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RELATIVELY FINITELY DETERMINED
IMPLIES RELATIVELY VERY WEAK BERNOULLI

M. RAHE

1. Introduction. In the isomorphism theory of Bernoulli shifts, the d or
Hamming distance plays an important role. Two finite state stationary pro-
cesses are close in the d metric if, on the average, strings from one process can
be matched with strings {rom the other process so that their outputs agree with
high frequency. Since such agreement must hold in the arbitrarily distant
future, it might at first seem difficult to control the pairing. However in
approximating processes with an independent generator (a coin flip, for
instance) the d match is determined by only two parameters, the distribution
at time zero and the entropy. The more general property of having the d
distance from a process controlled by a joint distribution over a finite number
of times and the entropy is called being finitely determined (FD) and implies
isomorphism with a Bernoulli shift.

Unfortunately, with the exception of processes defined in terms of an inde-
pendent generator, it is not obvious whether or not a given process is finitely
determined. For this reason an alternative, more tractable criterion called
very weak Bernoullt (VWB) was developed. This new property deals with a
type of asymptotic independence of past and future events which implies
finitely determined. Among other applications, VWB was used by Friedman
and Ornstein to show that mixing Markov processes are finitely determined.

At the present there are a number of other metrics available which are
different from but related to the d. One of these, called dj, is used in the
Thouvenot theory of isomorphism relative to or conditioned on a factor #’
generated by a finite partition H. The property of having the d;; approximation
controlled by a finite number of parameters is called conditionally finitely
determined. Corresponding to VW B is the property of being conditionally very
weak Bernoulls.

Here, by the word factor we mean the action of a transformation 7" on an
invariant sub-g-algebra. The Thouvenot theory is concerned with how the
factor # is embedded in a transformation. Viewed from the standpoint of
the original process we are concerned with questions of the existence of iso-
morphisms of the original process which take a finite partition H onto a speci-
fied image partition H'. Viewed from the standpoint of a given fibre in the
process (H, T'), we are concerned with the behavior of the non-stationary
process that the original process produces on that fibre.

The known results concerning the properties very weak Bernoulli condi-
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tioned on a factor and finitely determined conditioned on a factor are as
follows:

1) any conditionally finitely determined process can be written as the direct
product of a Bernoulli shift with the factor;

2) in a process which is finitely determined conditioned on a factor %", any
factor containing J# is again finitely determined conditioned on #; and

3) any conditionally very weak Bernoulli process is conditionally finitely
determined.

In the standard isomorphism theory, there is a result due to Ornstein and
Weiss which states that FD implies "I¥B, hence that the properties are
equivalent. The purpose of this paper is to establish the corresponding result
for the Thouvenot theory by showing that conditionally finitely deteimined
(relative to some factor. %) implies conditionally very weak Bernoulli (relative
to ). (It is perhaps pertinent to point out that not only is this the corre-
sponding result for the Thouvenot theory; but also, when.”# is the trivial
factor, the result is the Ornstein-Weiss theorem itself.)

Although the extension of the Ornstein-Weiss result to the conditional case
is not difficult, it is somewhat intricate. Therefore, to give the reader a frame-
work within which to follow the conditional version, it is perhaps worthwhile
to give an informal, simplified version of the original Ornstein-Weiss argument.

Given a stochastic process (7', P), the Ornstein-Weiss result states that the
concurrent assumptions that (7', P) is not I'WB and that (1, ) is FD yield
a contradiction. One uses the assumption that (7', ) is not "IWB to construct
a sequence of processes (17, P;) which converge to (7', P) in entropy and in
finite distributions. If one assumes that (7', ) is I'D, such convergence
must also hold in the d sense. The contradiction arises by showing that there
is a value ¢ > 0 such that for all / one has d[(T";, ), (T, )] > ¢2/100.

