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ON INTEGRATION
IN PARTIALLY ORDERED GROUPS

PANAIOTIS K. PAVLAKOS

0. Introduction. M. Sion and T. Traynor investigated ([15]-[17]),
measures and integrals having values in topological groups or semigroups.
Their definition of integrability was a modification of Phillips—Rickart
bilinear vector integrals, in locally convex topological vector spaces.

The purpose of this paper is to develop a good notion of an integration
process in partially ordered groups, based on their order structure. The
results obtained generalize some of the results of J. D. M. Wright
([19]-[22]) where the measurable functions are real-valued and the mea-
sures take values in partially ordered vector spaces.

Let H be a g-algebra of subsets of T, X a lattice group, Y, Z partially
ordered groups and m : H — V a V-valued measure on H. By F(T, X),
M(T, X), E(T, X) and S(7T, X) are denoted the lattice group of functions
with domain 7" and with range X, the lattice group of (H, m)-measurable
functions of F(T, X), the lattice group of (H, m)-elementary measurable
functions of F(7, X) and the lattice group of (H, m)-simple measurable
functions of F(7T, X) respectively.

First we prove that ‘““Egoroff’’ convergence implies order convergence
m-a.e. on T in F(T, X) (without the assumption that X be a lattice)
(Theorem 2.1). Moreover if X is of countable type and has the diagonal
property, S(T, X) is “dense” in M(T, X), with respect to order con-
vergence m-a.e. on T, and M (T, X) is “closed” with respect to uniform
order convergence m-a.e. on T (Theorem 2.3).

In the sequel suppose there exists a positive bi-additive function from
X X Y into Z, order separately continuous. We integrate X-valued
functions with respect to Y-valued measures. The integral lies in Z.
First we define the lattice group I of (H, m)-elementary integrable
functions in E(T, X).

Next we extend the lattice group I in M(7, X), using the uniform
order convergence m-a.e. on T and define the lattice group ! of (H, m)-
integrable functions in M(T, X); f belongs in £ if and only if there
exist f; € £, 1 = 1, 2 such that:

fit) = f@t) £ f.(¢), m-ae. on T.

On the other hand, under mild conditions we give two convergence
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theorems. Moreover the function v : H — Z, v(4) = [4 f()dm(t) with
f € £, is o-additive on H (with respect to order convergence in Z).

In Section 4 we have been able to obtain some connections between
the given definition of measurability, the definition of partitionability
(due to M. Sion [15]) and the classical definition, whenever X is a Banach
lattice. In particular we remark that in general the space S(7', X) is not
sufficient to develop the space M (T, X).

We close this paper with an application to a representation theorem.

1. Setting and terminology. Throughout this paper all groups are
abelian and written additively. By a partially ordered group (p.o.g.) we
mean a group X endowed with a partial ordering < such that the follow-
ing condition is satisfied:

x < yimpliesx +2 <y +3 forallxy 2zinX.

X is a lattice group if (x V ¥): = sup {x, ¥} and (x A ¥): = inf {x, y}
exist for all x, ¥ in X. In this case

|x|: = sup {x, —x}, xt: =sup{x,0} and x—: = sup {—=x, 0},

where 0 denotes the zero element in X.

Various concepts of order convergence can be defined in a p.o.g. X
(cf. {11]). In this paper we shall use the following definition. The net
(x;) jes in X o-converges to x in X (denoted o-lim; x; = x), if there exist
an increasing net (z.).c and a decreasing net (v4)qep in X such that:

(@) sup {zc: ¢ € C} = x = inf {y,: d € D} (denoted ‘‘z, T x”’ and

“yd l x”)
(b) For every (¢, d) € C X D there exists j* € J so that:

2z, = x; £ ya whenever j = j*.
We define: (x;),cr is o-fundamental if
o-lim (x; — x;) = 0,
39

(J X J is directed with the cartesian ordering). Clearly if X is a lattice
group o-lim; x; = x if and only if there exists a decreasing net (y4)4ep in X
with v | 0 and for every d € D there exists j* € J such that: |x; — x|
=< ¥4 whenever j = j*. The following lemma can be easily verified
(cf. [2}, Lemma 1, p. 132).

