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ABSTRACT. This study is part of research activities concentrating on the real-time
application of the U.S. National Oceanic and Atmospheric Administration (NOAA) Ad-
vanced Very High Resolution Radiometer (AVHRR) sensor for snow-cover analysis of
the European Alps. For mapping snow cover in heterogeneous terrain, we implement
the widely used linear spectral mixture algorithm to estimate snow cover at sub-pixel
scale. Principal component analysis, including the reflective part of AVHRR channel 3,
is used to estimate fractions of ‘‘snow’’and ‘‘not snow’’within a pixel, using linear mixture
modeling.The combination of these features leads to a fast, simple solution for operational
and near-real-time processing.The presented algorithm is applied on the European Alps
on17 January 2003 and successfully maps snow at sub-pixel scale.The detailed snow-cov-
er information makes it easy to recognize the complex topography of the Alps, more so
than with either a classic binary map or a Moderate Resolution Imaging Spectroradi-
ometer (MODIS) snow product.The sub-pixel algorithm reasonably identifies snow-cov-
er fractions in regions and at altitudes where neither the classic binary map nor the
MODIS algorithm detects any snow. Differences concerning the snow distribution are
found in forested areas as well as in the lowest-elevation zones. The algorithm substan-
tially improves snow mapping over complex topography for operational and near-real-
time applications.

1. INTRODUCTION

Remote-sensing data have long been used to provide infor-
mation on the distribution and properties of snow. Snow-
cover analysis in mountainous regions is required for vari-
ous purposes such as snow mapping, meteorological model-
ing, climate studies, estimation of stored water equivalent or
snowmelt runoff prediction. Some of these applications even
require reliable information on the snow-covered area in
near real time.

The Advanced Very High Resolution Radiometer
(AVHRR) has been operationally employed on the polar-
orbiting weather satellites of the U.S. National Oceanic
and Atmospheric Administration (NOAA) for the last
24 years.This temporal coverage is unique and may be used
for long-term studies analyzing AVHRR data archives and
to maintain the program continuity of the long-term
records in the future. An additional advantage of NOAA
AVHRR is the high temporal resolution, whereas the me-
dium spatial resolution is a challenge in rugged terrain with
small patches of snow and a heterogeneous land cover.

Conventional classification algorithms or hierarchical
threshold approaches applied to snow-cover estimation gen-
erate binary maps containing ‘‘snow’’or ‘‘not snow’’ informa-
tion. Due to the medium spatial resolution of the AVHRR
sensor of 1.1km at nadir, each pixel potentially represents a
mixture of snow, cloud, forest, rock, etc. Classification of
such mixed pixels can lead to errors which render the area
estimation inaccurate (Daly and others, 2000).These errors
are caused by the classification premise that all pixels are

pure, i.e. consist of a single ground-cover type or clouds,
while in fact they are not.

There are many studies dealing with the development of
methods to map snow cover at sub-pixel scale (Nolin and
others, 1993; Solberg and Andersen, 1994; Painter and
others, 1998; Simpson and others, 1998; Mets�m�ki and
others, 2002;Vikhamar and Solberg, 2002).The linear spec-
tral mixture algorithm is awidely used technique for the de-
composition of mixed pixels. It has the advantage of offering
a straightforward approach which provides a physically
meaningful measure of abundance that is portable across
sensors and through time (Roberts and others, 1998).
Althoughmixture analysis was originally developed for sen-
sors with a great number of bands, it has been successfully
adapted to AVHRR data for various fields of application
(DeFries and others, 1997). The algorithm has been proved
to be well suited for snow-cover analysis using AVHRR
data (Simpson and others, 1998; Daly and others, 2000).
Recent studies have contributed to an improvement in sub-
pixel analysis for snow-cover estimation and are focused on
a specific subject of snow-cover fraction retrieval (e.g. vary-
ing snow grain-size or snow-cover detection in the forested
area). Several studies mapping montane snow cover at sub-
pixel scale have yielded generally acceptable results (Ro-
senthal and Dozier, 1996). Accordingly, the linear mixing
assumption is appropriate for mapping alpine snow cover
at sub-pixel resolution. Most of the approaches including
the linear spectral mixture modeling are supervised tech-
niques andmeet the requirement of being a procedure with-
out any human intervention.
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In this paper, we describe and validate a fast, simple
solution for the operational retrieval of snow-covered area
at sub-pixel scale using the linear spectral mixing algo-
rithm. For this purpose, several features are combined:

1. principal component analysis (PCA) to reduce the di-
mensions of the dataset;

2. classification into two types of end-members,‘‘snow’’and
‘‘snow-free’’;

3. inclusion of the reflective part of AVHRR channel 3.

