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ON INTEGRATION 
IN PARTIALLY ORDERED GROUPS 

PANAIOTIS K. PAVLAKOS 

0. Introduction. M. Sion and T. Traynor investigated ([15]—[17]) f 

measures and integrals having values in topological groups or semigroups. 
Their definition of integrability was a modification of Phillips-Rickart 
bilinear vector integrals, in locally convex topological vector spaces. 

The purpose of this paper is to develop a good notion of an integration 
process in partially ordered groups, based on their order structure. The 
results obtained generalize some of the results of J. D. M. Wright 
([19]-[22]) where the measurable functions are real-valued and the mea­
sures take values in partially ordered vector spaces. 

Let if be a cr-algebra of subsets of JH, X a lattice group, F, Z partially 
ordered groups and m : H —> F a F-valued measure on H. By F(T, X), 
M{T, X), E(T, X) and S(T, X) are denoted the lattice group of functions 
with domain T and with range X, the lattice group of (H, m)-measurable 
functions of F(T, X)> the lattice group of (H, ra)-elementary measurable 
functions of F(T, X) and the lattice group of (H, m)-simple measurable 
functions of F(T, X) respectively. 

First we prove that "Egoroff" convergence implies order convergence 
ra-a.e. on T in F(T, X) (without the assumption that X be a lattice) 
(Theorem 2.1). Moreover if X is of countable type and has the diagonal 
property, S(Tt X) is "dense" in M{T, X), with respect to order con­
vergence ra-a.e. on T, and M(T, X) is ''closed" with respect to uniform 
order convergence m-a.e. on T (Theorem 2.3). 

In the sequel suppose there exists a positive bi-additive function from 
X X F into Z, order separately continuous. We integrate X-valued 
functions with respect to F-valued measures. The integral lies in Z. 
First we define the lattice group I of (if, m)-elementary integrable 
functions in E(T, X). 

Next we extend the lattice group I in M(T, X), using the uniform 
order convergence w-a.e. on T and define the lattice g r o u p e 1 of (iJ, m)-
integrable functions in M(T, X)\ f belongs in J£l if and only if there 
exist fi G if1, i = 1, 2 such that: 

fi(t) g / ( 0 ^ / » ( 0 , w-a.e. on T. 

On the other hand, under mild conditions we give two convergence 
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theorems. Moreover the function v : H—> Z, v(A) = JA f(t)dm(t) with 
f Ç ££1, is (7-additive on / J (with respect to order convergence in Z). 

In Section 4 we have been able to obtain some connections between 
the given definition of measurability, the definition of partitionability 
(due to M. Sion [15]) and the classical definition, whenever X is a Banach 
lattice. In particular we remark that in general the space S(T, X) is not 
sufficient to develop the space M(T, X). 

We close this paper with an application to a representation theorem. 

1. Setting and terminology. Throughout this paper all groups are 
abelian and written additively. By a partially ordered group (p.o.g.) we 
mean a group X endowed with a partial ordering ^ such that the follow­
ing condition is satisfied: 

x ^ y implies x + z g y + z, for all x, y, z in X. 

X is a lattice group if (x V y): = sup {x, y} and (x A y): = inf [x, y} 
exist for all x, y in X. In this case 

\x\: = sup {x, —x], x+: = sup {x, 0} and x~: = sup { — x, 0}, 

where 0 denotes the zero element in X. 
Various concepts of order convergence can be defined in a p.o.g. X 

(cf. [11]). In this paper we shall use the following definition. The net 
(xj)j(zj in X o-converges to x in X (denoted 0-lim^ Xj = x), if there exist 
an increasing net (zc)c£C and a decreasing net (yd)d£D in X such that: 

(a) sup {zc : c £ C\ = x = inf ( ^ : J Ç D} (denoted uzc | x" and 

(b) For every (c, d) £ C X D there exists7* Ç / s o that: 

zc ^ x̂ - ^ ya whenever j ^ j * . 

We define: (Xj)jeT is o-fundamental if 

0-lim (x̂ - — # / ) = 0, 

(J X J is directed with the cartesian ordering). Clearly if X is a lattice 
group 0-limi Xj = x if and only if there exists a decreasing net (yd)d£D in X 
with ^ I 0 and for every d 6 Z> there exists j * £ J such that: \xj — x\ 
^ yd, whenever j ^ j * . The following lemma can be easily verified 
(cf. [2], Lemma 1, p. 132). 

LEMMA 1.1. (i) The o-limits are unique. 
(ii) If 0-lim;- Xj — x, every cofinal subnet of (Xj)j€J also converges to x. 