Tosay that (1°, ) is "W B means that for each ¢ > 0 there is an / such that
forallm =z 0,d({T'P|4},', {T'P},") < conaset.o/ of atoms A ¢ V., 1P,
with u(e/) > 1 — ¢. By negating the definition of 1"W5B, one gets a fixed valuc
¢ > O such that for all [ one has some m = 0 so that dUTPIAVATIPHY) = ¢
onaset.o ,, withu(Z,,) = c. whcrcgﬁ/-,.,,, is a union of atoms A € (l,,, 1P,

For each pair (/, A4) where /s a positive integer and .1 ¢ V., 7 one can
define a process (774, P ;) in the following way. Consider / disjoint copies of .1,
stacked one on top of another in the standard tower construction. Partition
the base of the tower according to Vi 7P| 4. Label the levels in the column
above each atom in V{ 7"P|4 with the corresponding ” name. The tower is
the space on which 7" operates; and I”,* is its partition according to the
labelling. Points in the space are moved vertically up the tower by 7°,'; and
the transformation induced by returns to the base, along with the partition on
the base, gives an independent process with distribution Vi 7"P|A. For cach !
the process (7';, P,) is selected from the class (7°,*, ;") by choosing an
atom A4, [Note that each pair (/, 4) gives a distribution of certain l-strings
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and that the tower construction is merely a way of concatenating these strings
to form infinite strings.]

As I grows, for each fixed #, the frequency distribution of n-strings in /-
strings becomes arbitrarily close to the distribution V4 7P on a set of measurc
arbitrarily close to one. As [ grows, thc average partition entropy
(1/DE. (V1 TiP) becomes arbitrarily close to the entropy of (1), P) on a set
of 4 with measure converging uniformly in m to one. [See below for more
detail.] Since for all choices of / and m one has u(.%7,,,) = ¢, for [ large these
sets have non-void intersection; and one can choose A, such that V1 1ipla,
will have arbitrarily good n-distribution, (1/0)E(V{ TiP|4,) will be arbi-
trarily close to the entropy of (1°, P), and d({T'P|A },!, {TP},!) = ¢. By
means of Abramov's result relating the entropy of the process induced on the
base of a tower to the entropy of the tower process, one can see that the second
property forces (1%, P;) to converge to (1', P) in entropy; and the convergence
in finite distributions is clear from the first condition. The third condition
bounds the sequence of processes (7', P,;) away from (7', P) in d.

[The statement at the beginning of the last paragraph about distribution
follows from the ergodic theorem. The assertion about entropy requires a
detailed computation which is merely encapsulated here. Since the average
S w(A)A/DEL(N1TP) of the values (1/1)E,(V{TiP) is close to the
entropy of (7', P), one needs only to show that (1/)E (V1 1P) £ E(1', P)
+ € on a set of large measure, in order to get a similar lower bound for the
values on a set of measure nearly as large. There are two methods to show that
(/DE,(NV1iTiP) £ E(T, P) + e The first involves a counting argument.
One observes that if an /-string in (7', P) has good frequency distribution of
n-strings, then the same [-string must occur in the (n — 1)-step Markov
approximation to (1°, P), since the Markov measure of each such string is
bounded below, uniformly, by a constant greater than zero. Since the Markov
measures are bounded below, one has an upper bound on the number of
I-strings in the original (7', P) which have good distribution. Since for large [
one has that most atoms 4 are mostly covered by [-strings with good distribu-
tion, and since E, (V1 T'P) is bounded above by the logarithm of the number
of I-strings, one gets (1/DE (Vi T'P) £ E(T, P) +

The second method to show this inequality involves the fact that a finitely
determined transformation is a K-automorphism. This approach is used in
the body of this article and is explained in detail there.]

The subtlety of the Ornstein-Weiss result lies in the method of showing that
the sequence of processes (1°;, ;) remains bounded away from (7', P) in the
d sense. [ Note that it is not trivial to show the easier result that the distribution
of Il-strings from (7", P;) does not match well in d with the distribution of
[-strings from (7', P). While it is true that the processes (1°;, ;) were con-
structed using distributions of /-strings which were chosen specifically not to
match Vi TP, the distribution Vi (T}))'P, is not necessarily the same as
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Vi 1''P|4 ,, which is the distribution conditioned on the base of the tower.]
If one had good d matching between (1°;, ;) and (1, ) there would be a pair
of generic strings, one from each process, so that each output agreed with high
frequency with the corresponding output in the other string. By cutting the
double string into segments of length /, based on where the P’ ,-/-strings begin,
one gets a matching of /-strings, one from each process, by looking across to
the other string in cach segment. By examining the frequency with which
[-strings are matched by these segments from the pair of generic strings, one
gets a joint distribution of /-strings for a d match between (7', ;) and (7', P)’
If the generic strings match very well, the distributions of I-strings will match
almost as well.

