the graph, and ¢5;¢;j¢j5 = 1 otherwise).

The point scheme of an algebra in the case (5i) is P*, so this is (5a).
The point scheme of an algebra in the case (5v) is

1
|
2

V(X1X4X5) n V(XZX4X5) N V(X3X4X5) = V(X4) @] V(X5) U V(xl,xz, .X3),

so this is (5b). The point scheme of an algebra in the case (5ii) is V(x1x3x4) N
V(x2x3x4) N V(x3x4x5) = V(x3) U V(x4) UV (x1, X2, X5), s0 an algebra in the case
(5ii) is isomorphic to an algebra in the case (5v) via the permutation isomorphism
inducedbyo = (13243).

The point scheme of an algebra in the case (5viii) is
V(x1x3x5) N V(x1x4%5) N V(x3x3%5) N V(x2x4%5) = V(x5) UV(x1,x2) UV(x3, x4),

so this is (5¢). The point scheme of an algebra in the case (5iii) is V(x1x2%4) N
V(x1x3x4) N V(x2x4%5) N V(x3x4%5) = V(x4) U V(x1,%5) U V(x2,%3), so an alge-
bra in the case (5iii) is isomorphic to an algebra in the case (5viii) via the permutation

isomorphism induced by 0 = (123 43).
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The point scheme of an algebra in the case (5vi) is

V(x1x2x4) n V(X1X3X4) n V(X1X3X5) n V(X2X3X5) n V(XZX4X5) =
V(xl,xz) @] V(X’z, X3) @] V(Xg,, x4) @] V(x4, X5) @] V(Xs, .X]),

so this is (5d).
The point scheme of an algebra in the case (5ix) is

V(xx2x3) N V(x1x4x5) N V(x2x3%4) N V(x2x3%5) N V(x2x4%5) N V(x3%4%5) =
V(Xz, X4) @] V(Xz,X5) U V(X3,X4) U V(JC3,X5) U V(xl, XZ,X:J,) U V(xl, X4,X5),

so this is (5e). The point scheme of an algebra in the case (5iv) is V(x1x2x3) N
V(x1x2x4)ﬁV(x1x2x5)ﬁV(x1x3x4)ﬁV(x2x3x4)ﬂV(x3x4x5) = V(.Xl, X3)UV(X1, X4)U
V(x2,x3) UV(x2,x4) UV (x1, X2, x5) UV(x3, X4, X5 ), 50 an algebra in the case (5iv) is

isomorphic to an algebra in the case (5ix) via the permutation isomorphism induced
12345

byo=(333411)
The point scheme of an algebra in the case (5x) is

V(x1x3x4) N V(x1x3%5) NV (x1x4%5) N V(x2x3%4) N V(x2%3%5)
NV (x3x4%5) N V(x3x4%s5)
=V(x3,%4) UV(x3,x5) UV (x4, x5) UV(x1, X2, x3) UV(x1, X2, X4)
U V(x1, %2, X5),

so this is (5f). The point scheme of an algebra in the case (5vii) is V(x1x2x3) N
V(x12%2%4 ) "V (x1%3%4 )NV (x123%5 ) NV (21545 )NV (x2x3%4 ) WV (x3%45) = V (%1, X3)
UV (x1,x4) UV (x3,x4) UV(x1, X2, x5) UV (x2,x3,%5) UV(x2,X4,%5), s0 an algebra
in the case (5vii) is isomorphic to an algebra in the case (5x) via the permutation iso-
morphism inducedby o = (133 13).

The point scheme of an algebra in the case (5xi) is Micicjekes V(xiXjxk) =

Ui<icjckes V(Xi» Xj» Xk ), so this is (5g). [ ]

To describe the algebras C(A) appearing in Lemma 3.1, we show that the following
algebras are isomorphic to algebras of the form M; (k)’.

Lemma 3.8 (i) Ci:=k(t, ts, t3)/(tits + taty, tits + tsty, bt — tsta, 7 = L, 15 — 1,
t3 — 1) is isomorphic to M, (k).

