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Abstract. 42 ROSAT PSPC pointed observations in the Galactic plane (/ ~ 4° — 
26°) are mosaicked in order to study the spatial structure of the X-ray emitting gas 
in the Local Hot Bubble (LHB). Degree scale X-ray intensity variations are detected 
at the ±10% level in the i keV band, which imply a likely influence from a clumpy 
boundary shell of the LHB in the observed j keV band X-ray background. The 
possible origins of such a clumpy boundary structure of the LHB are discussed. 

1 Introduction 

In the Galactic plane, the \ keV band soft X-ray diffuse background (SXRB) 
is expected to originate within the LHB due to the substantial absorption 
cross-section of the ISM (e.g., r ~1 at ~30 pc, assuming n(H)~l cm - 3 ) . 
This "isolation" from the contribution of any flux of a more distant Galactic 
origin allows for the study of the detailed structure of the LHB by searching 
for the | keV band X-ray intensity variations at various angular scales. Here 
we report detection of degree scale variations of the \ keV band SXRB in 
the Galactic plane (/ ~ 4° - 26°), which implies an influence by a shell-like 
boundary structure of the LHB on the observed \ keV band SXRB. 

2 Data 

An R1L and R2 band (Snowden et al. 1994) mosaic of 42 ROSAT PSPC 
pointed observations are used in this study. All identified non-cosmic back­
grounds (~22% of the total counts) are modeled and subtracted from the 
data as described in Snowden et al. (1994). The detected point sources and 
possible enhancements by SNRs and X-ray binaries are removed and the rel­
ative offsets between overlapping pointings are corrected (~9%). The final 
mosaic (Figure 1) covers ~60 degree2 (Z~4° - 26°, b—3° - +2°) with an av­
erage exposure of ~8 ks. With a 10' binning, an average of 6% statistics per 
pixel is achieved in the R1L+R2 band (Park, Finley, & Snowden 1997 for a 
detailed description of the data). 
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Fig. 1. The \ keV band (R1L+R2) mosaic of the 42 ROSAT PSPC pointings in 
the Galactic plane. The pixel size is 10' and the data have been smoothed. The 
gray-scale ranges 0 - 800 x 10-6 counts s_1 arcmin-2. 

3 Analysis and Results 

In order to search for X-ray intensity variations along the Galacticplane, the 
data are first integrated across the plane in Galactic latitude, b, to create 
10' columns, typically within ±2° from the plane. With this integrated 1-D 
binning, the R1L+R2 band intensity variation along the plane is displayed 
in Figure 2a. The average flux is ~400 x 10 - 6 counts s _ 1 arcmin-2. The 
X-ray intensity is spatially variable (reduced x2 >5 about the mean) at the 
±10% level. A spatial Fourier transform reveals degree scale variations with 
an ~5.5° scale being the most prominent in all bands (Figure 2b). Sub-degree 
scale variations are investigated with a 2-D autocorrelation function (ACF). 
The ACF at angular scales <3° is displayed in Figure 3. The ACF in both 
the R1L and R2 bands indicates little correlation (formal errors include zero) 
at angular scales of <3°. The difference of the ACF between the three bands 
(R1L, R2, and R1L+R2) is not significant and lies within the statistical un­
certainties. The average hardness ratio (1.35) of the mosaic implies a plasma 
temperature of ~ 1 0 6 1 K with no absorption which is consistent with that of 
Snowden et al. (1997) for emission from the LHB. 

4 Discussion 

Possible origins of the detected variations are discussed below. 

4.1 Magnetic Rayleigh-Taylor (R-T) Instability 

A SNR in the adiabatic phase is R-T unstable. Assuming an ~105 year old 
blast wave in a pre-existing local cavity (n~0.004 cm - 3 ) "reheated" by a 
SN explosion, the critical wavelength of the magnetic R-T instability, A, can 
be estimated (Table 1) with a typical Galactic midplane magnetic field B = 
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Fig. 2. (a) The \ keV band intensity along the Galactic plane. Each point presents 
a 10' column integrated across the plane. The horizontal line is the mean, (b) Spatial 
Fourier transform of the ML, R2, and R1L+R2 band X-ray intensities . 
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Fig. 3. The ACF of the \ keV band X-ray intensity for angular scales <3°. The 
left panel shows the ACF for the R1L, R2, and R1L2 bands. The right panel shows 
the R1L2 band ACF and its formal uncertainty. 

5 /iG, a plasma temperature of the LHB T~10 6 1 K, and a stored thermal 
energy ETH = 1 - 3 X 1050 ergs (see Park, Finley, & Snowden [1997] for 
the detailed calculation). The range of A is remarkably consistent with the 
detected ~5.5° scale variation given the inaccuracies embedded in the simple 
spherical blast wave model. With this model the detected ±10% variation at 
~5.5° scale can be attributed to the path-length variation of the wave-like 
boundary structure due to the magnetic R-T instability. 

4.2 Inhomogeneous ISM 

If the blast wave of the LHB is in the radiative phase (r <;106 yr), the 
boundary shell can become clumpy due to inhomogeneities in the ISM. For 
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Table 1. Modeled A of a magnetic R-T instability at the boundary of the LHB 

RLHB (pc) ETH (10bu erg) A (pc) Observable angular size (°) 
50 O L9 22 

2.0 4.1 4.7 
3.0 5.8 6.6 

75 1.0 0.8 0.9 
2.0 1.7 2.0 
3.0 2.5 2.9 

example, absorption by typical interstellar cloudlets (angular size 2 - 5 pc, 
internal density 1 - 3 cm - 3 , Heiles 1967) are reasonable to produce detected 
^5.5° scale variation at ±10% level. 

4.3 Emission Variations at the Boundary Layer 

The emission variation at the LHB boundary such as electron density fluc­
tuation (Phillips & Clegg 1992) may also produce the observed intensity 
variations. 

4.4 The Local Fluff (LF) and Embedded Clouds 

Due to the low Nn (^3 x 1018 cm - 2 ) , the LF is unlikely to be the source 
of the ±10% variation (required ./V"H~1019 cm - 2 ) . Observations of local in­
terstellar clouds with TVH^IO1 9 cm - 2 inside of the LHB (e.g., Kerp, Herbst-
meier, & Mebold 1993) may indicate that the detected variations can be due 
to absorption by embedded clouds. 

5 Conclusions 

Degree scale intensity variations (at ±10% level) in the \ keV SXRB are 
detected in the Galactic plane. The origin of these small-scale variations is 
most likely the presence of R-T instability and/or clumpy cooler ISM at 
the boundary of the LHB. Variations due to absorption by embedded clouds 
cannot, however, be ruled out. 
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