Since the locations of the segments were defined by the beginnings of
P -l-strings, the distribution of /-strings from (1", ;) given by the segments is
the distribution on the base of the tower which was used to define (1°,, P,);
namely, Vi 7"'P|4,. | Note that (7°))" is not ergodic, so that the distribution
can depend on where segments occur.] On the other hand, the distribution of
I-strings from (1", ) given by the segments is V1 7P, since 1" is ergodic if
(7', P)is I'D. Thus if d|[ (1", P), (T';, P})] < ¢/100, one has d({ 1P|},
(TP} < 2¢/10; but by construction d({17'PLA 1,1, { TP = ¢, which is
a contradiction.

In the light of this simplified version of the Ornstein-Weiss argument, onc
can more casily observe the complications that arise when one requires that
the processes (1, I’,) be mixing. Under the new construction [which we omit],
generic strings from (77, I”;) no longer consist exclusively of concatenated
[-strings chosen from a distribution on some past atom 1. Now the strings are
occasionally connected by a string of one or more outputs of a special state,
denoted by zero. Occurrences of zero are determined by a zero entropy mixing
process. In the simplified argument presented above, when showing that
(1, P)) and (1, ) were not close in d, it was possible to divide the pair of
generic strings into segments of length exactly /. In the mixing case, segments
are cut at intervals which are only approximately / outputs apart, where the
exact location is determined by the beginnings of /7 -[-strings, which are in
turn governed by outputs from the zero entropy process. Whereas in the
simplified version it was casy to see that the distribution of /-strings in (17, I’)
as determined by the beginnings of segments was Vi 7P, with mixing it is
necessary to apply a result of Pinsker to show that the distribution is V1 7777,
Pinsker’s result states that when A-automorphisms and zero entropy processes
are factors of a given process, they are always orthogonal. Since (17, ) is I'D,
it is a K-automorphism; hence it is orthogonal to the zero entropy process that
determines segements, when both are embedded in the ergodic process which
gives pairs of generic strings for d matching of (7', P) and (1°,, I’)).

[t is, of course, not necessary to use processes (7', ;) which are mixing in
order to have convergence in d to a finitely determined process (1, ) : ergodi-
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city is sufficient. Thus the result due to Pinsker is not an inherent part of the
basic Ornstein-Weiss result, although it is used in their paper. However, in
dealing with the extension of Ornstein-Weiss to the Thouvenot theory,
Pinsker’s result, or rather a conditionalized version of it, seems to occur more
naturally. The factor (7', H) with which one works may be badly behaved,
say 7' is non-ergodic, for each / = 2, when restricted to the factor. An initial
difficulty in the extension is how to construct processes (1", P, V H) which
contain a copy of the factor (7', H) and which are ergodic, using no properties
of (T, H) other than ergodicity. [Note for instance that concatenation of
(P Vv H)-l-strings will not work.] The construction technique chosen to deal
with possible lack of mixing properties of (1", H) leads one inexorably to the
difficulties inherent in the mixing version of the Ornstein-Weiss proof, where in
the d matching the segments are determined by a zero entropy process; but
this time the arguments have a conditional flavor.

2. Preliminaries. We assume familiarity with the basic definitions of the
d metric; and we shall use the notation of [3].

Throughout this paper 7" will be an ergodic, invertible, measure-preserving
transformation of (X, &, u), P a partition of X into v-sets, and H a finite
partition of X. Then (7', P) and (7', H) define, in the usual way, finite valued
stationary stochastic processes.

The following definition of conditionally finitely determined is from [1,
p. 181].