(i) Gii=k(ti, ta, t3) /(W2 +taty, tits—t3 1y, tats—tsta, 1 =1, 13 —1, t3-1) is isomorphic
to M2(k)2

(iii) Cii = k(t1, ta, t3, ta) [ (fits + baty, fits + t3h, ity — taty, tals + t3ta, bty — tats,
tsty — tats, t} — 1,85 — 1, 13 — 1, 3 — 1) is isomorphic to M, (k)*.

(iv) Ciy = k(t1, 2, t3, ta) [ (1t2 + taty, it — t3ty, Bty — taty, bty — B3y, taty — taty,
tsty + tats, tf — L, 15 — 1, 15 — 1, 15 — 1) is isomorphic to My (k).

(V) Cy = k(ti, ta, t3, ta) [ (fits + taty, ity — t3ty, tits + taty, bty — t3ty, taty — tats,
tsty + tyts, t2 — 1,15 — 1, t3 — 1,13 — 1) is isomorphic to My (k).

(vi) Cyi = k(t1, ta, t3, ta) [ (tita + taty, itz + t3ty, bty — taty, tats — tats, oty — tats,
tsty — tats, t} — 1,15 — 1, 13 — 1, 5 — 1) is isomorphic to M, (k)*.

(vii) Cyii = k{1, t2, 13, ta) [ (Bits + tafy, tits — B311, fity — taty, ot — B31p, taty — taty,
tsty — tats, tf — 1,15 — 1, 15 — 1, 5 — 1) is isomorphic to M, (k)*.
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Proof (i) Let

1 1
e1:2(1+t2+t3+t2t3), 32:2(1—t2+t3—t2t3),
1 1
es=2(1+ 0 -t -hts), es=,(1-t—ts+ hoty).
Then they form a complete set of orthogonal idempotents of C;. Since
1 1
eyt = Z(1+ ty) + 13 + t2t3)t1 = th(l_ h—t3+ t2t3) = tiey,
1 1
ey = 1(1— ty) + 3 — t2t3)t1 = Zt2(1+ hh—t3— t2t3) = f1e3,
1 1
est; = Z(1+ by —t3 — t2t3)t1 = th(l —h+t3— t2t3) = ties,

1 1
eqt) = Z(l_ t) —t3 + t2t3)f1 = th(l%— t + 3 + t2t3) = e,

it follows that the map M, (k)? - Cj;

an  an bu b

Nby b

az a4z 21 22
ane; +apeities +bye; +biaesties

+ajestier +azey +b21€3t1€2 +b22€3

is an isomorphism of algebras.
(ii) Since t3; commutes with t;, ¢, in Cj;, we have

Ci 2 k{t, o)/ (hty + ot i} =1, 65 — 1) @ k[t3]/(£5 - 1)
= Mz(k) Qk kz = Mz(k)2

by (3.2).
(iii) Since t4 commutes with #;, t,, t3 in Cj;;, we have

Ciii = k(tl, ts, t3)/(t1t2 + by, tit3 + t3t, b b3 + 315, t12 -1, t; -1, t§ - 1)
® k[ta]/(ti - 1)
= M, (k)* @ k* = My (k)*

by (3.2).
(iv) Since t3, t4, commute with t;, ¢, in C;,, we have

Civ 2 k(ti, )/ (hity + ot 1] = 1,15 — 1)
® k(ts, ta)/(tsty + tats, 15 — 1,12 — 1)
= My (k) @k Ma(k) = My(k)
by (3.2).
(v) Let

) 1
e1:Z(1+t1+t3+t1t3), ez=1(1—t1+t3—t1t3)’

1 1
e3:1(1+t1—t3—t1t3), e4:1(1—t1—f3+t1t3)-
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Then they form a complete set of orthogonal idempotents of C,. Similar to the proof
of (i), we have

ety = tyey, ety = trey, eitsty = tylzes,
exty = tye3, ext; = fey, extyty = tatrey,
esty = tyey, esty = frey, estyty = tabrey,
eqty = tyey, eqty = tre3, eqtyty = tytser,

so it follows that the map My (k) — Cy;

an diz a3 dig
az1 dpzz Az3z 44

—

asl dsz as3 dzq

a4 Aday A43 O44
ape; +apnertsey +apzeitre; +apsertstres
+djeqtse +djz ey +dpszeqtytre; +dpgeqtres
+asextre, +asnextstres +asze; +aszsextyes