(iii) If o-Mvcij Xj — x then (Xj) jeJ is o-fundamental. 
(iv) o-XxvdjXj = x if and only if 0 Aim j (xs — x) = 0. 
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(v) If {XJ)^J is increasing (resp. decreasing), then 0-lim, x j — x if and 
only if Xj j x {resp. xi J, x). 

(vi) IfXj | x (resp. Xj J, x) and yd^ y (resp. yaly), then Xj + yd T x + y 
(resp.xj + yd[x + y). 

X is monotone complete if every majorised increasing net in X has a 
supremum in X. X is of countable type if for every decreasing net (xj)j(:j 
in X with Xj J, 0 there exists an increasing sequence \jn : n £ N} C / 
such that: x in j 0. 

On the other hand X has the diagonal property if, whenever 

{xm,n: (w, w) Ç N X N} C X with 0-lim xm,n = x m G l , 
n 

for each m Ç N and if 

0-lim ^ = ^ Ç I , 

then there exists a strictly increasing sequence {nm : m £ N} C N such 
that 

0-lim #m,nm = x. 

The following lemmas will be useful in the sequel. 

LEMMA 1.2. Let X be a monotone complete p.o.g., (xn)n€N a sequence in X 
with ^ H , for every n f N and 

n 

o-lim ^Xt = x £ X. 
n z=l 

If OOWCN w a rearrangement of (xn)n^ then 

n 

0-lim 23 #*,- = x. 

Proof. By Lemma 1.1 (v) 

x = sup 

Let n 6 N. Then 

{2>,:neN|. 

Hence 

sup 

X %ki ^ S ** = X W^ t n 5«: = m a X {*!» *2, * • • • , **}• 

^ n ^ n 

) 23 **;: ^ £ N f = 0-lim 23 **; = x-
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Because the sequence (xn)n& is also a rearrangement of (#*»)„ÇN we have: 

x g sup \ 52 %ki • n € N > 

namely 

0-lim 23 #fc; — *• 

LEMMA 1.3. £e/ -X" be a monotone complete p.o.g. and let (xn)ne^ be a 
sequence in X with xn ^ 0, for every « Ç N . Moreover, let k: N X N —» N 
fre a bisection and let yPiU = xk(Pi7l) for each p and each n in N. Then the 
following assertions are equivalent. 

n 

(i) 0-lim ^Xi — x 
n i—1 

m n 

(ii) o-lim 53 E ^ = *• 
m,n <=1 j '=l 

Proof. Suppose (i) is true. Then 

x = sup 4 52 #*: n ê N r 

(Lemma 1.1 (v)). Hence 

m w m n sm,u n 

52 52 yui = 52 52 **«•..,• = 52 *« = ^ i m 52 *« = *> 

with 

sm,w: = max {kitj: i = 1, 2, . . . , m , j = 1,2 n), 

whenever (m, n) € N X N. Therefore there exists the 

W ft 

0-lim 52 5 2 ^ ^ ; ^ *• 
m,n i= l j=l 

On the other hand given s £ N there exist (wi( n{) £ N X N, i = 1, 
2, . . . , 5 so that 

52** = 52y«.-.n,- ^ 52 ULyt.j ^ °- l im 52 52 ?<.* 
t = i Ï = I t= i ^=1 m , n t-=i J==:i 

where 

ra0: = max jwi, m2, . . . , ms}, w0: = max \n\, n2, . . . , n,}. 

Thus 

n m n 

x = o-iim 52 xt = 0-iim 52 52 y«.*> 
« i—l m,n i= l ^=1 
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namely 

m n 

x = o-lim £) ^2 yitj. 
m,n *=1 j= l 

The converse implication is proved similarly. 

LEMMA 1.4. Let the increasing double sequence {xm>n: (tn, n) Ç N x N ) 
in the monotone complete p.o.g. X such that: 

x = o-lim [o-lim xm,n]. 
m n 

Then 

x = o-lim [0-lim xm,n] = sup \xm,n: (m, n) £ N X N}. 

Proof. Put 

*w: = o-lim xm,nf m Ç N. 

Evidently xm>n ^ #m ^ #, whenever (w, n) Ç N X N. Therefore there 
exists the 

xn*' = o-lim xm,n è x, n G N. 
m 

and it is easy to see that xn* | , whence 

#* : = o-lim xn* S x. 
n 

On the other hand by xmtn ^ xn* ^ x*f (m, n) Ç N X N we get 

x = o-lim [o-lim xm,n] g x*, 
m n 

namely x = x*. 
Next let y 6 X with #m,n ^ y for every (m, «) G N X N. Thus 

x = o-lim [o-lim #m,n] ^ y. 