Definition. Let 1" be an ergodic transformation on X, and H and P two finite
partitions of X. We say that the partition P is H-conditionally finitely deter-
mined (H — I'D) if for every e > 0 there exists § > 0 and a positive integer 7
such that for every ergodic transformation 77 on a space Y, with H" and [’
two finite partitions of ¥, the following conditions

(1) d(\? T”H') = d(\? TiH) for every m
(2) d(\z/ 7''(P' Vv H), \0/ TPV H)) <

B)|E(PV H, T) — E(P'V H,T")| <6

imply that there exists a Lebesgue space Z and, for each integer p > 0,
sequences of partitions of Z, AP, (P 0 =1 = posuch that

4) d(\o/ 9PV H)) ( v (P:vH ))
(5) d(\:/ (P v H ) (\Z/ (P! V Hf))

(6) !Pi’—P1’|<6.

We shall say that a transformation 7" is finitely determined conditioned on the
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factor V2 1"'H generated by H under 1 if there is a finite partition P such that
P V H generates under 7" and P is finitely determined conditioned on H.

We shall also use Corollary 5.1 from [1, p. 199].

COROLLARY 5.1. Let (X, T') be an ergodic dynamical system and I3 and H two
partitions of X satisfying

+eo
X =VT'(BVH)
+o . +o .
QVI1rBLVTH
(3) The T'B, for i integral, are independent.

Let N2 TP be « fuctor of 1" containing the fuctor 22 TH. Then if E(P, T')
= E(H, T) we have in fact that V= TP = VX% TH.

This result states that if P is finitely determined conditioned on the factor
V2 TiH, then the factor is maximal in its entropy class relative to 7' As
shown in the appendix to this paper, for a factor to be maximal in its entropy
class relative to 1" is tantamount to saying that 7" is a K-automorphism con-
ditioned on the factor. Thusif Pis H — FD, Pis H — K.

We now define the term conditionally very weak Bernoulli.

Definition. (Given an ergodic transformation 7" with finite partitions ” and
H, we say that P is I — VW5 if given ¢ > 0 there exists [ such that for all
m > 0 and all k sufficiently large (with values of /, m, k integers) there is a
collection D, of atoms Q ¢ VE, TH with w(D;) > 1 — ¢ and on each atom
Q ¢ D, thereis a collection I, ,, of atoms C € (\/2,,, T°P) M Q with ug(Fg.m)
> 1 — ¢ for which d({T7P|Q},', {T'P|ON C}Y) £ c.

Upon occasion we shall use the notation E(?; 1, H), the entropy of P rela-
tive to I" and H. We define II(P; T', H) = (P vV H, ') — EH, T) =
EP\NVZL 1P VI2 T'H). Moreover, the notation £4(Vi 7P) will indicate
the entropy of the partition V{ 7"/ computed using the conditional measure

po(-) = ul- M Q)/u(Q).

3. Relatively finitely determined implies relatively very weak
Bernoulli.

THEOREM. Given « transformation 1" with generuting partition P N/ H where
PisH — I'D,then Pis H — VIWWE.

Proof. We will show that the concurrent assumptions /” is not H — I'lWB
and P is H — I'D lead to a contradiction. The idea of the proof is to use not
H — VIWB but H — I'D to construct a sequence of processes (7%, I, V H)
so that

(1) (T, H) has the same joint distributions as (7, H), which we denote by
(T,H) ~ (T, H);
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(2) the (7, P, V H) approximate (1", P \V H) arbitrarily well in entropy
and in finite joint distributions,
(3) but the (7, P, V H) remain bounded away from (I, P V H) in dj.

Such a result contradicts H — FD.

For the construction we begin by choosing a sequence ¢, — 0. For each »
the following proposition then gives us a source of long P strings which we
concatenate in a special way to form generic strings for the (7°,, P,) process.

ProrositiON. There exists ¢ > 0 such that integers I, k,, and m, may be
chosen in such « way that on « set Dy, of atoms Q € \/"_"L T H with u(Dy.,) > ¢/2
we can find at least one atom C C Vg,,,,L TP for which

(1)

In
dist (P V H)-n-blocksin N T"(P V H) | QN C
1

— dist (P V H)-n-blocks on X” < e

(2) ZI-EQM(\? T’P) — E(P; T,H)l Sea

n 1

28

(3) ford ¢ V TP,

> |w(A]Q) — u(d]Q)] < ¢/10

A

for all smaller atoms Q (i.e., longer H-strings) with Q < Q.
) d{TPIQ N Ch AT P|Q)"™) = «.