Lemma 1.1. (i) The o-limits are unique.

(i) If o-lim; x; = x, every cofinal subnet of (x,);cs also converges to x.
(iil) If o-lim; x; = x then (x;) jes ts o-fundamental.

(iv) o-lim; x; = x if and only if 0-lim; (x; — x) = 0.
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(V) If () jes 15 increasing (resp. decreasing), then o-lim; x; = x if and
only if x; T x (resp. x; | x).

Vi) If x; T (resp.x; L x) and ya Ty (resp. ya L y), thenx; + ya T x + y
(resp.x; + va L x + ).

X is monotone complete if every majorised increasing net in X has a
supremum in X. X is of countable type if for every decreasing net (x,) ;s
in X with x; | O there exists an increasing sequence {j,:n €¢ N} C J
such that: x;, | 0.

On the other hand X has the diagonal property if, whenever

{Xna: (myn) €E NXN}CX witholimx,, = x, € X,
for each m € N and if
ollmx, = x € X,

then there exists a strictly increasing sequence {n, : m € N} C N such
that

o-lim Xp 0 = X.
m

The following lemmas will be useful in the sequel.
LeEmMA 1.2. Let X be a monotone complete p.o.g., (X,)nen @ Sequence in X

with x, = 0, for every n € N and

o-lim th =x € X.
n i=1

If (%4, )nen 15 a rearrangement of (X,).eN then
n

o-lim Y %y, = «.
n  i=1

Proof. By Lemma 1.1 (v)

x = sup{in:nE N}.

1=1

Let n € N. Then

n $n
Zxk,- =< Ex, < x with s,: = max {ky, ko, k..., ky}.
i=1 i=1

Hence

sup{z Xt m € N} = o-lim ) xy; < x.

=1 n  i=1
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Because the sequence (x,),¢n is also a rearrangement of (xy,),en We have:

x = sup{me:n € N}
i=1

namely

n
o-lim X%y = x
n  i=1

LeMMa 1.3. Let X be a monotone complete p.o.g. and let (x,).en be a
sequence in X with x, = 0, for every n € N. Moreover, let k: N X N — N

be a bijection and let v, , = Xypn for each p and each n in N. Then the
following assertions are equivalent.

(i) o-lim D> x, = x

n  i=1

(n)ollmZZy”—x

m,n {=1

Proof. Suppose (i) is true. Then

X = sup {;xi:ne N}

(Lemma 1.1 (v)). Hence

m n m n Smon

n
ZZ%.FZZ%, in=0-limzxi=x,
t=1 f=1 i=1 j=1 n  i=1

with
Smm: =max fk, i =1,2,...,mj=12...,n},

whenever (m, n) € N X N. Therefore there exists the
o-lim 21 Z Vi S
mn i= _7""

On the other hand given s € N there exist (m; n;) € N X N, 7 = 1,
2,...,sso that

in = Zym,,n, =

i=1

=
o

LMc?

.
[
~-

ohmZZyu.

m,n i=1 j=1
where

Mo: = max {my, Mo, ..., m,}, me: = max {m, ns, ..., n,.

Thus

= o-lim Z x; < o-lim Z E:va

n  i=1 mm i=1 j=1

https://doi.org/10.4153/CJM-1983-020-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-020-3

PARTIALLY ORDERED GROUPS 357

namely
m n
x = o-lim 3 Zyt.j-
m,n =1 j=1
The converse implication is proved similarly.

LemMA 1.4. Let the increasing double sequence {Xp n: (m, n) € N X N}
in the monotone complete p.o.g. X such that:

x = o-lim [o-lim x,, ).
m n

Then

x = o-lim [o-lim x,,,,] = sup {Xpm.: (m,n) € N X N}.