Together, these reduce the number of computations
required for operational and near-real-time processing
without human intervention using the high temporal reso-
lution of NOAA AVHRR.

2. DATA

The Remote Sensing Research Group at the University of
Bern, Switzerland, has for many years received and ar-
chived NOAA AVHRRHigh Resolution PictureTransmis-
sion data covering the whole of the European Alps. The
AVHRR scanner has five spectral bands measuring re-
flected solar (visible and near-infrared) energy and emitted
thermal energy from the Earth’s surface and the atmos-
phere. In this study, we deal with channels 1 (0.6�m) and 2
(0.9�m) in conjunction with channel 3A (1.6 �m), respect-
ively, with the reflective part of channel 3 (3.7 �m). The
pre-processing includes calibration, georeferencing and
atmospheric correction of the visible channels. Atmospheric
correction is based on the Simplified Method for Atmos-
pheric Corrections (SMAC) algorithm (Rahman and Ded-
ieu, 1994). Atmospheric parameters are derived from the
U.S. National Centers for Environmental Prediction
(NCEP) datasets and from the Alpine Model (aLMo) of
the Swiss Federal Office of Meteorology and Climatology
(MeteoSwiss), whereas the atmospherical aerosol content is
extracted from the same AVHRR dataset processed. The
reflective part of channel 3 on NOAA-12, -14 and -15 is cal-
culated based on Baum andTrepte (1999). The local topog-
raphy with varying slope and aspect is taken into account in
computing the bidirectional reflectance distribution func-
tion (BRDF) based on the method presented by Wu and
others (1995). Datasets are orthorectified, so as to take into
consideration the geometric distortions introduced by the
complex relief and the scan geometry. Cloud detection and
masking is done using the Cloud and Surface Parameter
Retrieval (CASPR) package (Key, 2002).

3. ALGORITHM

Linear mixture modeling (Adams and others,1986) is based
on the assumption that the signal received at the sensor is
composed of a linear mixture of pure-element reflections
called end-members. The weights of these end-members
represent the percentage of the pixel area occupied by each
surface-cover type. The weighting coefficients (fractions)
are constrained to be non-negative and sum to one. The
system can be solved by a least-squares solutionwhich mini-
mizes the unmodeled sum of squares of errors.

An accurate estimation of end-member spectra is crucial
to a successful application of the linear mixture model. As
listed by Roberts and others (1998), end-members canbe de-
rived from the data themselves (image end-members), from

a spectral library or from field reflectance measurements
(reference end-members). In this paper, image end-mem-
bers are used.We follow the concept of multiple end-mem-
ber combination introduced by Roberts and others (1998).

3.1. Estimating data dimensionality

Themethod is designed to use the first threeAVHRRchan-
nels, including the purely reflective channels1and 2 and ad-
ditionally channel 3A.The reflective part of channel 3 of the
AVHRR sensor is necessary to involve the NOAA-12, -14
and -15 overpasses in the unmixing procedure. It represents
an additional channel carrying essential information for the
differentiation of snow and other surface-cover types and
clouds.

Some studies, particularly for vegetation, include
AVHRRthermal channels 4 and 5 in the unmixing process
(Mˇcher and others, 2000), although thermal emission is
converted to temperature by the non-linear Planck func-
tion. This does not accomplish the assumption of linearity,
onwhich the unmixing model used in this study is based. In
this sense, only the reflective channels of the AVHRR sen-
sor are integrated in the linear mixing algorithm.

PCA is used to transform a set of correlated variables
(channels) into a new set of uncorrelated variables. It is per-
formed on channels1, 2 and 3A, respectively, with the reflec-
tive part of channel 3. This technique aims to compress the
dataset, to remove spectral redundancy and to improve the
spectral separability. Alternatively, independent component
analysis (ICA) could be used as another multivariate data-
driven analysis technique which is capable of decomposing
any signal, considering the fractions as unknown and ran-
dom quantities (Chang and others, 2002). Its application to
remote-sensing data has recently been investigated and it
may replace PCA once its performance on multispectral
data has been evaluated against the PCA algorithm.