Hence x = sup {̂ m,n- (w, n) £ N X N}. 

2. Partially ordered group-valued measures and measurable 
functions. Throughout this paper H denotes a o--algebra of subsets of 
a space T, Y a p.o.g. and m : i7 —> Y a measure on H (m(A) ^ 0 for 
every A £ H and 

whenever (^4n)n€N is a pairwise disjoint sequence in H). 
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We say that the proposition P( / ) , t £ T is true m-almost everywhere 
(denoted w-a.e.) on S 6 H if there exists M £ H such that: m(M) = 0 
and P(t) is true whenever t Ç 5 — M. 

Now let X be a p.o.g. and let F(S, X), (S C r , 5 ^ 0), be the p.o.g. of 
functions of 5 in X, where the group and ordering operations are defined 
pointwise. Evidently the function q : X—* F(S, X), q(x) = fx with 
fx(f) — x, whenever / £ S, is an invariant em bending of the p.o.g. X in 
F(S9X). Therefore if 

{xj'.j G J] C X and sup [xj-.j G / } = x 

(resp. inf {xj'.j Ç /} = y) in X then 

sup {/*,: j € 7 } = /* 

(resp. inf {/̂ -: J 6 / } = /y) in F(5, X) . In the sequel we identify the p.o.g. 
X with its image under the embedding q. 

Let the net (fj)j£j in F(S, X) a n d / £ f (5, X ) ; {fj)ju o-converges to f 
on S (resp. w-a.e. on 5 6 LT), denoted o-Yrnij fj = f on 5, (resp. w-a.e. 
o n 5 G F ) if 

o-lim/^O = / ( / ) , for every / € 5 
3 

(resp. m-a.e. on 5 G LT). 
On the other hand (fj)j£j uniformly o-converges to f on S (resp. w-a.e. 

on S G H), denoted u-limjfj = / o n 5 (resp. ra-a.e. on S Ç iï"), if there 
exist an increasing net (zc)c^c in X and a decreasing net (ya)d£D in X 
such that (a) is valid and: 

(g) For every (c, d) 6 C X D there exists j * Ç 7, so that 

sc g / , ( / ) - / ( / ) ^ ydf for every t Ç 5 

(resp. m-a.e. on S £ H), whenever j è j * . 

THEOREM 2.1. Le/ (fj)^j be a net in F(T, X) and let m : H —> Y be a 
measure on H. Suppose there exists a sequence (An)n^ in H, such that: 

(i) u-lrmfj — f on Any for every n £ N and 
3 

o~limm(T — An) = 0. 
n 

Then 

o-limfj = / w-a.e. on T. 
3 

Proof. Let n £ N. By (i) there exists an increasing net (zntC)C£c and a 
decreasing net (yn,d)d£D in X such that: zW)C | 0, ^n>d J, 0 and for every 
(c, d) £ C X D there exist j n Ç / with 

zn,c ^ / i ( 0 - /(*) S yn,d whenever j à 3n, t G ^4n. 

https://doi.org/10.4153/CJM-1983-020-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-020-3


PARTIALLY ORDERED GROUPS 359 

Next there exists a disjoint sequence (^4n*)n€N in H such that 

U A* = U An: = S. 

Now we consider the nets (uc)cec, (vd)deD in F(S, X) with 

uc(t): = z».cPd(0: = :yn,d, whenever / 6 .4n*, w £ N. 

Thus wc Î 0, z;d i 0 and for any (c,d,t) G C X D X S there exists j ( 0 € ^ 
such that: 

«,(0 ^ / ,( /) - / ( /) ^ !>„(/), whenever j è j (0 -

Hence 0-lim^/^ = / on S. Moreover 

0 ^m(T - S) =m\T - U An) 

= tn(n (T-An)) gm(T-An), for every;* G N 
V*€N / 

and 
0-lim m(7" — ^4n) = 0. 

n 

Therefore m(T — S) — 0 which proves the assertion. 

In the following X will be a lattice group and Y, Z will be partially 
ordered groups. 

Let S(T, X) (resp. E(T, X)) be the set of (H, w)-simple (resp. (H, m)-
elementary) measurable functions of T in X, where m : H •—• Y is a 
measure on H. By definition 5(T, X): = {/ £ ^(T, X) : there exists a 
finite partition ( i t ) i ^ ^ n of JT such that f(t) — au for every t £ Ai, 
At€ H,i = 1,2,...,n}f (resp. £ ( J T , X) : = {/ Ç F(7\ X) : there exists 
a countable partition (^4n)n€N of T such that / ( / ) = ani for every £ £ An, 
An (i H,n £ N}). L e t / £ F(T, X) ; / i s (# , w)-measurable if there exists 
a net (fj)j^j in £ ( r , X) so that: u-limj fj — f, w-a.e. on T. We put 

M(T,X): = {/6 F(T,X):fis (H, m)-measurable}. 