Remark. We will characterize atoms @ according to whether or not there is
an atom C in the past of the (7', P) process so that the d distance is at least ¢
on Q M C. Those atoms having such a C will be called ‘‘bad’’; and the others,
“good’. The idea of the proof is that the statement ‘“‘not H — VIWB" gives
a set of fixed measure ¢ of ““bad’ atoms Q. However by choosing large /, and &,
we can guarantee good behavior of distribution and entropy on a set of atoms
Q of measure at least 1 — ¢,. Hence we will eventually get an overlap of mea-
sure at least ¢/2 of “bad” atoms Q with good entropy and distribution on the
particular Q M C which makes Q ‘“‘bad’’.

Proof. The order of selection of /,, k,, and m, is as follows:

1) In order to have the distribution of (P V H)-n-blocks at least ¢,-good
on most of the space, we use the ergodic theorem. This requirement places a
minimum value on /, and k,,.

2) In order to have good entropy on most atoms of the space, we wait until
the entropy of the P partition ‘“sets up’’ relative to 7', say at time L, then
go out much further along the (7", H) process so that beyond K all the informa-
tion in the (7', H) process is subtracted off when we condition on the H-strings.
Next, having chosen a value for L, we get a separation N, after which the
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assumption H — K will give e-independence of past and future P-strings when
conditioned on long H-strings. Thus we now have a second set of minimum
values for [, and k,:

1) we need /, so large that NV and L are small compared to it;

ii) we need k, so large that no point of the P> — /,-string is closer than K to
the end of the H-string, and

iii) we need k, large enough for e-independence to hold for the values I
and N.

3) We now choose /, larger than either minimum value. However, since later
in the proof of the theorem we may wish to look at conditioning by extremely
long strings, we now place a new requirement on k,; namely, that for our choice
of 7, the distribution of P — [,-strings will not change much. The martingale
convergence theorem then gives us a new minimum on k,,.

4) Finally we go to the statement “not H — T"WB" to get the final minimum
value on k, for our choice of /,. We now choose k, larger than any of the
minimum values so that for our choice of /,, k, the statement “‘not H — VIWB"
then gives us an m,,.

The details of statements (1) and (3) of the proposition are clear and are
omitted. We include, however, a more careful proof of statements (4) and (2)

First, the assumption that /” is not H — W5 implies that there exists.
some ¢ > 0 such that for every [ there are k sufficiently large compared with [
and some m so that if D, is the set of atoms Q ¢ V" , TH on each of which
there is a collection /7y, of atoms C € N2, 7Py N Q with po(l1g.) > ¢
for which

dUTP|IONLL{TIPIQ M ClyY) > ¢, then w(D,) > c.
Thisresultis snnply the negation of the definition and provides the basis for (4).
Next, we deal with statement (2), whose proof is developed in the following
sequence of lemmas. In the first two lemmas, we use the assumption that 7 is
— K toestablish an upper bound: (1/D)Eq r «(V1TP) £ E(P; T, H) + ¢
for most of the space. The third lemma merely observes that such an upper
bound on most of the space implies a lower bound for most of the space, as well.

Lemma 1. Giwen € > 0 there exist L, « set 1 with w(l) > 1 — eund a K such
that for all O ¢ V5, TH with k> K and Q N F 5 6 we have

1 Ea(\/ T’P) < B(P:T.H) + <
1

L
Proof. Choose Liand Ky such that
K1
LLL(\/ eV Z”H) S EWP; T, H) + ¢/4
1 —K1

(Assure that the martingale convergence theorem controls P — Lj-string
distribution on k — H-strings, & 2 K,). The conditionnl entropy is a weighted
average of entropies conditioned on individual H-strings. If we break long
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strings of P-outputs into shorter pieces of length L, the ergodic theorem then
g p p g

tells us that the individual H — (2K, + 1)-strings on which the pieces sit will
give the same weighted average as before.

