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Mean-square stability of a class of

stochastic integral equations

W.J. Padgett

The object of this paper is to investigate under very general
conditions the existence and mean-square stability of a random

solution of a class of stochastic integral equations in the form
t
z(t; w) = h{t, z(t; w)) + J k(t, 8; w)f(s, z(s; w))ds ,
0

for ¢ 2 0 , where a random solution is a second order stochastic
process {z(¢t; w) : t = 0} which satisfies the equation almost

certainly. A random solution z{t; w) is defined to be stable

in mean-square if E[|xz(t; m)]2] <p for all t =0 and some
p > 0 or exponentially stable in mean-square if

E[|x(2; w)|2] < pe_mt , t=0, for some constants p > 0 and

a>0.

1. Introduction

Two important types of stochastic integral equations currently under
study by mathematicians and probabilists are those involving Tto or
Tto-Doob type stochastic integrals and those involving mean-square
integrals of second order stochastic processes. Stochastic integral
equations involving the latter type of integrals occur in many
probsbilistic models for physical phenomena. For example, such equations
arise in telephone traffic theory [5], [13], stochastic models for
chemotherapy [117, [127, stochastic theory of turbulence [14], systems
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theory [91, [15]1, [16], [18], and in many other situations [1], [Z2].

The purpose of this paper is to study the concept of gstability in
mean-square of random solutions of a certain class of stochastic integral
equations involving second order stochastic processes. Specifically, we
shall consider stochastic integral equations of the Hammerstein type in the

form
t

(1.1) z(t; w) = h{t, z(t; w)) + j k(t, 8; w)f(s, z(s; w))ds ,
0

where t =2 0 and

(i) (@, A, P) is a probability measure space, P is a probability
measure defined on the sigma-slgebra A4 of subsets of f , and
w e

(ii) x(#; w) is the unknown random varieble for each
t €R_=10,=);

(iii) h(t, ) 1is & function defined for each ¢t € R, and z €R,
the real numbers;

(iv) X(t, 8; w) is the stochastic kernel defined for 0 <g < t < @

and w € Q ; and

(v) f(t, x) is a function of t € R, and z €R.

Further conditions on the functions in equation (1.1) will be given in

Section 2.

In [8], {17], and [79] equations similar to equation (1.1) were
investigated. In this paper we shall study the existence, uniqueness, and
mean-square stability properties of random solutions of (1.1) under more
general conditions on the random functions %4, XK , and f than those given
in (8], [17], and [719]. The main results will be given in Theorems 3.1 and
3.2, and certain special cases of the main theorems will be presented in
Section 4. Also, it should be noted that the stochastic Volterra integral
equations in [17] and [79] may be obtained as special cases of (1.1)
whenever h{t, x(t; w)) 1is replaced by a function h(t; w) which does not

depend on x(t; w) .

https://doi.org/10.1017/5S0004972700045184 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045184

Stability of integra! equations 339

In order to obtain the obJectives of this paper the concept of
"admissibility" of Banach spaces [4] will be utilized.

2. Preliminaries

We shall meke the following assumptions concerning the functions which
appear in the stochastic integral equation (1.1):

(a) for each t €R_, x(t; w) € Le(ﬂ, A, P) , that is,
{x(t; w) : t € R} is a second order stochastic process on

R, , [7];

(b) for each t €R, , h(t, x(¢; w)) and f(t, =(¢t; w)) are in

the space L,(Q, 4, P) ;

(c) the mapping (¢, &) + X(¢, s; w) is continuous from the set
A=1{(t, 8) : 0<g =t < x}
into the space L_(R, 4, P) . Thus, for each (%, 8) € 4 , we
have
k(t, s; w)f(s, z(e; w)) € Ly(%, 4, P) .

For each (¢, 8) € A we shall denote the norm of X(¢, 8; w) in
L (R, 4, P) by

lx(¢, 85 Wl =P - ess sup |k(t, 8; w)]
weN

and the norm of x(t; w) in LZ(Q’ A, P) for each ¢t € R_ by

{[lx(t; w)lz] y¥

{fﬂ |2(t; w)lzdp(w)}% .