Evidently Af(T, X) (resp. 5(JT, X) , £ (T , X)) is a lattice subgroup of 
the lattice group F(T, X) and 

S(T, x) c £(r, x) c M(r, x) c F(r, x). 
THEOREM 2.2. L^ X he of countable type andf £ M(T, X) . 77*ew ^ere 

exists an increasing {resp. decreasing) sequence (fn)n^ (resp. (gn)n^) in 
E(T, X) with u-\\mnfn = f (resp. u-\imn gn = / ) , w-a.e. on T. 

Proof. By definition there exists a net (hj)KJ in E(T, X) and nets 
(zc)ctc, (y<i)dzD in X such that: 

(1) z c ÎO , y * i 0 . 
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Given (c, d) 6 C X D there exists j * 6 / with 

(2) zc ^ hj(t) — /(/) ^ yd, m-a.e. on T whenever j è j * . 

By hypothesis for X there exist sequences {cn\ n G N} C C, {dn: n 6 N} 
Ç D s o that: sCn | 0, 3>dn j 0. Hence by (2) for every n € N there exists 

j n 6 / with 

zCn S hj(t) - f(t) g ydn, m-a.e. on T whenever j ^ j n . 

Using induction choose an increasing sequence \jn : n G N} C / such 
that: 

2C„ ^ ^*(0 — f{t) è y<in, m-a.e. on T whenever k ^ n, n £ N. 

Thus 

w-lim &.,„ = / , m-a.e. #w T. 
n 

Furthermore we put 

/n*: = **, - ^d», n G N. 

Eviden t l y / / £ J3(7\ X) and 

zCn - ydn ^ fk*(t) ~ fit) ^ 0, m-a.e. on T, 

for every k è n, n Ç N with zCrl — ;ydn f 0. So 

w-lim/w* = / , m-a.e. on T. 
n 

Next we define fx = /i*,/„+i: = sup {/„,/»+!*}, » € N. Then /"„* ^ /„ ^ / , 
m-a.e. on 7" and w-limn/n* = / , m-a.e. on 2" implies 

w-lim/n = / , m-a.e. on T and /„ ^ / n + i , w Ç N. 

For the respective case we work similarly. 

THEOREM 2.3. Let X have the diagonal property and be of countable type. 
(i) If (fj)jej is a net in M(T, X) such that u-limjfj = / , m-a.e. on T 

thenf 6 M(T,X). 
(ii) For every f £ M(T, X) there exists a sequence (hn)n^ in S(T, X) 

such that 0-limw hn — / , m-a.e. on T. 

Proof. Arguing as in the preceding proof, let us choose an increasing 
sequence {jn: n £ N} C / s u c h that: 

(3) w-lim/;•„ = / , m-a.e. on T. 
n 

Furthermore there exists a double sequence {fk,n'- (k, n) € N X N} 
QE{T,X) such that: 

(4) uAimfjcn = fjn, m-a.e. on 7\ for each n Ç N. 
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Let (k, 1) 6 N X N. From (3), (4) there exist sequences 

{a*.*: (*, n) e N X N | , {vktU: (*, « ) f N x N ) ( {sn: n € N), 

in X and 5 6 N such that: 

^*,n èfp,n(L) -finit) S Vl>n, 

zk Û fin{t) - / ( / ) ^ MI,, ra-a.e. on T, 

whenever p, n ^ s, with 

(5) uktH Î 0 (* - > oo ) , trltII J, 0 (/ - > oo ) , n € N, 

and 
** Î 0, Wre J, 0. 

Now by the diagonal property for X choose sequences jgn: w ë N), 
{rn: n 6 N} in N(gn < gn+i, rn < rn+1, n ê N) such that: 

(6) wÇn,„ î 0, vTn,n I 0. 

Therefore by (5), (6) there exists g G iVsuch that: 

(7) uqktk + 2 , =g/,„,„(/) - / ( / ) gvritl + wl9 

m-a.e. on T, whenever n ^ g. 

Hence (by (7)) u4imnfQni7l = / , m-a.e. on 71, with/fln,w G £ ( r , X) , » 6 N 
(similarly u-limn fTn>n = / , w-a.e. on T, with/rn>w Ç E(T, X), n G N), 
which implies t h a t / € M(T,X). 