By definition the first two eigenchannels of the PCAcon-
tain the great majority of the total variance and thus pack
>90% of the variance from the three input channels. This
predefinition is important to reduce the data dimensionality
into a single plane in order to calculate a two-dimensional
polygon, which bounds the data space. The PCA method
requires no a priori knowledge of the dataset or spectral
properties of the surface types within the scene.

3.2. End-member determination from convex hull

The PCA transformation enables a graphical extraction of
pixels representing the outer lines of the polygon surround-
ing the data space of the first two principal components
(Fig.1). In the presented example of the NOAA-17 overpass,
19 end-members were determined from the convex hull and
are labeled with circles in Figure 1. Due to illustration facil-
ities, greater circles correspond to clusters of end-members.
The scattergram produces nearly a ternary diagram with
several points lying on the lines along the triangle.The con-
cept of convex geometry, introduced by Settle and Drake
(1993), assumes that these points have the most pure pixel
spectra whereas mixed pixels lie within the data cloud.
One of the limitations of such an approach is that data
clouds without straight lines along the edges cannot be fit
uniquely. Also, any surface type occurring in the same pro-
portion in every pixel is not extractable using this method,
which would not include a ‘‘true’’ snow end-member and
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would miscalculate the snow fractions (Tompkins and
others,1997).

3.3. Identification of end-member spectra

The information inherent in the points representing the
convex hull is not enough to assign a land-cover type to each
spectrum. Figure 2 shows the spectra curves from the differ-
ent image end-members collected from the convex hull of
the dataset from the NOAA-17 noon pass on 17 January
2003. In general, the curves differ significantly from each
other. Several spectra have a similar reflectance level and
the curves nearly coincide, as a result of similar surface ma-
terials. Sunlit snow has a unique spectral signature, and
only potential cloud spectra resemble the snow signatures
with high reflectances in AVHRR channels 1 and 2. Some
signatures clearly represent snow and differ substantially
from other pure spectra, mainly due to channel 3A. This
leads us to define an arbitrarily selected range of values
(dashed lines in Fig. 2) to determine which of the potential
image end-members correspond to a snow reflectance and
represent a snow-image end-member. By definition, all
end-member reflectance spectra lying within this range are
snow-image end-members.

To take into account the local variation of end-member
spectra, Chettri and others (1997) suggest using an average
spectrum of several pixels derived from the extremes of the
polygon, instead of a single spectrum value.We calculate a
mean average of all potential snow spectra, taking into ac-
count the different snow reflectances which result fromvari-
ations in elevation and exposure of snow surfaces in alpine
terrain (Painter and others, 1998) and from minimal end-
member impurities. As seen in Figure 2, the snow end-mem-
bers show some variability of their spectra, and the greatest
differences occur in the near-infrared (channel 2), which is
sensitive to moderate amounts of impurities in the snow
because absorbing particulates affect snow reflectance out
to 0.9�m (Grenfell and others, 1981). The snow-image end-
members determined correspond to reflectances from dis-
tinct geographic locations within the study area. They are
distributed over the western Alps above the timberline at

altitudes>2000ma.s.l.The locations of these end-members
are reasonable and therefore representative for pure-snow
end-members.

3.4. Multiple end-member combination and model
selection

The maximum number of end-members is limited by the
number of spectral bands of the sensor used. Using three
NOAA channels, either end-member pairs or triples could
be constructed. The use of end-member pairs is computa-
tionally less demanding but runs the risk of partitioning un-
modeled end-members into fractions, creating a fraction
error. Sets of image end-member pairs are built consisting
of the calculated snow end-member and another unknown
image end-member which is not further analyzed. The
number of end-members and the snow-image end-member
are fixed, whereas one end-member type is allowed to vary.
These end-member combinations are used to describe the
various mixed pixels in the dataset. Creating multiple end-
member combinations takes the inherent variability of an
image pixel more effectively into consideration (Roberts
and others, 1998). The dataset is unmixed using all end-
member pairs. The output of each mixing model is a frac-
tion image of the unknown end-member and the snow end-
member. In addition, a root-mean-squared (rms) error
image represents the modeling error for each pixel. The
rms error is the only indicator by which the model can be
judged.The fraction of snow in a specific pixel corresponds
to themodelwith the lowest rms for this pixel.The rms error
explains how well the individually predicted pixel spectra
match the data. A visual investigation reveals the spatial
patterns of the rms error, and highlights where the model
has not been constructed correctly.