DEFINITION 2.1. We define the space C‘c = CG[R+, L2(Q, A, P)) to be

”x(t; w)”IIZ(Q’A ,P)

the space of all continuous functions from KR _ into the space LQ(Q, A, P)

with the topology of uniform convergence on every interval {0, @] ,
@ >0 .
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Note that Cc is a locally convex space with the topology defined by
the following sequence of seminorms:

le(2; wl,, = sup [la(t; W)l n=1, 2,

o=pon L,(R,4,P) *

DEFINITION 2.2. We shall denote by cg = Cg[R+, Ly(Q, 4, P)) the

space of all continuous functions from R+ into LZ(Q’ A, P) such that
there is a positive constant [ and a positive-~valued continuous function
g on R+ satisfying

lx(t; w)”Lz(Q,A,P) sTg(t) , t €R, .

The norm in Cg[R+, L2(Q, A, P)) is defined by

a0l (g 4 2y

lx(t; w)ll sup
Cg bR, g(t)

1

When the function g¢(¢) =1 for all ¢ € R in Definition 2.2, we
obtain the space of all bounded continuous functions from R+ into
L,(Q, 4, P) ,which will be denoted by C = C(R,, L,(®, 4, P)) . The space
C 1is the space of all second order stochastic processes defined on R,
which are bounded in mean-square and continuous in mean-square.

Throughout this paper B and D will denote Banach spaces such that
B, D C,(R,, Ly(Q, 4, P)) .

DEFINITION 2.3. A pair of Banach spaces (B, D) is said to be
admissible with respect to a linear operator T if T(B) <D .

A lemma in [17] states that if the spaces B and D have stronger

topologies than the space Cc(R-'-’ L2(Q, A, P)) and the pair (B, D) is
admissible with respect to a continuous linear operator T : Cc + Cc , then

T 1is continuous from B into D . Thus, T is bounded and for each

x(t; w) € B , there exists a constant M > O such that

1(T=) (85 Wi, = Miatts W)l -
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By a random solution of equation (1.1) we will mean a second order
stochastic process on Ii’+ which satisfies the equation P &almost

everywhere.

In order to study the existence of a random solution of equation (1.1)
we will employ the following fixed-point theorem, which was proven in [10].
Recall that an operator T on a Banach space B into itself is a

nonlinear contraction if for all x, y € B ,

“Tx-Ty”B = ¢(”x—y”8) s
where ¢ is a real-valued continuous function satisfying ¢(s) < s for
s >0.

THEOREM 2.1 (Nashed and Wong [10]). Let S be a closed, bounded

convexr subset of a Banach space and let U and V be operators on S
satisfying:
(1) Ulz) +Viy) €S forall =z, y €85 ;
(i) U 1is a completely continuous operator on S ;
(iii) V is a nonlinear contraction on S .
Then there exists a point x* € S such that U(z*) + V(z*) = z* .

Also, a fixed-point theorem of Boyd and Wong [3] which is a special
case of Theorem 2.1 will be utilized to obtain the existence of & unique

random solution of equation (1.1).

THEOREM 2.2 (Boyd and Wong [3]). If V <s a nonlinear contraction

on a Banach space B , then V has a unique fixed point in B .

Finally, we shall make the following definitions concerning the

asymptotic behavior of a random solution of (1.1).
DEFINITION 2.4. A random solution of equation (1.1) is said to be
(a) stable in mean-square if there exists a positive constant p
such that E[|x(t; w)[z} =p for all t €R_, or

(b) eaxponentially stable in mean-square if there exist positive

constants p and o such that E[|xz(t; m)|2] < pe® for an

t €R_.
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3. Existence of a random solution

We shall now prove two general theorems concerning the existence of a

random solution of equation (1.1).

THEOREM 3.1. C(onsider the stochastic integral equation (1.1) subject
to the following conditions:

(i) B and D are Banach spaces stronger than CO(R+, L,(Q, 4, P))

and (B, D) ie adnissible with respect to the integral
operator

t
(Tx)(t; w) = f K(t, 8; wlxl(e; w)ds , t=0,
0
where K behaves as described in Section 2;

(i1) x(t; w) > f‘(t, x(t;'w)) 18 an operator from

5= {x(t; w) €D : |lx(t; W), = p}

into B satisfying

IF(ts =5 w)-£(t, y(ts W)lg = olllz(e; w-y(t; W) .
where p > 0 18 a constant and ¢ 18 a real-valued continuous
funetion such that ¢(e) <8 for & >0 ;

(iii) z(t; w) » h(t, a(t; w)) <8 a completely continuous operator
from S 4into iteelf such that for some Y > 0 ,
In(t, =(t5 W)l =v.