«L,—>
£ > > » P name
1 ] 1
T ; : — H name
~N T T
]
01 h H
1 1
)
]
Q- ,
Qs

«— 2K+ 11—

We thus get an L >> Ly, a set IF with u(F) > 1 — e and a K > K, such that

1 L—L1 q+L1 . L €
vﬁg(\/ r 11)) <+ 2 E ‘@( \Y% TT) +5
L ]4 q=0 q+1

IIA

> [relative frequency in () name of H-(2K; + 1)
Q¢ \/’fK TiH

L1
-block corresponding to Q] - I:EQ(\/) P Lle]
1

4 Lie/4 < LE(P; T, H) + .
LEMMA 2. Let P be H — K. Then given ¢ > 0 there is « set I' with u(F) >
1 — e and a value L such z‘hat for all 1 > L thereis « K such that for all m and

allj, k> K, ONC¢ \/k TH \/ﬂm TP with Q N CN I 5 @ implies that
we have

14
‘}Eémc(\/ TiP) S EWP;T,H) + €2 + logv)
Proof. Use the previous lemma to choose L and K such that
1 EQ(\/ TiP) < E(P;T,H) + ¢/3.
- 1

We may also assure that the martingale convergence theorem controls distri-
bution of 7 — L-strings on long H-strings. For fixed L we use the assumption

Pis H — K to find a separation N so that we can remove the conditioning by
atoms C in the remote past to get

L L
%Emc(\l/ T’P) < %EQ(\]/ T’P) + e < E(P;T,H) + 2e.
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If we break long strings of £ outputs from time zero to time [ into pieces of
length L, and if we then translate back to time zero, the net effect is to move
the conditioning atom C into the remote past. Take L > Land [/ > L.

Denote by G the collection of atoms 0 N C ¢ VX, TiH VL, TP for which
(1/0) [numberof 5,1 £ s £ [, such that 7=°(Q M C) is well behaved] > 1 — .
Then u(G) > 1 — e and for 0 M C M G we have that, letting

als) = [ = N —s)/L],
%E@m(v T"P)

1 Ll—l N+s N+s+Lgt+L .
<5 [ Esn (\/ zlp) + Z JLQM( V T'P)
5=0 N+s+Lgt1

+E@mc( \/ TiP)]
aL+N+s
< LIE(P; T H) + €2 + log v)].

LEMMA 3. Given ¢ > O there is a set I' with
p(I) > 1 — [e(2 + logv)] — [e(2 4 log v 4 e log v)]'/2,

an L and for each I > L « K such that for all m and «ll QM C € \/ﬂ,,, Ik
Ve, TH with Q N C N F % @ we have that

l
%EQ n (,(\/ 1"‘]’) — E(; T, H)
1

< [e2 + log v + elog v)]'/%.
Proof. Given e > 0 we can use the previous lemma to find a set 17, with pw (7))
> 1 — € and an L such that for cach [ > L there is a K for which
1
%EQQC(\/ Ti1’> S EP;T,H) + €2 + logv)

when Q0N C ¢ VL, 1P VE, T H with j, k> K and QN C N\ Fy 5 .
ForQM CMN I =0 we ]ldVL the universal bound

1 . L

YJLQ(\C \I/YlP élog'l).
We now use the fact that given an upper bound for a set of numbers and given
their average, we can determine a lower bound for the same set.
Since

ip \/ f’H)

—J

E(P; T H) % (\/ TP

B SCIARS R (e B

and since the right hand side can exceed E(P; T, H) by at most 2¢ + elogv +
e log v, we can have at most a set of Q M C atoms of measure [e(2 + log v
+ elog v)]Y? on which

l
%EQmC(\/ TiP) < EW@;1,H) — [e(2 4+ logv + elog 2)]"A
1
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4. The construction.

Description of the constriction. For each e, the proposition gives us a distri-
bution of I — [,-strings associated with “‘bad’ atoms Q € D,, by looking at
Vi TP|Q M C, where C is the past atom for which Q M C has good distribu-
tion and entropy but bad d match. Similarly, for all except e, of the other
atoms Q, even though there may not be an atom C with bad d match on Q N
we may still choose some Q M C with good entropy and distribution and use
the resulting distribution V{* 7°P|Q M C. For the remaining set of Q atoms
with total measure at most ¢,, we choose Q M\ C arbitrarily. We wish to usc
P — l,-strings from these distributions to lay along a generic H-string in a
special way. The resulting partition will be denoted by /2, and the measures of
each atom will be determined by limiting frequencies in the string.