A small rms error indicates a mathematically good
model fit, and a large rms error explains a failed model con-
struction. However, the rms error gives no information
about the accuracy of the fraction image compared to the
reality. A certain amount of error is inevitable and may be
caused in various ways. First, the spectral property of the
sensor allows only a few end-members to be used to describe
the mixture of materials included in a pixel spectrum. Sec-
ondly, a small number of channels undersample the spectra,
so materials with different reflectance spectra can yield

Fig. 1.Two-dimensional scatter plot using the first two princi-

pal components from NOAA-17, 17 January 2003.The ex-

treme points, surrounded by circles, bound the cluster of pixels

in the feature space.The corresponding pixels are defined as

image end-members following the concept of convex geometry.

Fig. 2. End-member spectra from convex hull (NOAA-17, 17

January 2003).
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indistinguishable reflectance in the bands that are imaged
(Small, 2001). Thirdly, the error residual for each pixel can
be explained by the interaction of reflection between mater-
ials. The assumptions of linear mixing models fail to take
account of non-linear mixing effects. Non-linear mixing

occurs when radiation interacts with several surfaces, and
is neededwhen, for example, forest canopy reflects radiation
to the snow-covered ground (Vikhamar and Solberg, 2002).
Fourthly, residuals may also be produced by illumination
variations caused by topography. Furthermore, atmos-
pheric effects and sensor noise can affect the rms error
(Roberts and others,1993).

3.5. Post-processing

The post-processing takes into consideration the influence of
the modeling constraints (fractions are non-negative and
sum to one) in combinationwith the theoretical assumption
that each pixel spectrummust be describedby only two end-
members.The two-end-membermodel forces the pixel spec-
trum to be unmixed, with only two end-members, one of
which is a snow spectrum, which might not even exist in
the selected pixel. Figure 3 displays the frequency distribu-
tion of snow-cover proportions from all cloud-free pixels in
the daily composite dataset. As canbe seen in the histogram,
only the non-snow end-members are labeled snow-free.The
histogram of pixels from several areas expected to be totally
snow-free has a normal distribution pattern of snow-cover
fraction values. Using the snow-cover fraction of the peak
at the lower end of the snow-cover fraction scale, one can
estimate the width of the normal distribution.We define the

Fig. 3. Histogram showing the frequency of occurrence of

snow-cover fraction values from the NOAA sub-pixel com-

posite image acquired on 17 January 2003.

Fig. 4. Snow-cover fraction daily composite map as a result of the applied sub-pixel algorithm on three NOAA overpasses (N12,

14:42 UTC;N16, 13:19 UTC;N17, 11:00UTC) from17 January 2003.Most of the values result from the NOAA-16 unmixing

output because of the great number of cloud-free pixels over land. NOAA-17 and -12 contribute about 20% to the daily sub-pixel

snow map.The image shows the whole European Alps (44^49‡ N, 5^15‡ E) covering an area of approximately 600 km by

800 km.The snow-cover fractions have been aggregated into four classes; the 0^15% class represents snow-free areas as discussed

in section 3.5. Pixels corresponding to clouds and water bodies are masked out and occur in a pattern signature.
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threshold as twice the snow cover fraction of the peak. Ac-
cording to Figure 3, with a peak at about 7^8% snow-cover
fraction, this leads to a threshold of 15%. All pixels with a
lower snow-cover fraction are labeled snow-free.