Proof. Put

Xt = 0-lim %y, m € N.
n

Evidently x,, < %, < x, whenever (m, n) € N X N. Therefore there
exists the

x*: = o-limx,, <x, n€N.
m

and it is easy to see that x,* T, whence

x*: = o-lim x,* < x.
n

On the other hand by x,,, < x,* < x*, (m,n) € N X N we get

x = o-lim [o-lim x,, ,] < x*,
m n

namely x = x*,
Next let ¥y € X with x,,, < y for every (m, n) € N X N. Thus

x = o-lim [o-lim x,,,,] < 9.
m n

Hence x = sup {xn.: (m,n) € N X N}.

2. Partially ordered group-valued measures and measurable
functions. Throughout this paper H denotes a s-algebra of subsets of
a space T, Y a p.o.g. and m : H— Y a measure on H (m(4) = 0 for
every A € H and

m( U A,,) = ¢-lim im(A,),
=1

n€N n
whenever (4,).¢N is a pairwise disjoint sequence in H).
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We say that the proposition P(t), ¢t € T is true m-almost everywhere
(denoted m-a.e.) on S € H if there exists M € H such that: m(M) = 0
and P(¢) is true whenever ¢t € S — M.

Now let X be a p.o.g. and let F(S, X), (SC T, S # @), be the p.o.g. of
functions of S in X, where the group and ordering operations are defined
pointwise. Evidently the function ¢ : X — F(S, X), ¢(x) = f, with
f:(t) = x, whenever ¢ € S, is an invariant embending of the p.o.g. X in
F(S, X). Therefore if

{xp:j €J}C X and supf{xp:jeJ} =x
(resp. inf {x;: 7 € J} = y) in X then
sup {ij:j €J} =fa
(resp. inf {f,;: 7 € J} = f,) in F(S, X). In the sequel we identify the p.o.g.
X with its image under the embedding ¢.
Let the net (f;)jes in F(S, X) and f € F(S, X); (f;) jes 0-converges to f

on S (resp. m-a.e. on S € H), denoted o-lim, f; = f on S, (resp. m-a.e.
on S € H) if
o-lim f;(¢) = f(t), foreveryt€ S
j

(resp. m-a.e. on S € H).

On the other hand (f;) ;cs uniformly o-converges to f on S (resp. m-a.e.
on .S € H), denoted u-lim; f; = fon S (resp. m-a.e. on S € H), if there
exist an increasing net (z,).cc in X and a decreasing net (yg)aep in X

such that (a) is valid and:
(g) For every (c,d) € C X D there existsj* € J, so that

2. < fi(t) — f(t) < y4, foreveryt e S
(resp. m-a.e. on S € H), whenever j = j*

THEOREM 2.1. Let (f;)es be a net in F(T, X) and let m : H— Y be a
measure on H. Suppose there exists a sequence (A,),en n H, such that:

@) u—lijmf,- = fon Ay, foreveryn € Nand
o-li;n m(T — 4,) = 0.
Then
o-liznf, =f m-ae.onT.

Proof. Let n € N. By (i) there exists an increasing net (3, ¢)ccc and a
decreasing net (¥,,4)acp in X such that: z, . T 0, ¥,.4 | O and for every
(¢, d) € C X D there exist j, € J with

Zne < f;() — f(t) £ ¥u,a wheneverj = j,, ¢ € A,.
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Next there exists a disjoint sequence (4,*),en in H such that

UAn,*= UAn:=S-

neN n€N

Now we consider the nets (%) ccc, (¥a)aep in F(S, X) with
uo(t): = 2, 0a(t): = ¥u.0, whenevert € 4,*% n € N.

Thus#,10,v; | 0and for any (c,d, t) € C X D X Sthereexists j(t) € J
such that:

u,(t) = f;(t) — f(¢) < va(t), wheneverj = j(¢).

Hence o-lim; f; = f on S. Moreover

Oém(T—S)=m(T— UAn)
il

n€EN

= m( N (T - A,,)) =m(T — 4,), foreveryn € N
n€EN
and

o-limm(T" — 4,) = 0.

Therefore m(T" — S) = 0 which proves the assertion.

In the following X will be a lattice group and ¥, Z will be partially
ordered groups.