+adgesztatre; +agpestrey +agzestsen +dg4€3

is an isomorphism of algebras.
(vi) Since t4, commutes with t;, t,, t3 in Cy;, we have

Cyi 2 k{ts, ty, t3) [ (ity + taty, tits + t3ty, tats — Lty £ — 1,85 — 1,85 — 1)
® k[t4]/(t5 1)
~ M, (k)* ® k* = M, (k)*

by (i).
(vii) Since t, commutes with t;, t,, t3 in Cy;;, we have

Cyii 2 k{t1, ta, 13) [ (its + toty, tits — taty, tats — taty, 1 — 1,85 — 1,85 — 1)
® k[ta]/(13 - 1)
= M, (k)* ® k* = M, (k)*
by (ii). [

Theorem 3.9 (i) Ifn =4, then
E=P orP(1,2,4) uP(1,2,3) UP(3,4)
— CM%(A) = DP(mod k?),
E=P(3,4)uP(2,4)uP(2,3) uP(1,4) ulP(1,3) UP(1,2)
— CM%(A) = DP(mod k).
(i) Ifn =5, then
E = (5a), (5¢), or (5d) « CM%(A) = D*(mod k),
E = (5b), (5¢), or (5f) < CM*(A) = DP(mod k*),
E = (5¢) <= CM%(A) = D®(mod k'°),
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where

(5a) P*

(5b) P(1,2,3,5) UP(1,2,3,4) UP(4,5)

(5¢) P(1,2,3,4) uP(3,4,5) ulP(1,2,5)

(5d) P(3,4,5) UP(1,4,5) UP(1,2,5) UP(1,2,3) UP(2,3,4)

(5e) P(1,3,5) UP(1,3,4) UP(1,2,5) UP(1,2,4) UP(4,5) UP(2,3)

(5f) P(1,2,5) UP(1,2,4) UP(1,2,3) UP(4,5) UP(3,5) UP(3,4)

(5g) P(4,5)uUP(3,5)uUP(3,4)uP(2,5)uP(2,4) uP(2,3) UP(1,5) UP(1,4)
ulP(1,3) uP(1,2).

Proof (i) By Lemma 3.5, there exists a graded (+1)-skew polynomial algebra " such
that A = §’/(f) and the point scheme E’ of S’ is P*,P(1,2,4) uP(1,2,3) UP(3,4),
or Uicicjes P(i, j). (Note that E E’.) By Theorem 3.3(ii), (iii), we only consider the
case E' =P(1,2,4) UIP(1,2,3) uP(3,4). In this case,

e1€1284 =1,  Eqménness =1, €423834 = -1
(see (4iii) in the proof of Lemma 3.5), so C(S’/(f)) is isomorphic to
k(ti, ta, t3)/ (tity + tat, tits — taty, tats — taty, t7 — 1) = My(k)?

by Lemma 3.8(ii). Thus, we have CM”(A) = CM%(8'/(f)) = DP(mod k?) by Theo-
rem 2.1.

(ii) By Lemma 3.7, there exists a graded (+1)-skew polynomial algebra S’ such that
A~ §'/(f) and the point scheme E’ of S’ is (5a), .. ., (5f), or (5g). By Theorem 3.3(i),
(iii), we only consider the cases (5b) to (5f).

If E is (5b), then
&51€12825 = 1, &51€13€35 = 1, &51€14€45 = —1,
€52€23835 = 1, €52€24845 = —1, €53€34845 = —1,

(see (5v) in the proof of Lemma 3.7), so C(S’/(f)) is isomorphic to

k(t1, 1y, t3, ta) [ (1t2 + taty, 115 + t3 11,
tity — tat), tats + ta3ty, taty — taly, I3ty — tats, t? -1z Mz(k)4

by Lemma 3.8(iii). Thus, we have CM”(A) = CM?%(8/(f)) = DP(mod k*) by Theo-

rem 2.1.
If E is (5¢), then
&s51€12€25 = 1, €s51€13835 = —1, €s51€14€45 = —1,
€52€23€35 = —1, €52€24€45 = —1, €53€34€45 = 1,