4. RESULTS ANDDISCUSSION

4.1. Daily composite

Snow-cover fraction maps from NOAA-16 and NOAA-12
overpasses acquired on the same day, like NOAA-17, have

been used to produce a 1day composite (Fig. 4). This over-
comes the disadvantage of cloudy pixels and incorporates
ephemeral snow cover. Each snow-fraction value in the
composite map corresponds to the maximum snow-fraction
value of the three outputs (MaxSnow). The final sub-pixel
snow map shows a differentiated snow distribution with
higher snow-cover fraction values over the Alps and in the
region of the Bohemian and Bavarian forest in the northeast
of the image. The detailed snow-cover information at sub-
pixel scale makes it easy to recognize the complex topog-
raphy of the alpine terrain with smaller and larger inner-

Fig. 5. Snow-cover products and a MinRMS image generated from 17 January 2003: (a) MODIS daily snow product

(MOD10A1) at 500 m resolution, co-registered to the AVHRR dataset; (b) binary snow-cover composite from separated

NOAA-16 and -17 unsupervised ISODATA classification; (c) subset of the snow-cover fraction daily composite map; (d)

MinRMS error map, appropriate to (c).The region of interest is situated in the central Alps and covers an area of approximately

250� 250 km2.The subset is mostly situated in western Switzerland, characterized by a wide range of elevation zones including

different land-cover types.The northwest part of the image is dominated by theJura mountains (about 1500 m a.s.l), with the

lower altitudes of the Swiss Plateau (about 600 m a.s.l.), ending in the foothills of the higher central Alps (up to 4500 m a.s.l.),

covering the middle part of the subset.The dotted line in (b) and (c) represents the transect shown in Figure 6. Encircled areas

correspond to specific areas of interest which are further explained in section 4.
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alpine valleys. The snow-cover fraction map illustrates a
snow-cover dependency on altitude with an expected snow
gradient.The result of the sub-pixel process seems to be reli-
able for this example, and a detailed discussion is presented
in section 4.2.The short processing time enables it to be used
for operational applications and for long-term studies ana-
lyzing AVHRR data archives.

4.2. Comparison based on MODIS data and on clas-
sic binary mapping

To assess the strengths and weaknesses of the presented al-
gorithm, we focus on a smaller area of interest. This region
is part of the central Alps and is approximately
250 km� 250 km2 in area. The subset is shown in Figure 5
and is mostly situated inwestern Switzerland, characterized
by a wide range of elevation zones including different land-
cover types.

Snow-cover fraction maps are difficult to validate due to
the lack of useful datasets (Hall and others, 2001; Mets�m�-
ki and others, 2002). We use a satellite-derived daily snow-
cover product from NASA’s Earth Observing System Mod-
erate Resolution Imaging Spectroradiometer (MODIS) to
compare with our sub-pixel snow map of 17 January 2003.
The MODIS daily snow product at 500m resolution
(MOD10A1) maps maximum snow cover of a day based on
one ormore passes using the normalized-difference snow in-
dex (NDSI) (Hall and others, 2001). The quality-assurance
information indicates that the overall snow is mapped with
reasonable accuracy. The MODIS snow map has been co-
registered to the AVHRR composite map but has not been
orthorectified, whichmay cause a shift of up to 2 km in high-
er elevation zones of the Alps using AVHRR data. To im-
prove the visual comparison of the classification, a 3 by 3
median filter was applied to the MODIS snow product and
snow cover is shown in black (Fig. 5a).

As seen in Figure 5a, the spatial pattern of snow-cover is
dominated by two larger areas of snow cover. These snow-
cover regions include the lower mountain range of the Jura
in the northwest, and the higher altitudes of the central
Alps. These areas are characterized by a homogeneous

closeness of snow-cover distribution and cover 53% of the
whole subset region. Conversely, isolated snow and snow-
free pixels are quite rare. Noteworthy features are the
snow-free inner-alpine valleys, the Aare valley (46.7‡ N,
8‡ E), at the entrance to the Bernese Oberland, and the
longer Rhone valley in the south (46.2‡ N,7^8‡ E). A larger
snow-free zone, clearly separating the two snow-covered
regions, is found at the lower altitudes of the Swiss Plateau.

Abinary snow-cover daily compositemapwas generated
from the separated NOAA-16 and -17 unsupervised ISODA-
TA classification algorithm. All five AVHRRchannels have
been included in the classification process clustering two
classes. A 3 by 3 median filter was again used to highlight
differences concerning the snow distribution (Fig. 5b). This
binary snow-cover daily composite represents the result of a
conventional classification algorithm. As seen in Figure 5b,
the snow-cover distribution is less uniform than with the
MODIS snow product, and patterns of snow and snow-free
pixels disperse. Smaller valleys in the Alps and in the Jura
mountains come forward, whereas the Swiss Plateau still
dominates as a collective snow-free region. The total snow-
covered area is significantly smaller than with the MODIS
product and only 36% of all pixels are mapped as snow.