Let S(T, X) (resp. E(T, X)) be the set of (H, m)-simple (resp. (H, m)-
elementary) measurable functions of T" in X, where m: H— YV is a
measure on H. By definition S(7, X): = {f € F(T, X): there exists a
finite partition (4:)1<:<, of T such that f(t) = a, for every t € 4,
A; € Hi=1,2,...,n}, (resp. E(T, X): = {f € F(T, X): there exists
a countable partition (4,),e~ of T such that f(¢) = a,, for every t € 4,
A, € Hyn € N}).Letf € F(T, X);fis (H, m)-measurable if there exists
a net (f;);es in E(T, X) so that: u-lim, f; = f, m-a.e. on T. We put

M(T,X): = {f € F(T,X): fis (H, m)-measurable}.

Evidently M (T, X) (resp. S(T, X), E(T, X)) is a lattice subgroup of
the lattice group F(T, X) and

S(T,X) CE(T,X) S M(T,X) € F(T, X).

THEOREM 2.2. Let X be of countable type and f € M (T, X). Then there
exists an increasing (resp. decreasing) sequence (fy)nen (resp. (gu)neN) in
E(T, X) with u-lim, f, = f (resp. u-lim, g, = f), m-a.e. on T.

Proof. By definition there exists a net (k;);c; in E(T, X) and nets
(2¢) ccey (Wa)aep in X such that:

(1) Z;TO, yle
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Given (¢, d) € C X D there exists j* € J with
(2) 2.= ht) — f(t) £ y4, m-a.e. on T whenever j = j*.

By hypothesis for X there exist sequences {c,: # € N} € C, {d,: n € N}

C D so that: 2., T 0, ¥4, | 0. Hence by (2) for every n € N there exists
Jn € J with

Zen < By () — f(t) < y4,, m-a.e. on T whenever j = j,.

Using induction choose an increasing sequence {j,: 7 € N} & J such
that:

Ze, < hj(t) — f(t) £ v4,, m-a.e. on T whenever k =2 n, n € N.
Thus

u-lim hy, = f, m-ae.onT.

Furthermore we put
fu*r = hy, — Y4, n € N.
Evidently f,* € E(T, X) and
Zen — Yo, = fi¥(t) — f(t) =0, m-a.e.on T,
for every & = n, n € N with z,, — ¥4, T 0. So
u-li;nf,,* =f, m-ae.onT.
Next we define fi = f1*, fur1: = sup {fo, fur1*},n € N.Thenf,* < f, < f,
m-a.e. on T and u-lim, f,* = f, m-a.e. on T implies

ulimf, = f, m-ae.onT and f, = fur1, 7€ N.

For the respective case we work similarly.

THEOREM 2.3. Let X have the diagonal property and be of countable type.
(1) If (f;)jer ts a net in M(T, X) such that u-lim; f;, = f, m-a.e. on T
thenf € M(T, X).
(ii) For every f € M(T, X) there exists a sequence (hy)nen in S(T, X)
such that o-lim, h, = f, m-a.e. on T.

Proof. Arguing as in the preceding proof, let us choose an increasing
sequence {j,: n € N} C J such that:

3) wulimf;, =f, m-ae.onT.

Furthermore there exists a double sequence {f;,: (¢, n) € N X N}
C E(T, X) such that:

(4) w-limf;, = f;,, m-a.e.onT,foreachn € N.
k
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Let (k, 1) € N X N. From (3), (4) there exist sequences

{trn: (Byn) € N XN}, {v,: (B, n) € N X N}, {z,: n € N},
{w,: n € N}
in X and s € N such that:

U = fpa(t) —fn(®) S via,
2 < [, () — f(t) £ w,, m-ae.on T,

whenever p, n = s, with
(6) wmnxl0(k—>0),v,]0(0¢—>o), ncN,
and

2,10, w,]0.

Now by the diagonal property for X choose sequences {g,: n € N},
{r,: » € N} in N(g, < @ns1, 72 < 7441, # € N) such that:

6) g T0, 0,010
Therefore by (5), (6) there exists g € N such that:
(7) Upr T 2k S fran(t) — f(8) v, + Wy,

m-a.e. on T, whenever n = g.

