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Mean-square stability of a class of

stochastic integral equations

W.J. Padgett

The object of this paper is to investigate under very general

conditions the existence and mean-square stability of a random

solution of a class of stochastic integral equations in the form

x(t; w)
ft

h[t, x(t; u)] + K(t, s; u)/(s, x(s; o)
•'0

for t > 0 , where a random solution is a second order stochastic

process {x(t; w) : t > Ol which satisfies the equation almost

certainly. A random solution x(t; u) is defined to be stable

in mean-square if ff[|x(t; w)| J < p for all t > 0 and some

p > 0 or exponentially stable in mean-square if

£ [ | x ( i ; u ) | ] 5 pe , t i O , for some constants p > 0 and

a > 0 .

1. Introduction

Two important types of stochastic integral equations currently under

study by mathematicians and probabil ists are those involving I to or

Ito-Doob type stochastic integrals and those involving mean-square

integrals of second order stochastic processes. Stochastic integral

equations involving the l a t t e r type of integrals occur in many

probabi l is t ic models for physical phenomena. For example, such equations

arise in telephone t ra f f ic theory [ 5 ] , [73], stochastic models for

chemotherapy [ / ! ] , [ ' 21 , stochastic theory of turbulence [ J4 ] , systems
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theory [9], [15], iW\, [18], and in many other situations [ I ] , [2].

The purpose of this paper is to study the concept of stability in
mean-square of random solutions of a certain class of stochastic integral
equations involving second order stochastic processes. Specifically, we
shall consider stochastic integral equations of the Hammerstein type in the
form

rt
(1.1) x{t; to) = h[t, x(t; a))) + K(t, 8; u)f{s> x(s; o)))ds ,

J0

where t * 0 and

(i) (fi, A, P) is a probability measure space, P is a probability
measure defined on the sigma-algebra A of subsets of ft , and
0) € Q ;

( i i ) x(t; w) is the unknown random variable for each
t € fl+ = [0, <*>) ;

( i i i ) h(t, x) is a function defined for each t € R+ and a: € R ,

the real numbers;

(iv) K(t, 8; u) is the stochastic kernel defined for 0 2 8 £ t < <=°
and (0 € £2 ; and

(v) f(t, x) is a function of t I R+ and x € R .

Further conditions on the functions in equation ( l . l ) will be given in
Section 2.

In [£], [17], and [19] equations similar to equation ( l . l ) were
investigated. In this paper we shall study the existence, uniqueness, and
mean-square stability properties of random solutions of ( l . l ) under more
general conditions on the random functions h, K , and / than those given
in [8], [17], and [19], The main results will be given in Theorems 3.1 and
3.2, and certain special cases of the main theorems will be presented in
Section 4. Also, i t should be noted that the stochastic Volterra integral
equations in [17] and [19] may be obtained as special cases of ( l . l )
whenever h[t, x(t; ui)) is replaced by a function h{t; a>) which does not
depend on x(t; u) .
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In order to obtain the objectives of this paper the concept of

"admissibility" of Banach spaces [4] will be utilized.

2. Preliminaries

We shall make the following assumptions concerning the functions which

appear in the stochastic integral equation ( l . l ) :

(a) for each t € R+ , x(t; (o) € L2(fi, A, P) , that i s ,

{x{t; Ui) : t € if+} i s a second order stochastic process on

R+ , [ 7 ] ;

(b) for each t € /?+ , h{t, x(t; w)) and f[t, x(t; u>)) are in

the space LA&, A, P) ;

(c) the mapping {t, s ) -»• K(t, a; u) is continuous from the set

A = { ( t , s ) : O < s < t < « ' }

into the space L^tt, A, P) . Thus, for each (t, s) € A , we

have

K(t, s; 0))/(s, x(e; a))) € L^, A, P) .