(ii) L e t / 6 •M(2n, X) . By Theorem 2.2 there exists an increasing se­
quence (/n)n€N in £ ( r , X) with 

w-lim/n = / , ra-a.e. on T. 
n 

Moreover it is easy to see that there exists a double sequence 

{**.»: (*, n) 6 N X NJ 

in S(T, X) such that 

o-lim hk,n = /„, ra-a.e. on T: for every n £ N. 

Hence by virtue of the diagonal property choose a sequence 

{hkn>n: = hn,n £ N} 

in S(T, X) (kn < kn+u n 6 N) such that: 

o-\im hn = / , w-a.e. on T. 
n 

3. The integral. Let X be a lattice group and let F, Z be partially 
ordered groups such that Z is monotone complete. Assume also the 
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existence of a bi-additive function from X X F into Z, which we denote 
simply by juxtaposition with the following properties: 

(d) If 0 g Xi ^ x2 and 0 ^ y% ^ y2 then 0 g Xi - yi ^x2-y2 whenever 
xi, x2 € ^ + and yi, ;y2 Ç Y+. 

(e) If (yre)wçN is a sequence in F with 0-limn yn = y, y Ç F then 

0-lim x • yn = x • y, for any ^ Ç I . 

(f) If (Xj)j€j is a net in X with 0-limy Xj = x,x £ X then 

0-lim afy • y = x • y, for every y Ç F. 

Le t / Ç £ ( T , X ) , / jg 0. Then there exists a countable partition (^4„)„6N 

of T by elements of i7 such that: 

/( /) = fln ê 0, whenever / G <4n, w 6 N. 

Let also m : H —> F be a measure on i ï ; / is (if, w)-integrable on T, 
if 

» 
0-lim J3 at • m(Ai) 

n i = l 

exists in Z. In this case we put: 

/ f(t)dm(t): = 0-lim ^ a* • wG4*). 

By Lemma 1.2 we get that the integral JTf(t)dm(t) is independent of a 
rearrangement of the series 

Next let ( A J ^ N be another countable partition of T by elements of 
H so that: f(t) = bn è 0, for every / Ç Bn, n Ç N. Thus at = bjt whenever 

The following lemma verifies that the integral j T f(t)dm(t) depends 
only on / and is independent of the particular way in which / is written 
as an (H, m)-elementary measurable function. Its proof is straightforward. 

LEMMA 3.1. Suppose that there exists 

n 

0-lim X) a i * m (A1) in Z. 
n < = 1 

Then 

n n 

0-lim £ ) ai ' miAt) = 0-lim 23 bj • fn(Bj). 
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Now le t / 6 E(T, X) ; / i s (H, ra)-integrable on T if there exist 

/
f+(t)dm(t) and I f~(i)dm{t). 

p %J p 

Moreover as usual we define 

f f(t)dm(t): = f f+(t)dm(t) - f f~(t)dm(t). 
• / y? » / rp %J rp 

Clearly the integral jTf(t)dm(t) is well defined. We put 

/ : = I(X,m, Z,H,): = {/€ E(T,X): there exists J / ( / )*» (* ) | . 

Also 

I f(t)dm(t): = I fA(t)dm(t) 
%J A J T 

I f(t) iit€A\ 
\ 0 iiti A) 

A " T 

with 

^ ) : = t 0 if* « M l whenever^ € / / . 

It is an easy matter to prove —/, fA € / whenever/ £ I, A £ H and 

- f f(t)dm(t) = f -f(t)dm(t). 
%J rp V rp 

The following propositions can be easily proved. 

PROPOSITION 3.2. Ifft £ / , i = 1, 2 /few (/i + / 2 ) 6 / a n d 

f (/i + / » ) ( ^ « W = f hit)dmit) + J Mt)dm(f). 
V rp %/ rp %) rp 

PROPOSITION 3.3. If f G E(T, X) and fit) = 0, w-a.e. on T thenf £ / 

%J rp 
f(t)dm(t) = 0. 

PROPOSITION 3.4. JV f(t)drn(t) è 0 whenever f £ / with fit) è 0, 
w-a.e. ow T\ 

Furthermore the following theorems are true. 

THEOREM 3.5. Tfe set I is a lattice subgroup of E ( T, X). 

Proof. This is obvious. 