Hence (by (7)) #-lim, f,,, = f, m-a.e.on T, with f,,, € E(T,X),n € N
(similarly u-lim, f,,, = f, m-a.e. on T, with f,,, € E(T, X), n € N),
which implies that f € M(T, X).

(ii) Let f € M(T, X). By Theorem 2.2 there exists an increasing se-
quence (f,)nen in E(T, X) with

u-lim f, = f, m-a.e.onT.
Moreover it is easy to see that there exists a double sequence
{hk,n: (k’ n) E N X N}
in S(7T', X) such that

o-lim hy,, = f,, m-a.e.onT. foreveryn € N.
k
Hence by virtue of the diagonal property choose a sequence
{Binn: = hyyn € N}
inS(T, X) (k, < kny1, n € N) such that:
o-lim h, = f, m-a.e.onT.

3. The integral. Let X be a lattice group and let YV, Z be partially
ordered groups such that Z is monotone complete. Assume also the
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existence of a bi-additive function from X X Y into Z, which we denote
simply by juxtaposition with the following properties:
d)Ifogx=<x,and0 £ y; £y, then0 £ x; - y; < x2-y2 whenever
X1, %2 € Xtand y1, v, € V.
(e) If (y.)nen is a sequence in ¥V with o-lim, y, = 9,y € ¥ then

ollimx-y, =%y, foranyx € X.
(f) If (x;)seris anetin X with o-lim; x; = x,x € X then
ollimx;-y=x-y, foreveryy¢€ V.
i

Letf € E(T, X),f 2 0. Then there exists a countable partition (4,),eN
of T by elements of H such that:

f@t) = a, =20, whenevert ¢ 4,, n € N.

Let also m : H — Y be a measure on H; f is (H, m)-integrable on T,
if

o-lim E a;-m(4,)

n i=1

exists in Z. In this case we put:

f f@®)dm(t): = o-lim En:a,-m(A,).

n  i=1

By Lemma 1.2 we get that the integral [ 1 f(t)dm(t) is independent of a
rearrangement of the series

(500 mad)oen.

Next let (B,).en be another countable partition of T° by elements of
H so that: f(¢t) = b, = 0, forevery t € B,,n € N. Thusa; = b;, whenever
AN\ B; #40.

The following lemma verifies that the integral [, f(¢)dm(¢) depends
only on f and is independent of the particular way in which f is written
asan (H, m)-elementary measurable function. Its proof is straightforward.

LEMMA 3.1. Suppose that there exists

o-lim Y a;-m(4,) in Z.

n  i=1

Then

n  i=

o-lim X a,-m(4,) = olim 3 b; - m(B,).
1 n j=1
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Now letf € E(T, X);fis (H, m)-integrable on T if there exist

f fH(e)dm () and f F()dm(t).

Moreover as usual we define

f S@dm(): = ] FH@am() ) I ©am).
Clearly the integral [, f(¢)dm (t) is well defined. We put

I:.=IX,m,Z H,): = {fE E(T', X): there exists f f(t)dm(t)}.
Also

J fOdm(): = f Ja@dm(®)
with

fat): = {fg) i:ig j} whenever 4 € H.

It is an easy matter to prove —f, f, € I whenever f € I, A € H and

-f J©in® = ] _—f@dm().
The following propositions can be easily proved.

ProrosiTiON 3.2. If f, € I,1 = 1, 2 then (f1 + f2) € I and

f . (fr + f2))am () = f Tfl )dm(t) + f . f2()dm (¢t).
ProrositioN 3.3. If f € E(T, X) and f(t) = 0, m-a.e. on T then f € I
and

f 10dm () = o.
PROPOSITION 3.4. [, f(t)dm(t) = O whenever f € I with f(t) Z O,

m-a.e.on T.
Furthermore the following theorems are true.
THEOREM 3.5. The set I is a lattice subgroup of E(T, X).
Proof. This is obvious.

TureoReM 3.6. Let f € E(T, X). Then f € I if and only if there exists
fi€1,i=1,2wih

fit) £ f(t) < fo(t), m-ae.onT.
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Proof. Letf € E(T, X) and f; € 1,1 = 1, 2 with f1(t) £ f(t) £ f2(2),

m-a.e. on T. Thus
Iflt) = g(t), m-ae. onT,

where g: = sup {|f1], |f2|}. By Theorem 3.5 we get g € I.