The subset of the snow-cover fraction daily composite
map in Figure 5c shows the advantage of the implemented
algorithm following from the additional information on
snow cover at sub-pixel scale. Due to this, a distinct snowline
separating snow-covered from snow-free areas as seen in Fig-
ure 5a andb is not located.The subsetof the snow-cover frac-
tion daily composite map includes the defined threshold of
15% snow-cover fraction. Due to illustration facilities,
snow-cover fraction values below the threshold and masked
areas of cloud and water are merged. Contrary to what the
MODIS snow product and the classical binary algorithm
suggest, the Swiss Plateau is almostcompletely snow-covered
but with a mean snow-cover fraction of only about 26%.
Weather conditions onthenorth side of the centralAlpswere
characterized by snowfall and very cold air masses during
the week before data acquisition.These facts point to a rea-
sonable snow-cover distribution at these lower altitudes.

Areas where the MODIS algorithm maps snow and
neither the binary nor the sub-pixel approach detects snow
are mainly situated in the foothills of the northern Alps and
in the French Jura. These regions, well known as areas of
dense deciduous and coniferous forest, are encircled in Fig-
ure 5a^d and labeled C. The MODIS snow-mapping algo-
rithm uses the normalized-difference vegetation index
(NDVI) together with the NDSI to improve snow mapping
in dense forests (Hall and others, 2001). Illuminated snow
and conifer tree crowns are highly spectral-separable in the
visible and parts of the near-infrared regions (Vikhamar
and Solberg, 2002). As long as snow is on the trees, the
AVHRR sub-pixel algorithm estimates a higher snow-cover
fraction within a pixel. The snow distribution in the forest
may change over time due to wind, topography and snow
interception. In addition, snow-covered ground is affected
by shadow casting from surrounded trees, leading to a non-
linear mixing problem. These factors influence the reflec-
tance and result in a snow-cover fraction <15%.

The areas mentioned stand out in the MinRMS image
withthehighestmodelingerrors (Fig.5d).This is apixel-wise
composite of the minimal modeling error (MinRMS error)
on which the corresponding mixing model with a certain
snow-cover fraction value (Fig. 5c) is based. The MinRMS

Fig. 6.Transect crossing the Bernese Alps (A) to LakeMag-

giore (B). (a) The altitude along the transect; (b) the

snow-cover fraction of the proposed sub-pixel method (solid

line) and the MODIS snow cover (dotted line).
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is given in per cent of the pixel spectrum and varies between
0 and 7.5% deviation. The higher modeling errors are ex-
plainable by the multiple end-member combination which
lacks an end-member representing forest in all of the three
overpasses. Because of this missing end-member, the mixing
modeling becomes inaccurate. In general, the MinRMS is
rather small, and a dependency of themodeling error on the
altitude could not be assessed. A noteworthy feature is the
spatial pattern of the highest MinRMS errors over the
central Alps (see regions D in Fig. 5d). These pixels result
fromtheNOAA-16 overpass andare locatedon higher eleva-
tion zones, situated on the south andwest slopes of the alpine
mountains.The high sun-zenith angle in combinationwith a
large satellite zenith angle influences the spectral reflectance
behaviorof snow.This effect enhances the degree of anisotro-
pyof reflected snowand increases the reflectance inAVHRR
channels 1 and 2 (Jin and Simpson, 1999). The pixels men-
tioned are therefore saturated in channels 1 and 2, and un-
mixed use of a snow-image end-member of a lower
reflectance results in higher modeling errors and tends to
slightly underestimate the snowcover in these pixels.