(see (5viii) in the proof of Lemma 3.7), so C(S’/(f)) is isomorphic to
k(ty, ta, ts, ta) [ (ta + taty, tits — t3ty, tity = tahy, tats — B3t
tyty — t4ty, b3ty + t4t3, t? - 1) = M4(k)

by Lemma 3.8(iv). Thus, we have CM%(A) = CM%(S8"/(f)) = D°(mod k) by Theo-
rem 2.1.
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If E is (5d), then
&51€12€25 = 1, &51€13€35 = —1, &51€14€45 = 1,
€52€23€35 = —1, €52€24€45 = —1, €53€34€45 = 1,
(see (5vi) in the proof of Lemma 3.7), so C(S’/(f)) is isomorphic to
k(ti, ta, t3, ta) [ (ity + Bty tits — t3ty, tity + taty, tats — taty,
taty — tyty, taty + tats, t2 —1) = My (k)

by Lemma 3.8(v). Thus, we have CM”(A) = CM*(S’/(f)) = D°(mod k) by Theo-

rem 2.1.
If E is (5e), then
&1€12625 = 1, &51€13€35 = 1, €51€14€45 = —1,
€52€23€35 = —1, €52€24€45 = —1, €53€34€45 = —1,

(see (5ix) in the proof of Lemma 3.7), so C(S’/(f)) is isomorphic to

k(ti, b2, t3, t4) [ (t1ty + ta by, tts + ta3ty, tEg — taty,
tats — taty, taty — taty, taty — tats, t1 —1) = My(k)*

by Lemma 3.8(vi). Thus, we have CM”(A) = CM*(S’/(f)) = D®(mod k*) by Theo-

rem 2.1.
If E is (5f), then
&s1€12€25 = 1, &51€13€35 = —1, &51€14€45 = —1,
€52€23€35 = —1, €52€24€45 = —1, €53€34€45 = —1,

(see (5x) in the proof of Lemma 3.7), so C(S'/(f)) is isomorphic to

k{t, t2, t3, t4)/( Lty + bty tit3 — B3ty bty — L4ty
tyts — tsty, baty — taty, tyts — tats, 7 — 1) = My(k)*

by Lemma 3.8(vii). Thus, we have CM”(A) = CM*(S’/(f)) = D*(mod k*) by Theo-
rem 2.1. =

Let € denote the number of irreducible components of E that are isomorphic to
P!, that is, the number of irreducible components of the form P(i, j). Corollary 3.4
and Theorem 3.9 imply the following result, which states that Conjecture 1.3 is true
for n <5.

Theorem 3.10  Assume that n <5.
(i) Ifnisodd, then £ <10 and
£=0<—= CM”*(A) = D®(mod k),
0<€<3 < CM*(A) = DP(mod k*),
3<£<10 < CM#(A) = DP(mod k'°).
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(ii) Ifnis even, then £ < 6 and

0<€<1+< CM*(A) = D’(mod k?),

1< €< 6« CM”(A) 2 D®(mod k%).

At the end of paper, we collect some examples when n = 6 as further evidence for
Conjecture 1.3.

Example 3.1 (i) LetS = k(xl,...,xﬁ)/(x,-xj —s,-jxjxi) with
en =1, &3 = -1, ey =1, &s = -1, e =1,
&3 =1, &4 =-1 €5 =1, €6 =1, &4 =1,
&5 = -1, €36 = 1, €45 = -1, €46 = L, &6 = L.

Then the point scheme of S is (3,4, 5) UPP(2, 3,4)uP(1,4,5)UlP(1,2,5)UP(1,2,3)u
P(3,4,6)uUlP(1,4,6)ulP(1,2,6) UP(5,6), so £ = 1. On the other hand, one can check
that C(A) = M4(k)?, so we have CMZ(A) = DP(mod k?).

(ii) LetS = k(xy,...,x6)/(xixj — &;jxjx;) with

ep =1, e3 =1, ey = -1, €5 = -1, &6 =1,
&3 =1, &4 =1, &5 =1, &6 =1, &4 =1,
&35 = —1, &6 =1, &45 =1, €46 =1, &6 = 1.

Then the point scheme of S is P(2,3,4,5) uP(1,2,4,5) uP(2,3,6) u P(1,2,6) U
P(4,5,6) UP(1,3), so £ = 1. On the other hand, one can check that C(A) = M4(k)?,
so we have CM”(A) = DP(mod k?).