On the other hand there exist countable partitions (4,)neN, (Bp)nen Of
T by elements of H and sequences (a,)neN, (On)nen in X such that:
f@) = a,, glt) = b,, whenever ¢t € (4, M B,), n € N. Therefore

k n

> > atmd,N By éf g(t)dm(t), foreach (k,n) € NXN
i=1 j=1 T

implies there exist the iterated limits:

k n
o-lim a,+[o-lim > om(4,N B]-)}

k i=1 n j=1

= o-lim iaﬁ -m(4,) =f Fr@®)dm(t).

n  i=1 T

Similarly there existszf‘(t)dm (), hencef € I.

CoroLLARY 3.7. Let f € E(T, X). The following assertions are equivalent.
() fel

(i) frf- el

(iii) If| € 1.

TreEOREM 3.8. Let f € I. Then the function v : H — Z, v(4): =
f 4 f(t)dm(t) whenever A € H is o-additive on H.

Proof. Let (4,).en be a countable partition of T by elements of H
such that:

f(@) = a,, whenevert € 4,, 4, € H,n € N.

Now let (B,).c~N be an increasing sequence in H with B, T B. The in-
creasing double sequence

{3 emaan Ba: bm) € N x N

i=1

is order bounded from above byfT fr(@)dm(¢), hence there exists:

k
olim X a -m(4,N B,)

kn 1=1

k
= sup{Zaf“-m(Aif\Bn): (k,n) € N X N}: = q.
i=1
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By Lemma 1.4

k
a = o-lim [o-lim Sat-m@A,N B,,)]

n k i=1

k
= o-im [o-lim dat-m@A,N B,,)] .
k

But "

o-lim f i fHt)dm(t) = o-lim [a-likm ﬁ_}af’m(A,f\ B,,)]
and S " _

fB fH@)dm@t) = o-lilrcn [o-li;n ;Elaf" cm(4,N B,,)] .
Thus

f Bf*(t)dm(t) = o-lim fB fryam().
Similarly S

o-limf - (@)dm () =f f-@)dm(t)
n Bn B
which proves the assertion.
THEOREM 3.9. Let (f;)jer be a net in I and f € E(T, X) such that:

wu-lim f; = f, m-a.e.onT.
i

Thenf € Iand

o-lim f Fi@t)am (@) =f f@)dm(t).
i Jr T
Proof. By definition there exist nets (z.)cc¢, (¥a)acp in X such that:
8) 2z = f;(¢) — f(t) £ ya, m-a.e. on T whenever j 2 j*, 2,70, v, 0.
Hence
—ya + f1x(t) S f@) £ —zc+ fix(t), m-ae.on T.
Therefore by Theorem 3.6, f € I.
Next by (8)
zc-m(T) éf fi@®)dm () —f f@®)am () = ya- m(T),
T T

whenever j = j* Evidently z, - m(T) 70, y4 - m(T) | 0 and the desired
conclusion follows.
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THEOREM 3.10. Let the net (f;) jer in I with
u-ljir;} (fi—f#) =0, maeonT.
Then the net ([ ¢ f1(£)dm(t)) scs in Z is o-fundamental.
Proof. This is similar to that of 3.9.
THEOREM 3.11. Let the increasing net (f;) jes in I with
u-lignfj =f, m-ae.onT,

where f € M(T, X). Then there exists the o-lim,fo,-(t)dm(l) nZ.
Proof. Since there exist z € Z and j* € J with

f fil)dm(t) < 2 +f fi#(@)dm(t), wheneverj = j*,
T T
the increasing net ([ 7 f,(¢)dm(t)) s is order bounded in Z.

COROLLARY 3.12. Let the increasing sequences (fu)nen, (€u)nen n I
such that

u-lim f, = u-lim g,, m-a.e.on T.
n n

Then

o-lim fon(t)dm(t) = o-limf 2 (t)dm(t).