For each (t, s) € A we shall denote .the norm of K(t, 8; a>) in

Lja, A, P) by

'» 8; u)||| = P - ess sup \K(t, 8; o>) |

and the norm of x(t; w) in Ip(fi, A, P) for each t € fl+ by

|x(t; u)

DEFINITION 2 . 1 . We def ine the space C = C [R+, L (U, A, P)) t o be

the space of a l l continuous functions from R+ into the space LAft, A, P)

with the topology of uniform convergence on every interval [0 , Q] ,

0 > 0 .
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Note that C is a locally convex space with the topology defined by

the following sequence of seminorms:

I N * ; W)IL = sup \\x(t; 0))|| , > , n = 1 , 2 , . . . .
n 02*<« L2(i\,A,P)

DEFINITION 2.2. We shall denote by C = C [R+, LA.SI, A, P)) the

space of a l l continuous functions from R into LA&, 4 , P) such that

there is a positive constant T and a positive-valued continuous function

g on R satisfying

> *

The norm in C [R+, L (Q, A, P)) i s defined by

\\x(t; (a)\\c = sup
git)

When the function git) = 1 for a l l t t R+ in Definition 2.2, we

obtain the space of a l l bounded continuous functions from R+ into

LAO., A, P) , which will be denoted by C - C[R+, LAn, A, P)) . The space

C is the space of a l l second order stochastic processes defined on R

which are bounded in mean-square and continuous in mean-square.

Throughout this paper B and D will denote Banach spaces such that

B, Dc Ce{R+, L2(n, A, ?)) .

DEFINITION 2.3. A pair of Banach spaces (B, D) is said to be

admissible with respect to a linear operator T i f T(B) c V .

A lemma in [J7] states that i f the spaces B and D have stronger

topologies than the space C [R+, LAH, A, P)) and the pair (B, D) is

admissible with respect to a continuous linear operator T : C •* C , then

T is continuous from S into D . Thus, T is bounded and for each

x( t ; w) € B , there exists a constant M > 0 such that
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By a random solution of equation ( l . l ) we will mean a second order

stochastic process on i?+ which sat isf ies the equation P almost

everywhere.

In order to study the existence of a random solution of equation ( l . l )

we will employ the following fixed-point theorem, which was proven in L102-

Recall that an operator T on a Banach space B into i t se l f is a

nonlinear contraction i f for a l l x, y € B ,

\\Tx-Ty\\B £ <Hl|x-y||B) ,

where <{i i s a r ea l -va lued continuous funct ion s a t i s f y i n g <f>(s) < s for

s > 0 .

THEOREM 2.1 (Nashed and Wong [ JO] ) . Let S be a closed, bounded

convex subset of a Banaah space and let U and V be operators on S

satisfying:

(i) U(x) + V(y) € S for all x, y € S ;

(ii) U is a completely continuous operator on S ;

(Hi) V is a nonlinear contraction on S .

Then there exists a point x* € S such that U(x*) + V(x*) = x* .

Also, a fixed-point theorem of Boyd and Wong [3] which is a special

case of Theorem 2.1 will be ut i l ized to obtain the existence of a unique

random solution of equation ( l . l ) .

THEOREM 2.2 (Boyd and Wong [3]) . If V is a nonlinear contraction

on a Banach space B , then V has a unique fixed point in B .

Finally, we shall make the following definitions concerning the

asymptotic behavior of a random solution of ( l . l ) .

DEFINITION 2.4. A random solution of equation ( l . l ) is said to be

(a) stable in mean-square if there exists a positive constant p

such that E[\x(t; u)!2] £ P for a l l t € R+ , or

(b) exponentially stable in mean-square if there exist positive

constants p and a such that E[\x{t; u)|2] £ pe~at for all
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3. Existence of a random solution

We shall now prove two general theorems concerning the existence of a

random solution of equation ( l . l ) .