THEOREM 3.6. Z ^ / 6 E(T, X). Thenf £ I if and only if there exists 
f. ç. if i = i, 2 with 

hit) S fit) ^ / 2 ( 0 , m-a .e .onr . 
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Proof. L e t / 6 E(T, X) a n d / , G / , i = 1, 2 with/i(/) £ / ( / ) £ / , ( / ) , 
w-a.e. on T. Thus 

1/1(0 g g(0, m-a.e. on 7\ 

where g: = sup {|/i|, | / 2 | } . By Theorem 3.5 we get g G / . 
On the other hand there exist countable partitions (^4n)n€N, (£n)n € N of 

r by elements of H and sequences (an)TO<EN, (&n)n€N in X such that: 
/( /) = an, g(/) = &w, whenever / G (̂ 4n P\ £re), w Ç N. Therefore 

Z Z a<+m(,4 , n Bj) è I g{t)dm(t), for each ( M ) f N X N 
{=1 i = l ^ T 

implies there exist the iterated limits: 

k T n "I 
0-lim Z a,4* 0-lim 2 m(/4 < Pi Bj) 

k i = l L n i-1 J 

= o-lim X ai+ ' ™Ui) = I f(f)dm(f). 

Similarly there exists j Tf~(t) dm (t), hence/ Ç 7. 

COROLLARY 3.7. L ^ / £ E(T, X). The following assertions are equivalent. 
( 0 / 6 / . 

(ii) / + , / - € / 
(iii) l/l 6 / . 

THEOREM 3.8. Let f £ I. Then the function v : H -+ Z, v(A): = 
jAf(t)dm(t) whenever A Ç H is a-additive on H. 

Proof. Let {An)n^ be a countable partition of T by elements of H 
such that: 

f(t) = am whenever / 6 An, An 6 H, n £ N. 

Now let (J3n)n€N be an increasing sequence in H with Bn f 2?. The in­
creasing double sequence 

\£at
+m(AtnBn):(k,n)enx11j 

is order bounded from above by f Tf+(t) dm (t), hence there exists: 

o-lim ] £ at • m (A, Pi £n) 

= sup { Z ^ i + * ^ ( ^ i ^ ^ n ) : ( * , w ) 6 N X N } : = a. 
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By Lemma 1.4 

a = 0-lim 0-lim ^ a* • m (A t C\ Bn) 

== 0-lim 0-lim X) a*+ • w(^4 < P\ #n) . 

Jim I f+(t)dm(t) = 0-lim 0-lim £ a<+w(^ , Pi Bn)\ 

n J Bn n L k t=i J 

But 

and 

/
f+(t)dm(t) = 0-lim 0-lim J ) a,4" • m(^ , H Bn)\ . 

Thus 

I f(t)drn(t) = 0-lim I f+(t)dm(t). 
J B n J Bn 

Similarly 

0-lim I f~(t)dm(t) = I f~(t)dm(t) 
n J Bn

 J B 

which proves the assertion. 

THEOREM 3.9. Let (fj)jej be a net in I and f £ E(T, X) such that: 

u-limfj = / , m-a.e. on T. 
j 

Thenf £ land 

0-lim I fji^dmit) = I f(t)dm(t). 

Proof. By definition there exist nets (zc)cçc, (ya)dtD in X such that: 

(8) zc ^ fj(t) — f(t) g ydy m-a.e. on T whenever j ^ j * , zc | 0, yd J, 0. 

Hence 

-ya +fj*(t) è KO è -Zc+fAt), w-a.e. on T. 

Therefore by Theorem 3.6, / £ / . 
Next by (8) 

zc • m{T) ^ f fj(t)dm(t) - f /(*)<M0 ^ yd • m(F), 
U rp %J ip 

whenever j ^ j * . Evidently sc • m{T) f 0, ;yd • w(T) J, 0 and the desired 
conclusion follows. 
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THEOREM 3.10. Let the net ( / , )^ j in I with 

u-\\m (fj — fj>) = 0, m-a.e. on T. 
hi' 

Then the net (JTfj(t)dm(t))jeJ in Z is o-fundamental. 

Proof. This is similar to that of 3.9. 

THEOREM 3.11. Let the increasing net (JJ)J^J in I with 

u-limfj = f, m-a.e. on T, 

where f Ç M (T, X). Then there exists the o-lim ô JT f)(t)dm(t) in Z. 

Proof. Since there exist z £ Z and j * Ç / w i t h 

I fj(t)dm(t) g z + I fj*(t)dm(t)y whenever j ^ j * , 

the increasing net (JT fj{t)dm{t))^j is order bounded in Z. 