Then there exists in S a random solution of equation (1.1), provided

Mp <1 and

v + Mplif(e, )i = o(1-My) ,
where M, i8 the norm of T .

Proof. Define the operator V from S into D by

t
(3.1) (Ve)(t; w) = f K(t, 85 w)f(s, x(e; w))ds .
(o}

Let x(t; w) , y(t; w) €S . Then
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(e, =(¢5 @)+ () (g5 W, = WR(E, =25 W), + MIF(E, ylEs )l
by condition (Z) of the theorem and the remark following Definition 2.3.
But, since

17 (¢, y(ts w))lig = oy (25 w)-oll)) + IF (£, 0y

by condition (7Z), we have from condition (Zv) that
(3.2)  In(e, =(t; w))+(vy)(e; Wi, = IR (2, =(t; o)l
+ Mpo(lly (25 wllp) + MplIF(E, 0l
<y + MlFCE, Ol + Mo (ly (25 wlp) -
Now, from condition (7Z) and the last hypothesis of the theorem, we obtain
from inequality (3.2),

(e, =(t; w))+(Vy)(t; w)ll, < p(a-Mp) + Mpliy(ts Wil

1A

p(l’ T) +MTD
=p .

That is, h(t, x(t; w)) + (Vy)(¢t; w) € 5 and condition () of Theorem 2.1

is satisfied.

Furthermore,

t
1{ve) (25 w)-(Vy)(t; Wl I” k(t, 83 w)[fls, =(e; w))-rle, y(s; w))]df’”D
0

tA

MlIf(t, =(t;5 w))-£(t, y(t; W)}y

o(llz(t; w)-y(z; wliy)

A

by condition (77) and the hypothesis that Mb <1. Thus, V is a
nonlinear contraction operator on S .

Therefore, by condition (Z7i1) and Theorem 2.1 there exists in S a

random solution of (1.1).

By imposing a slightly stronger condition on the stochastic process
h(t, x(t; w)) , we can obtain the existence of a wnique random solution of
(1.1).

THEOREM 3.2. Suppose the stochastic integral equation (1.1)
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satisfies the following conditions:
(i) same as condition (i) of Theorem 3.1;
(ii) same as condition (ii) of Theorem 3.1;

(iii) x(t; w) > w(t, =(t; w)) is an operator from the set S
into D satisfying

In{e, =(t; w))-n(t, y(t; W), = vollz(t s w)-g(ts )y »

where Yy > 0 18 a constant.

Then there exists in S a unique random solution of equation (1.1),
provided that Y + M, < 1 and

T
In(t, O, + M llf(E, 0l = p(i-v-#p) ,

where My is the norm of the operator T .

Proof. Define the operator V from S into D by
t
(ve)(t; w) = h(t, z(t; w)) + f x(t, 8; w)f(s, x(s; w))ds .
0

Let x(t; w) € S . We must show that V is a nonlinear contraction on S

into itself. By conditions (Z) and (ZZ) of the theorem

(3.3) [(vx)(;5 wlll, = (e, «(t; w))ll, +

£
fo k(t, ;3 w)f(e, x(s; ‘*’))ds“p

1A

n(t, =(t; W)l + MlF(E, (s w)]IIB .
But since
(s, (85 W)l < I (e, 2(25 @)-h(t, O, + Ir(z, O,
and a similar inequality holds for f(t, z(t; w)) , Wwe have from inequality
(3.3) and conditions (7%Z) and (Zii) that
I7e)(Es ol = ve(lla(es w)lp) + IACE, Ol
+ molllelts W) + MIF(E, 0l
(st lla(Es Wil + (e, 0l + Myllf(t, Oy

p(y+MT) + p(l—Y—MT) =p

A

tA
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by the last hypothesis of the theorem. Hence, V(S)c S .