THEOREM 3.1. Consider the stochastic integral equation ( l . l ) subject

to the following conditions:

(i) B and D are Banach spaces stronger than C [R+, LAil, A, P))

and {B, D) is admissible with respect to the integral

operator

(Tx)(t ; to) = K(t, 8; (ji)x(s; w)ds , t > 0 t

>0

where K behaves as described in Section 2;

(ii) x(£; to) •*• f[t, x(t; u)) is an operator from

S = { x ( t ; w) € D : \\x[t; U))||fl £ p}

into B satisfying

\\f[t, x(ti (»>))-/(*, y(t; u))\\B < <J.(||x(*; u ) - j / ( t ;

where p > 0 is a constant and $ is a real-valued continuous

function such that i()(e) < 8 for s > 0 ;

(iii) x(t; tn) f h[t, x(t; u)) is a completely continuous operator

from S into itself such that for some y > 0 ,

| | f c ( t , x ( t ; u))\\DS Y .

Then there exists in S a random solution of equation (l .l). , provided

MT < 1 and

y + MT\\f(t, o)||5 s p(i-A/r) ,

where MT is the norm of T .

Proof. Define the operator V from S into D by

rt
(3.1) (Vx)U; a)) = K(t, S ; U))/(S, X(S;

J0

Let x(t; to) , j / ( t ; to) € 5 . Then
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\\h[t, x(t; <o)) + ( t y ) ( t ; ia)\\D < \\h[t, x(t; u ) ) | | 0 + MT\\f[t, y{t; w ) ) | | B

by condition (i) of the theorem and the remark following Definition 2.3.

But, since

| | / ( t , y(t; (o))||s < <(>(IMt; co)-oy + \\f{t, o)\\B

by condition (ii) , we have from condition (iv) that

( 3 . 2 ) \\h[t, x{t; t»)) + {VyHt; a)\\D £ \\h{t, x(t; a))\\D

+ MT${\\y(t- U ) | g *MT\\f{tt 0)\\B

S Y + Wr| | /(t , 0) | | s + ^ (Hl / to ' eOl lp) •

Now, from condition (ii.) and the last hypothesis of the theorem, we obtain

from inequality (3.2),

\\h[t, x(t; a)) + (Vy)(t; u ) | | D < p[l-MT) + « j , | | j / ( t ; u ) | l D

S p (l-Wr) + Myp

= p .

That is, h[t, x(t; u)) + {Vy)(t; u) € S and condition (i) of Theorem 2.1

is satisfied.

Furthermore,

Ii (Var) (* ; o>)-{Vy)(t; u>) , x(e;
'0

< M \\f[t, x(t; u))-f[t, y(t; to)

by condition Cii^ and the hypothesis that My < 1 . Thus, V is a

nonlinear contraction operator on S .

Therefore, by condition (iii) and Theorem 2.1 there exists in 5 a

random solution of (l.l).

By imposing a slightly stronger condition on the stochastic process

h[t, x{t; o))J , we can obtain the existence of a unique random solution of

(1.1).

THEOREM 3.2. Suppose the stochastic integral equation (l.l)
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satisfies the following conditions:

(i) same as condition (i) of Theorem 3 .1;

(ii) same as condition (ii) of Theorem 3 .1;

(iii) x(t; to) -»• h[t, x(t; u)) is an operator from the set S

into D satisfying

\\h{t, x(t; u))-h{t, y(t; w)) \\D < Y*(ll*(* i «•»)-»(*; *)\\D) ,

where y > 0 is a constant.

Then there exists in S a unique random solution of equation ( l . l ) ,

provided that y + W-, < 1 and

\\h{t, O)\\D +

where M~ is the norm of the operator T .

Proof. Define the operator V from 5 into D by

rt
, a:(t; in)) + x ( t , a;

J0
(Vx)(t; u) = h(t , a:(t; in)) + x(t , a; o))/(a, x(s;

Let x(t; w) € S . We must show that V is a nonlinear contraction on S

into itself. By conditions (i) and fiij of the theorem

( 3 . 3 ) \\{Vx){t; u ) | | 0 < ||fc(t, a ( t ; u ) ) | | D + ||J K(t, a ; u ) / ( «

But since

and a similar inequality holds for f[t, x(t; w)) , we have from inequality

(3.3) and conditions (ii) and (iii) that

, 0)||D

[y+MT)\\x{t; u) | |D+ P ( t , 0)||D + A^||/(t, 0)| |B

y) + Ptl-Y-Wy) = P
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by the last hypothesis of the theorem. Hence, V(S) c 5 .