COROLLARY 3.12. Le/ /fee increasing sequences (fn)n€N, (gn)n€N *» / 
such that 

u-limfn — w-lim gn, m-a.e. #w 7\ 
w n 

Then 

0-lim I fn{t)dm(t) = 0-lim I gn(t)dm(t). 
n * T n J T 

Hereafter in this paper suppose that X is of countable type. So Theorem 
2.2 implies M(T, X) = {/ £ 7 (̂7", X) : there exists an increasing sequence 
(/n)n€N in £ ( r , X) with w-limn/n = / , m-a.e. on T}. The preceding results 
lead to the following definition: A function/ Ç M(T, X) is said to be 
(H, m)-integrable on T if there exists an increasing sequence (/„)weN in / 
with u-\imnfn = / , m-a.e. on T. 

The integral of/ with respect to m is the element j T f{i)dm(t) in Z 
defined by the equality 

/ f(t)dm(t): = o-l\m I fn(t)dm(t). 
T « . J T 

According to Corollary 3.12 the integral j T f(t)dm(t) does not depend 
on the increasing sequence (/n)n€N in I. 

The set of (H, m)-integrable functions/ 6 M(T, X) is denoted byJ^1 . 
As is easily verified if / Ç «èf1 then —f,fA £ i ^ 1 whenever A £ H and 

f -f(t)dm(t) = - f f(t)dm(t). 
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Furthermore we put 

f f(t)dm(t): = f fA(t)dm(t), A € H. 
U A U T 

On the other hand the propositions and theorems of the integral of 
(H, m)-elementary integrable functions remain also valid for (H, m)-
integrable functions. 

We close the paragraph with the following: 

THEOREM 3.13. Let (fn)nçN be a sequence in££l such that: 
(i) There exists x Ç X with 0 S fn+i(t) ^ fn(t) â x, m-a.e. on T,n G N. 
(ii) There exists a sequence {An)n^ in H with 

u-limfn — 0, m-a.e. on each Ak, K N and 
n 

o-limrn(T — An) = 0. 
n 

(iii) Z has the diagonal property. 
Then 

0-lim I fn (t)dm(t) = 0 

Proof. There exist a decreasing sequence (yn)nçN in F and a subsequence 
(Akn)nçN of (An)neN so that: 

m(T - Akn) ^yn, n£N and inf {yn: « G N ) = 0 . 

Therefore 

0 ^ I fn(t)dm(t) ^ I fn(t)dm(t) + x • yp, 
J T J Akp 

for any (n, p) G N X N. Since 

0-lim I fn(t)dm(t) + x - yp\ = x - yp, p 6 N and 
n L ^ Akp J 

o-\im x - yP = 0, 

there exists a strictly increasing sequence (<?n)n€N in N such that: 

0-lim I fQp(t)dm(t) + * • yp = 0. 

On the other hand by 

0 ^ 1 fqn(t)dm{t) ^ I fqn(t)dm{t) + x - yn, 
J T J Akn 
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for every n £ N implies 

o-lim I fqn(t)dm{t) = 0. 
n ** T 

Hence the decreasing sequence 

( f fn(t)dm(t)) 

has a subsequence 

( f f«n(t)dm(t)) 

with 

o-lim I fQn(t)dm(t) = 0, 
n ^ T 

so the assertion follows. 

4. Applications, (i) Measurable Banach lattice-valued functions. Let 
(X, ^ , || • ||) be a Banach lattice. First we need some definitions. 

(ai) The norm || • || is order a-continuous on X if 0-limn xn = x implies 
limn_>0O \\xn\\ = ||x|| whenever (#n)n€N is a sequence in X and x f l . 

(a2) Let H' be the cr-algebra of Borel subsets of X. A function/ : T—+X 
is (# , H')-measurable îîf-^F) G # , whenever F 6 # ' . 

(a3) A function/ : T —» X is m-partitionable if for every neighborhood 
F of 0 there is a partition (yln)n€N of T in H such that: 

m ( r - U ^ « ) = = 0 and f(An)-f(An)QV, for all n G N. 

(a0 An element e > 0 is an order w r i with respect to the norm || • || if 
||x|| g k implies \x\ ^ k • e, k 6 R+, x f I . 

THEOREM 4.1. Le/ (X, ^ , || • ||) be a Banach lattice. Suppose that X is 
separable and has an order unit e with respect to the norm \\ • ||. Let further­
more f : T —> X be an (H, Hf)-measurable function. Then f Ç M(Ty X). 

Proof. By hypothesis there exists a countable set 

Q: = {an: « ^ N ) C I with f(T) QQ = X. 

Put Any. — f~l{S\in{aT)), where S\/n(ar) denotes the closed sphere 
with center ar and radius 1/w, (n, r) £ N X N. 