Now, let xz(t; w), y(t; w) € S . Then applying the hypotheses of the

theorem, we have
1 (ve) (25 w)=(vy) (£5 wlil,

In(t, =(t; w))-n(t, y(t; W),

1A

+

t
f x(t, s; w)[fls, z(s; w))~Fls, yls; w)]]ds”D
0

1A

in{t, z(e; w))-h{t, ylt; )l + Ml (L, (25 w))-F(2, y(t; W)l
= Yo (lle(ts w)-y (g wlllp) + Mpd(le(ts w)-y(t; wly)

o (l=(ts w)-y(t; wll)

1A

since vy + Mb < 1. Thus, V is a nonlinear contraction on S into

itself, end by Theorem 2.2 there exists & unique random solution of
equation (1.1), x*(t; w) €5 .

4. Mean-square stability

By choosing the Banach spaces B and D to be the spaces
C(R,» L,(Q, 4, P))} or Cg(R+, L,(Q, 4, P)) , ve may obtain certain useful

special cases of Theorems 3.1 and 3.2 concerning the existence and mean-

square stability of random solutions of (1.1).

Recall that an operator % on the bounded set S is completely
continuous if the image h(S) is relatively compact, that is, if every

bounded sequence in #(S) has a convergent subsequence.
Let x(t; w) +~ h(t, x(t; w)) be an operator from the set
(L.1) 5= {x(t; w) € : llz(t; W, = p)

into itself, where p > 0 is a constant. From [6] it follows that

h(s) c ¢ is relatively compact if h is such that

(a) lim+ sup sug Uin(t, =(t; w))-n(s, =(s; w))"Lz(Q,A,P)] =0
540 xeS| 8,120
|s-t]|<8
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(B) for each fixed t € R, every sequence in
{h(t, =(t; w)) : =(t; w) € 8} c L,(Q, 4, P) hes e
convergent subsequence.

We shall now prove the following special case of Theorem 3.1.

THEOREM 4.1. Consider the stochastic integral equation (1.1) under
the follawing conditions:

(1) there exist a positive nwmber T and a positive continuous
function g(t) on R, such that

t
f llx(t, 85 wlll g(e)ds =T , ¢ €R, ;
0

(i1) xz(t; w) > £(t, =(t; w)) ie an operator from the set S
given by (4.1) into Cg(R+, L2(Q, A, P)) satisfying for

every t €R+ >

[7(t, =(t5 0)-F(¢, y(t; W)] = ge)o(llz(t; w)-y(t; w)ll)

with probability one for x(t; w), y(t; w) € S , where ¢
i8 a real-valued continuous function such that ¢(s) < 8
for 8 >0 ;

(iii) =z(t; w) > h(t, =(t; w)) <s an operator from S into C
such that |h(t, x=(t; w))| <y with probability one for
every t €R_, some Y >0 and such that (4) and (B)

above are satisfied.

Then there exists a random solution x*(t; w) of (1.1) which is stable in

mean-square, provided sup |f(t, 0)|/g(t) , T and Y are sufficiently
teR
+

small.
Proof. By condition (Z) the pair of Banach spaces (C

admissible with respect to the integral operator
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t
(b.2) (Tx)(t; w) = f k(t, 8; wlz(s; w)ds ,
0

since for =z(t; w) € Cg .

1A

t

”x(t;w)“LZ(Q,A,P)

< k(e 55 w)ll g(s)ds
3 o J. ‘
s fla(ts Wl °T
g

by definition of the norm in Cg(R+, Lg(Q, A, P)) . That is,
(Tx)(t; w) € C .

It clearly follows from condition (%) that for z(t; w), y(t; w) €5,

Ir(E, =25 ))-r(t, y(&s ), = ¢(le(t; w)-y(es W)
g

and from condition (Z71) that h 1is completely continuous from S into
itself provided Y is small enough.

Hence, by Theorem 3.1 there exists a random solution z*(t; w) € C
of equation (1.1) satisfying

E[|z*(t; w)|®] =p°, t €R, ,

whenever I, Yy and sup |f(t, 0)|/g(t) are small enough.
teR
+

Note that by Jensen's inequality x*(t; w) is also stable in the mean

E(|z*(t; w)|1=p , t €R, .