Now, let x(t; u) , y{t; u) f S . Then applying the hypotheses of the
theorem, we have

2 \\h[t, x(t; u))-h[t, y(t;

Kit, s; u>)[f(s, x(s; <o))-/(s,

5 \\h[t, x(t; u))-h[t, y(t; u))HD + MT\\f[t, x(t; »))-/(*, y(t;

since y + M^ < 1 . Thus, V is a nonlinear contraction on 5 into

itself, and by Theorem 2.2 there exists a unique random solution of

equation (l.l), x*{t; (o) € S .

4. Mean-square stability

By choosing the Banach spaces B and D to be the spaces
C(i?+, Ip(fi, 4, P)) or C {R+, L (ft, i4, P)] , we may obtain certain useful

special cases of Theorems 3-1 and 3-2 concerning the existence and mean-
square stability of random solutions of ( l . l ) .

Recall that an operator h on the bounded set 5 is completely
continuous if the image h(S) is relatively compact, that i s , if every
bounded sequence in h(S) has a convergent subsequence.

Let x(t; a)) -»• h[t, x{t; 0))) be an operator from the set

(U.l) S = {x(t; to) t C : \\x(t; u)\\c 5 p}

into i tself , where p > 0 is a constant. From [6] i t follows that
h{S) c C is relatively compact if h is such that

(A) lim sup'

<sV xeS
sup \}\h{t, x(t; = 0
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and

(B) for- each fixed t € R+ every sequence in

{h{t, x(t; to)) : x(t; u) € S} c L2(fl, 4 , P) has e

convergent subsequence.

We sha l l now prove the following special case of Theorem 3 .1 .

THEOREM 4 . 1 . Consider the stochastic integral equation ( l . l ) under

the following conditions:

(i) there exist a positive number T and a positive continuous

function git) on R+ such that

rt
\\\K(t, s; u)\\\g{B)dB < r , t i E+ s

(ii) x{t; u) •+ f[t, x(t; u)) is an operator from the set S

given by (k.l) into C [R, L (fi, A, P)) satisfying for

every t € R+ ,

\f{t, x{t; u))-f[t, y(t; u ) ) | 5 g(tH{\\x(t; u)-y(t; u) | | c)

with probability one for x(t; w), y(t; to) € 5 3 where <(>

is a real-valued continuous function such that ${s) < s

for 8 > 0 s

(Hi) x{t; a)) •* h[t, x(t; u)) is an operator from S into C

such that \h{t, x(t; oi)) | < y with probability one for

every t € R+ , some y > 0 and such that (A) and (B)

above are satisfied.

Then there exists a random solution x*(t\ w) of ( l . l ) which is stable in

mean-square, provided sup | / ( t , O)\/g(t) , T and y are sufficiently

small.

Proof. By condition (i) the pair of Banach spaces [C , C] is
9

admissible with respect to the integral operator
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ft
(U.2) (Tx)(t; u>) = K(t, a; oi)x(s; m)ds ,

0

since for j ( t ; u ) ' ( C ,

5 sup •
>0

g

by definition of the norm in C [R+, L (SI, A, P)) . That i s ,

(Tx)(t; u) € C .

I t c l e a r l y f o l l o w s <from c o n d i t i o n (ii) t h a t f o r x ( t ; w ) , y(t; u ) € 5 ,

| | / ( t , x(t; < o ) ) - / ( * , y ( t ; «o ) ) | | c ^
9

and from condition (Hi) that 7i is completely continuous from S into

i tse l f provided y is small enough.