Snow cover changes significantly with increasing alti-
tudes and different topographic exposures, and the snow
distribution is complex and variable over short distances in
the alpinemountain region.To portray this effect, snow-cov-
er fractions alonga100 km transect through the central Alps
are shown in Figure 6. In Figure 5a and c the mentioned
transect is plotted in dotted lines from A to B. This spatial
profile ranges from northwest (A) to southeast (B), crossing
several inner-alpine valleys and different elevation zones
(Fig. 6a). Figure 6b visualizes the corresponding snow-frac-
tion values in straight lines, whereas theMODIS snow cover
is displayed in dotted lines. As expected, a correlation
between snow-cover fraction values and topography can be
identified. Higher amounts of snow cover at sub-pixel reso-
lution on the north side of the Alps result from the meteoro-
logical conditions days before the data were acquired,
characterized by a very cold air mass with temperatures
below the freezing point. By contrast, hardly any snowfall
occurred on the south side of the Alps. This effect, in com-
bination with the southern exposure of the slope, leads to a
strong decrease in snow cover. The previously mentioned
tendency to slightly underestimate the snow cover at specific
exposures at the highest altitudes also makes a contribution.

The sub-pixel snow distribution is quite distinct from
that in MODIS. The MODIS snow algorithm reproduces
the topography in a more general manner. The greater
Rhone valley and the adjacent valley on the south side have
been classifiedmainly as snow-free, whereas the pixels in the
smaller northern valley are snow-covered. The snow-free
region on the south of the alpine massif is interrupted by a
snow-cover area detected at the end of the transect.This fea-
ture might be due to a misclassification of low-level clouds,
which were masked out during theAVHRR pre-processing.
TheMODIS snowalgorithm classifies pixels as ‘‘snow’’ if the
pixel reaches approximately 40% snow cover.

5. CONCLUSIONS AND FUTUREWORK

PCA, including the reflective part of AVHRR channel 3, is
used to estimate fractions of ‘‘snow’’and ‘‘not snow’’within a
pixel by means of the linear mixture modeling algorithm.
This combination leads to a simple, fast solution which is

suitable for operational and near-real-time applications.
All steps of the processing flow are well defined, objective
and human interaction is not required.We have successfully
mapped snow cover at the sub-pixel scale for this case study
and demonstrated a substantial improvement in snow map-
ping over complex terrain compared to a classic binary al-
gorithm. Even in regions and at altitudes (e.g. Swiss
Plateau) where the binary classification approach does not
detect snow, a certain amount of snow exists, which is
mappedby the sub-pixel technique. Information onweather
conditions during the days before data acquisition supports
this snow distribution.

The complexity of the alpine topography is also recog-
nized in amore precise way thanwhen using the higher-spa-
tial-resolution snow product from MODIS. Disagreements
concerning the snowdistribution are found in dense forested
areas where the sub-pixel algorithm does not map fractions
greater than15%, nor does the classical approach detect any
snow. In addition, the sub-pixel method overestimates snow
fractions in the lowest-elevation zones, where no snow is ac-
tually expected (southern Alps).This effect results from the
two-end-member model ‘‘snow’’ and ‘‘snow-free’’, which
forces the pixel spectrum to be unmixed, with only two
end-members. The modeling accuracy correlates to areas
representing a specific ground-cover type (e.g. forested
areas), which has not been detected from the feature space
of the PCA transformation using the concept of convex
geometry. The modeling accuracy is further influenced by
the anisotropic behavior of snow, observed over specific ex-
posures at the highest altitudes in the central Alps, resulting
in high rms errors. Overall snow is detectedwith reasonable
accuracyat sub-pixel scale over the alpine topography using
an algorithm for operational and real-time applications.

Future work will determine the efficiency of the algo-
rithm over different seasons of the year, in order to validate
the method under variable conditions and rapid environ-
mental changes in the Alps. As a further criterion of end-
member choice and model fit, one could compute the frac-
tion over- and underflows. Fraction overflow indicates that
there were pixels in the image that were purer representa-
tions of that end-member, while fraction underflow indi-
cates pixels that were not well represented by any of the
end-members.These factors provide additional information
about the mixing accuracy, but obviously complicate the
procedure. To solve the problem of missing snow or snow-
free image end-members, a set of reference end-members
could be integrated into the multiple end-member combin-
ation to intercept unrealistic fraction estimates.These refer-
ence end-members must take the illumination-geometry
and the actual satellite overpass into account.

Some adjustment of the algorithm is required to correct
for the influence of the anisotropic behavior of snow, which
might be a comprehensive assignment. The ICA could
probably be substituted for the PCA algorithm, but it needs
to undergo tests and validation on multispectral datasets to
determine its suitability.
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