Hereafter in this paper suppose that X is of countable type. So Theorem
2.2 implies M (T, X) = {f € F(T, X): there exists an increasing sequence
(f)nen in E(T, X) with u-lim, f, = f, m-a.e. on T}. The preceding results
lead to the following definition: A function f € M(7, X) is said to be
(H, m)-integrable on T if there exists an increasing sequence (f,)neN in
with «-lim, f, = f, m-a.e. on T.

The integral of f with respect to m is the element fT f@®)dm(t) in Z
defined by the equality

fo(t)dm(t): = o-lim f fa@®)dm ().

According to Corollary 3.12 the integral [ 7 f(¢)dm(t) does not depend
on the increasing sequence (f,).en in 1.

The set of (H, m)-integrable functions f € M (T, X) is denoted by £
As is easily verified if f € £t then —f, f4 € £ whenever 4 € H and

S ~10imo = ~ [ somo.

https://doi.org/10.4153/CJM-1983-020-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-020-3

PARTIALLY ORDERED GROUPS 367

Furthermore we put

fA F®dam(): = f Fa)im@), A€H.

On the other hand the propositions and theorems of the integral of
(H, m)-elementary integrable functions remain also valid for (H, m)-
integrable functions.

We close the paragraph with the following:

THEOREM 3.13. Let (f,)neN be a sequence in L' such that:
(1) Thereexistsx € X with0 < f,11(t) = fu(t) < x,m-a.e.on T,n € N,
(i1) There exists a sequence (A, )qen tn H with
wu-limf, = 0, m-a.e.oneach Ay, k € Nand

o-llimm(T — 4,) = 0.

(iii) Z has the diagonal property.
Then

o-lim f fa(t)dm (@) = 0

Proof. There exist a decreasing sequence (¥,),en in ¥ and a subsequence
(Ar)nen of (A,)nen so that:

m(T — Ai,) £ ¥, n €N and inf {y,:n € N} = 0.

Therefore

05 [ fimo s fomo ey,
kp
for any (n, p) € N X N. Since
o-lim [fA Fu@®)dm (@) + x-yp] =x-9, p€ Nand
n kp
o-limx -y, = 0,

?

there exists a strictly increasing sequence (g,).¢~ in N such that:

o-lim f fo@)dm () +x -y, = 0.
P Akp

On the other hand by

0 éfrfﬂn(t)dm(t) = f“‘k faa)am(t) + x - yn,
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for every n € N implies

o-lim f faa@)dm (@) = 0.

Hence the decreasing sequence

( f Jn(t)dm (t)>nEN

has a subsequence

( f Jau(O)dm (t))nEN

o-lim fo,,,,(t)dm(t) =0,

so the assertion follows.

with

4. Applications. (i) Measurable Banach lattice-valued functions. Let
(X, £, - II) be a Banach lattice. First we need some definitions.

(a1) The norm || - || is order o-continuous on X if o-lim, x, = x implies
lim, ., [|%,]| = ||x|| whenever (x,),¢n is a sequence in X and x € X.

(a2) Let H' be the s-algebra of Borel subsets of X. A functionf: T'— X
is (H, H')-measurable if f~1(F) € H, whenever F € H'.

(a3) A function f : T'— X is m-partitionable if for every neighborhood
V of 0 there is a partition (4,),enx of T in H such that:

(7= Y 4) =0 and f) —fU) SV, forallneN,
ne

(as) An element e > 0 is an order unit with respect to the norm | - || if
ll¢]| < kimplies|x| < k-e,k € Rt,x € X.

TureoreM 4.1. Let (X, <, || - ||) be @ Banach lattice. Suppose that X is
separable and has an order unit e with respect to the norm || - ||. Let further-
more f : T — X be an (H, H')-measurable function. Then f ¢ M(T, X).

Proof. By hypothesis there exists a countable set
Q:={a:neN}CX with f(T)SQ=X.