(iii) Let S = k(x1,...,x6)/(xixj — &;jxjx;) with

ep =1, &3 = -1, g4 = -1, €5 = -1, €6 =1,
&3 =1, &4 = -1, &5 =-1 &6 =1, &34 = -1,
&5 =-1, €6 =1, £45 = -1, €46 = 1, &5 = L.

Then the point scheme of S is P(2,3,5) UP(2,3,4)UlP(1,2,5)uP(1,2,4)uP(1,2,6)U
P(2,3,6) UP(4,5)uP(1,3) UP(4,6) UP(5,6), so £ = 4. On the other hand, one can
check that C(A) = M, (k)?, so we have CMZ(A) = D®(mod k®).

(iv) Let S = k(x1,...,X6)/(xixj — &;jxx;) with

e =1, &3 = -1, g4 = -1, &5 =-1, £ =1,
&3 =-1, &4 =1, &5 = -1, &6 =1, €34 = -1,
&5 = -1, &6 =1, &45 = -1, €46 =1, &6 =1

Then the point scheme of S is P(1,2,5) UP(1,2,4) uP(1,2,3) UP(1,2,6) UP(4,5) U
P(3,5) UP(3,4) uP(4,6) uP(3,6) UP(5,6), so £ = 6. On the other hand, one can
check that C(A) = M, (k)®, so we have CM”(A) = DP(mod k®).

Acknowledgment The author thanks the referee for a careful reading of the manu-
script and helpful comments.

https://doi.org/10.4153/50008439518000607 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439518000607

On Knérrer Periodicity 911
References

[1] M. Artin, ]. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves.
In: The Grothendieck Festschrift, vol. I, Prog. Math., 86, Birkhduser, Boston, MA, 1990, pp. 33-85.

[2] P Belmans, K. De Laet, and L. Le Bruyn, The point variety of quantum polynomial rings. J. Algebra
463(2016),10-22.  https://doi.org/10.1016/j.jalgebra.2016.06.013.

[3] R.-O. Buchweitz, D. Eisenbud, and J. Herzog, Cohen-Macaulay modules on quadrics. In:
Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in
Math., 1273, Springer, Berlin, 1987, pp. 58-116.  https:/doi.org/10.1007/BFb0078838.

[4] P.Jorgensen, Local cohomology for non-commutative graded algebras. Comm. Algebra 25(1997),
no. 2, 575-591.  https://doi.org/10.1080/00927879708825875.

[5] H.Knorrer, Cohen-Macaulay modules on hypersurface singularities. I. Invent. Math. 88(1987),
153-164.  https://doi.org/10.1007/BF01405095.

[6] 1. Mori, Co-point modules over Koszul algebras. ]. London Math. Soc. (2) 74(2006), no. 3, 639-656.
https://doi.org/10.1112/5002461070602326X.

[7] S.P. Smith, Some finite-dimensional algebras related to elliptic curves. In: Representation theory of
algebras and related topics (Mexico City, 1994), CMS Conf. Proc., 19, Amer. Math. Soc., Providence,
RI, 1996, pp. 315-348.

[8] S.P.Smith and M. Van den Bergh, Noncommutative quadric surfaces. J. Noncommut. Geom.
7(2013), no. 3, 817-856.  https://doi.org/10.4171/JNCG/136.

[9] J. Vitoria, Equivalences for noncommutative projective spaces. 2011.  arxiv:1001.4400v3.

Department of Mathematics, Faculty of Education, Hirosaki University, 1 Bunkyocho, Hirosaki,
Aomori 036-8560, Japan
e-mail : k-ueyama@hirosaki-u.ac.jp

https://doi.org/10.4153/50008439518000607 Published online by Cambridge University Press


https://doi.org/10.1016/j.jalgebra.2016.06.013
https://doi.org/10.1007/BFb0078838
https://doi.org/10.1080/00927879708825875
https://doi.org/10.1007/BF01405095
https://doi.org/10.1112/S002461070602326X
https://doi.org/10.1112/S002461070602326X
https://doi.org/10.4171/JNCG/136
http://www.arxiv.org/abs/1001.4400v3
mailto:k-ueyama@hirosaki-u.ac.jp
https://doi.org/10.4153/S0008439518000607