Hence, by Theorem 3.1 there exists a random solution x*(t; w) € C

of equation ( l . l ) satisfying

E[\x*(t; to) I2] < p2 , t € ff+ ,

whenever T, y and sup ! / (*, O)|/g(t) are small enough.
UR+

Note that by Jensen's inequality x*(t; a)) is also stable in the mean

E[\x*(t; u>)|] < p , t € i?+ .

COROLLARY 4.2. Consider the stochastic integral equation ( l . l )

subject to the following conditions:

I*(i) \\\K(t, 8; Ui)\\\ds < A , t € ff+ , where A is some positive
'0

constant;

(ii) x(t, to) * / ( * , x(t; u)) i s an operator from the set S given
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by (k.l) into C(/f+, L^iil, A, P)) au.dk that for each, t € R t

\f{t, x{t; «))-/(*, y(t; to)) | < <J.(||x(t; u)-y(t; co)^)

with probability one for x{t; w), j / ( t ; w) € S > where <j) ie

as given in Theorem k.l (ii);

(Hi) same as condition (Hi) of Theorem k.l.

Then there exists a random solution x*(t; to) € C of ( l . l ) which is stable

in mean-square^ provided \\f(t, 0) | |_, A and y are small enough.
Li

Proof. Take g{t) = 1 for a l l t € R+ in Theorem k.l.

The following special case of Theorem 3-2 guarantees the existence of

a unique random solution of ( l . l ) which is exponentially stable in mean-

square.

THEOREM 4.3. Assume that the stochastic integral equation ( l . l )

satisfies:

(i) |||X(t, s; w)||| < rexp[-a(t-s)] , 0 5 s S t < » , where ? > 0

and a > 0 are constants;

(ii) x(t; w) -»• f[t, x{t; u)) is an operator on

S = \x(t; u) ( C : \\x(t; a))|| £ pi
a ( a 9

with values in C (i?+, L (ft, A, P)) satisfying for each

t € R+ J

(U.3) | f I* , x(t; u))-f[t, y{t; ui)) | £ e"Bt((.(|k(t; a)-y(t; u)| |

ifcTi probability one for x{t; u), j /( t ; u) ES ., where

0 < 6 < c i j p > 0 16 a cons tan t j if i s as given in Theorem

(U . l ) f i i ; , and <?(*) = e~U , t J O ;

x ( t ; (o) -»• h ( t , x ( t ; u)) i s an operator on S with values in

C (*+' L2(fj, ^ , p)) satisfying for each t I R+ ,
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\h{t, x(t; u))-h[t, y(t; u)

with probability one for x(t; <o), y(t; w) £ S , where y > 0

is a constant.

Then there exists a unique random solution of equation ( l . l ) which is

exponentially stable in mean-square, provided that y, Y and \\f(t, 0)|L
9

are sufficiently small.

Proof. I t is clear from condition (ii) that if inequality C».3) is
"Pit

divided by e , we obtain for x(t; w), y(t; to) f 5 ,

sup

or

, x(t;

_ QJ-

e

--&*

, y(t; u))
9 v 9'

_ QJ-

when g(t) = e , t € i?+ . Similarly, from condition CitiJ with

g-(t) = e , we have
, x(t; u))-h{t, y{t; u ; u)|L

9

We need only to show that condition (i) implies that [c , C ) is
9 9

a d m i s s i b l e w i t h r e s p e c t t o t h e l i n e a r o p e r a t o r T g i v e n by e q u a t i o n (k.2).

Let x(t; to) € C [R+, L£(af A, P)) with g(b) = e~&t , t > 0 . Then

from condition (i),
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r£ J i

i /:
sr.H.t r , « ^ m e - B S d 8

sup
e-6t

which means that (Tx)(t; to) € C [R+, LAil, A, P)) .

Therefore, i f T, y and \\f(t, 0)|L are sufficiently small, by
°9

Theorem 3.2 there exis ts a unique random solution of ( l . l ) ,

x*{t; a)) € 5 . That i s ,

which means that x*(t; u)) i s emonenti a l ly stable in mean-square.
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