Put 4, = f~(Sim(a,)), where Si,,(a,) denotes the closed sphere
with center a, and radius 1/#, (n,7) € N X N.
For every n € N consider the disjoint sequence in H:

By = An,b Bn.r: = An,r - L<J An.iv r=2.
i<r
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Thus T = U;en By,r, for every n € N. Let the sequence (f,)qen in
E(T, X) with f,(¢t): = a,, fort € B, ,, (n,7r) € N X N. Then

If@&) = f@®)l = 1/n, forany (¢, n) € T X N.
Hence

lf®) — fa(®)] = (1/n)e, whenever (¢, n) € T X N,
namely u-lim, f, = fon T.

THEOREM 4.2. Let (X, =, || ||) be a Banach lattice with an order
a-continuous norm || | on X.
Suppose there exists a sequence (f)nen 0 E(T, X) and f € M(T, X) with
u-lim, f, = fon T, Then:

(a) fis m-partitionable.

(b) f1s (H, H')-measurable.

Proof. (a) By hypothesis there exists a sequence (u,),en in X such that:
u, | 0 and for each n € N there exists 7o € N with:

[fe@) — f¢)| £ u, whenever & 2 ng, ¢t € T.
Hence
Ife@®) — f®)] < |lual| whenever & = no, t € T.

So f is m-partitionable (cf. [15] Theorem 3.2).
(b) This is a direct consequence of (a) and Theorem 2.7 in [15].

Remark 4.3. Cearly, if the conditions of the preceding theorem are
satisfied and f is non-order bounded, m-a.e. on T, there is no sequence
(fanew in S(T, X) with u-lim, f, = f, m-a.e. on T. Hence the space
S(T, X) is not sufficient in general to develop the space M (T, X).

(ii) A Riesz represemtation theorem. Here suppose that ¥V = Z and
there exists an element e € X such that: ¢ > 0 and e - y = y, whenever
yev.

Now a function U: £ — Z is positive if U(f) = 0, for every f € £!
with f(t) = 0, m-a.e. on T, additive if U(f1 + f2) = U(f1) + U(f2),
whenever f; € £, 1 = 1, 2 and order continuous if o-lim; U(f;) = U(f),
for every net (f;);ecs in £t with f € £, whenever o-lim, f;, = f, m-a.e.
on 7.

Since X is of countable type the order continuity property of U is
equivalent to the following: o-lim, U(f,) = U(f), for every sequence
(f)nen in Lt with f € &£, whenever o-lim, f, = f, m-a.e. on T. The
equivalence can be easily established following standard arguments
(cf. (18], p. 220).
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On the other hand if x € X, 4 € H by f4* it is denoted the element of
S(T, X) defined: f,*(t) = xift € Aand f,%(t) = 0if ¢ ¢ A.

THEOREM 4.4. Let the positive additive and order continuous function
U: £ — Z, so that: U(f4*) = x - U(fs%), for every (x, A) € X X H.
Then there exists a unique measure m : H — Y with

U(f) = fo(t)dm(t) whenever f € L.

Proof. Define the function m : H — Z, m(4): = U(f4°). Evidently m
is g-additive on H, which implies that m is a measure on H. Now let
f € I. Then there exist a countable partition (4,),e~n of T and a sequence
(@n)nen in X with f(¢) = a,, whenever ¢ € A,, n € N. Since

o-lim Y fa,” = f,

n  i=1

we get by hypothesis

orim U(;f) - U(f).

Moreover
o-lim U(ZfA,-m) = o-lim Z U(fA.‘M)
n i=1 n  i=1

= o-lim i a;-m(4,) =f f@®)dm(¢).

n i=1

Therefore U(f) = [ f(t)dm(¢).
Next let f € 1. Then there exists an increasing sequence (f,)nen in I
so that:

u-limf, = f, m-ae.on 7.
Thus
©  olim U(f) = U(P).
Furthermore by the preceding
U(fa) =f fa@)dm(t) for everyn € N.
T

Hence

(10) o-lim U(f,) = o-lim f Fa®)dm () = f f®)dm(t).
By (9) and (10) it follows that U(f) = fo(t)dm ).
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Finally let/ : H — Y be another measure such that:

U(f) = f i f@)di(t) foranyf€ ¥

Then

m(Ad) = U(fs%) = e-1(4) =1(4) whenever 4 € H,

which completes the proof.
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