For every n G N consider the disjoint sequence in H: 

BnX- — Ant\, Bny. = An,T — U AntU r ^ 2 . 
i<r 
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Thus T = UrçN Bn>r, for every « f N. Let the sequence (/„)»ÇN in 
£ ( r , X) with/„(/): = ar, for / G J3„,r, (», r) G N X N. Then 

||/(0 - /„(0|l ^ l/n, for any (*, n) G r X N. 

Hence 

| / (0 - / , ( / ) I ^ (l/»)e, whenever (*, n) G T X N, 

namely w-limn /n = / on T. 

THEOREM 4.2. Let (X, ^ , || ||) be a Banach lattice with an order 
a-continuous norm |J \\ onX. 
Suppose there exists a sequence GQnçN in E(T, X) and f G M(T, X) with 
u-\imnfn = fonT, Then: 

(a) / i s m-partitionable. 
(b) / w (iff, H')-measurable. 

Proof, (a) By hypothesis there exists a sequence (wn)n€N in X such that: 
un I 0 and for each n ^ N there exists Wo G N with: 

l/*(0 ~ / (0I ^ «n whenever k ^ n0, t £ T. 

Hence 

11/*(0 - / ( O i l ^ Ikll whenever * è «o, K T. 

S o / i s m-partitionable (cf. [15] Theorem 3.2). 
(b) This is a direct consequence of (a) and Theorem 2.7 in [15]. 

Remark 4.3. Cearly, if the conditions of the preceding theorem are 
satisfied and / is non-order bounded, m-a.e. on T, there is no sequence 
(fn)nçN in S(T, X) with u-\imn fn = / , m-a.e. on T. Hence the space 
S(T, X) is not sufficient in general to develop the space M(T, X). 

(ii) A Riesz representation theorem. Here suppose that Y — Z and 
there exists an element e G X such that: e > 0 and e - y = y, whenever 
ye Y. 

Now a function U: i f 1 -> Z is £<w/we if £/(/) è 0, for every / G i f 1 

with / ( 0 è 0, m-a.e. on T, additive if t/(/i + /2) = Z7(/i) + J7(/2), 
whenever ft G «âf*, i = 1, 2 and order continuous if 0-lim, £/(//) = £/(/), 
for every net (fj)jej in i f * w i t h / G «âf1, whenever o-limjfj = / , m-a.e. 
on T. 

Since X is of countable type the order continuity property of U is 
equivalent to the following: 0-limn U(fn) = U(f), for every sequence 
(/n)n€N in jSf* with / G «if1, whenever 0-limn /„ = / , m-a.e. on T. The 
equivalence can be easily established following standard arguments 
(cf. [18], p. 220). 
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On the other hand if x £ X, A Ç H b y / / it is denoted the element of 
S(T,X) defined: fA

x(t) = xiit 6 A a n d / / ( 0 = Oif / M . 

THEOREM 4.4. Le/ /&e positive additive and order continuous function 
U: i f 1 -> Z, so / t o : £ / ( / / ) = x • U(fA

e),for every (x, A) Ç X X # . 
TTten /ftere exists a unique measure tn : H —> Y with 

U(J) = I f(t)dm(t) whenever f 6 if1. 

Proof. Define the function rn : H —> Z, m (A): = t /( /V)- Evidently w 
is cr-additive on iJ, which implies that m is a measure on i / . Now let 
f (z I. Then there exist a countable partition C4w)n€N of T and a sequence 
(/On€N in X with/(/) = an, whenever / £ ^4n, n Ç N. Since 

= /, 

we get by hypothesis 

o-lim UVZhi 
a; J _ : tf(/). 

M( Dreover 

0-lim UyEjfAi 
" ) -

: O'lim 
n 

= 0-lim ^ a* • m (Ai) = I f(i)dm(t). 

Therefore £/(/) = /Tf(t)dm(t). 
Next l e t / £ <j£f *. Then there exists an increasing sequence (/n)n€N in / 

so that: 

w-lim/n = / , w-a.e. on T. 
n 

Thus 

(9) o-lim U(fn) = £/(/). 
n 

Furthermore by the preceding 

U(fn)=\ fn(t)dm{t) for every n G N. 
j T 

Hence 

(10) o-lim [/(/») =o-lim I fn(t)dm(t) = I f(t)dm(t). 
n n " T J T 

By (9) and (10) it follows that U(f) = jTf(t)dm(t). 
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Finally let / : H —» Y be another measure such that: 

U(f)= f f(t)dl(t) for a n y / G &\ 

Then 

m (A) = U(fA
e) = « • Z(;4) = / (4 ) whenever A € H, 

which completes the proof. 
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