COROLLARY 4.2. C(Congider the stochastic integral equation (1.1)
subject to the following conditions:

t
(i) J lix(t, 85 w)llds <A, t €R_, where A <is some positive
o]

constant;

(ii) =z(t, w) + f(t, z(t; w)) is an operator from the set S given
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by (4.1) into C(R,, Ly(2, 4, P)) such that for each t € R,
|7 (s =(t; w))-F(t, (&5 W] = o=t w)-y(e; w)ll)
with probability one for z(t; w), y(t; w) € S, where ¢ 1a
as given in Theorem 4.1 (ii);
(i11) same as condition (iii) of Theorem 4.1.
Then there exists a random solution x*(t; w) € C of (1.1) which is stable
in mean-square, provided |f(t, 0)”6" A and Yy are small enough.

Proof. Take g(t) =1 for all ¢t € R_ in Theorem k.1.

The following special case of Theorem 3.2 guarantees the existence of
a unique random solution of (1.1) which is exponentially stable in mean-

square.
THEOREM 4.3. Assume that the stochastic integral equation (1.1)
satisfies:
(1) W&(t, s; w)] < Texp(-0(t-8)], 0=<sg=<t<o, where T >0
and o > 0 are constants;

(i) =z(t; w) > f(t, =(t; w)) <e an operator on

S, = {x(t; w) € C o llx(ts w)ncg < p}

with values in Cg[R+, L,(Q, 4, P)) satisfying for each

t €R,,

(4.3) |F(t, =(t; w))-Flt, y(&; w))| = e_Btfb(llx(t; w)-y(t; W), ]
g

with probability one for x(t; w), y(t; w) € Sg » where
0<B<a, p>0 ig a constant, ¢ <s as given in Theorem
(4.1) (4i), and g(t) = e t, t20;

(1ii) =(t; w) » h(t, z(¢; w)) s an operator on Sg with values in

Cg(R+, L,(Q, 4, P)) satisfying for each t € R, ,
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Ia(t, =(t; w))-n(t, y(t; w)}| = e-Bthb[”x(t; w)-y(t; wll,
g

with probability one for xz(t; w), y(t; w) € Sq , Wwhere Yy >0
is a constant.

Then there exists a unique random solution of equation (1.1) which is

exponentially stable in mean-square, provided that vy, I' and |/f(¢, O)HC
g
are sufficiently small.

Proof. It is clear from condition (7Z) that if inequality (L4.3) is

divided by e Bt , we obtain for xz(t; w), y(t; w) € Sg .

If (2.2(E30))~f (225 (£ (g0 )

3 5 = o[llsts )y (e w>”cg]
or
176, aes w)-rit, yes 0l = ofltes w)y(ss W |
g g
when g(t) = e P’ , ¢ ¢R, . Similarly, from condition (3¢i) with

g(t) = e—Bt , we have

] .

We need only to show that condition (Z) implies that (Cg, Cg) is

(e, a(es w)-h(e, 565 0l = vé{lalss @)y(s o,
g g

admissible with respect to the linear operator T given by equation (k4.2).

. -Bt
Let z(t; w) € C (R, L,(@, 4, P)} with g(t) = e Bt t20. Then

from condition (),
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t
1(Tz)(t; w)l = (e, a5 wlll *llz(s; w)] ds
Ly(,4,P) ~ | Ly(R,A,P)

flz (8 ;)|
_ t LZ (Q ,A aP)
< re” ] Piad B e 8%
0 e 8
Jlz (50
Ly (QQA’P) t
< re™™ sup BT I e(a—B)sds
teR, e 0
= T(a-8) Mlz(s; wlll, & B%,
g

which means that (Tx)(t; w) € Cg(R+, L@, 4, P)) .
Therefore, if T, v and |f(¢, O)”C are sufficiently small, by
g

Theorem 3.2 there exists a unique random solution of (1.1),
x*(t; w) € Sg . That is,

Ellz*(t; 0)]?] = 02288, s ¢ R, .

which means that x*(£; w) is exponentially stable in mean-square.
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