We begin with a zero entropy mixing process S. Then construct a Rohlin
tower of height /, with residual error 2='» If we designate the base of the tower
by a and the rest of the space by 8 we get a partition R, and a zero entropy
mixing process (S, R,) which prints out a's some /, units apart, except for an
occasional longer gap between a's.

By considering the transformation 7 which is 7" restricted to the factor
generated by H, we can construct the direct product (S, R,) X (77, H). Since
the product of a mixing process and an ergodic one is again ergodic, we can
consider a generic string from the (S, R,) X (77, H) process. To construct the
(T, P, V H) process we examine the double string and look for an « output.
An « must occur because u({S = a}) = (1/1,)(1 — 2=»). Next, we examine
the H-process output for k, locations on either side of the a. This determines a
Q atom and an associated distribution of P — [,-strings. We select an [,-string
at random according to the distribution for Q and lay it as a third string over
the output of the (S, R,) X (77, H) process, starting over the a output and
going to the right. Occasionally there will be a gap longer than /, between the
a's, and we fill gaps between /,-strings with a special symbol 0. Thus the parti-
tion P, will have v 4 1 atoms. We now continue the procedure at the next «
with the corresponding new atom Q.

P-string P-string P-string
from Qy from Q, from Q;
—— 0 0 —— .
P, string
= 2 = & R string
H string
Q1
Q2
on
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We must now show that the processes (7, P, V H) so constructed arc
ergodic, close in distribution and entropy to (7', P V H), but remain bounded
away from (7', PV H) by ¢2/100 in d;; in contradiction to the assumption that
(TP VvV H)is H— ID.

We remark for future use that the (7),, P, V H) process contains a copy of
the (S, R,) process. By examining the locations of the special symbol 0in 2,
which has probability 2= and hence must always occur in a generic string,
we can discern where the o's were.

Ergodicity. To show that 7, is ergodic, we note that for any finite cylinder
sets A, B ¢ V. 1,/(P, VvV HV R,) we have

m—1

lim - Z wANT,B)) = wlplde N Am)n(Ar)n(A )

moco M y=0

: ,U'(Bl’lBR N BH)#(BR)H(BH) = #(A ).U(B)

since P, depends only on the R, and H close below it and since (1%, H) ~
(T, H) is ergodic.

Distribution. To show that the distribution of strings of length » from the

process (1',, P, \V I) is close to the distribution of strings of length % from the
process (1, PV H), we make estimates in the following cases:

1) for a I, — n-string A with no zeros in the name, and
2) for a P, — n-string containing zeros.

The basic idea is that the distribution of n-strings is good inside /,-strings;
and since /, is large compared with 7, the end effects are negligible.

Lntropy. While the description of the construction in terms of strings is
useful for checking distribution, the entropy of the (7%, P, V H) processes is
best examined by viewing them as towers over ergodic transformations on the
base. We can then apply a theorem due to Abramov which states that

-[(:(1‘71) = -E(Tn)/ fﬁu(iﬂj[ = .E(j“n)[l(ﬂ[),

where T, is the transformation induced on the base 1/ of the tower and 7y,
is the return time to A/ under 7°,.

The construction of (7°,, P, V H) is effected as follows: First we look at
(S, R,) X (17, H) as before. Then look at the transformation r which (S, &,) X
(", H) induces on N = {S = a} X Xy, where Xy is the space where 1" acts.
Now the set N can be partitioned into atoms Q; according to the H —
(2k, 4+ 1)-name centered at the time where s = a. We then construct a skew
product T, on the set A X [0, 1] in such a way that T, induced on the set
Q; X [0, 1] is the transformation (r) o; X B, where (7)o, is the transformation
induced by 7 on Q; and B is a Bernoulli shift. Here the 5; are chosen to be
independent of each other and of , with distribution given by Vi* T*P|Q, N C.
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The transformation 7', is then extended over the base 1/ to a transformation
1, on the tower by placing the appropriate P, V H strings above it. The length
of these strings is, of course, governed by the return time to {S = a} X Xy
under S X 1.

We may now examine the entropy of T,. Observe that S X 7" has entropy
equal to E(H, 1), so that

E(r) = EH,T)/u({S = a} X Xy) = E(H, T)I,(1 4+ 27').
Also, if

]Bn,j = {\07 (Tn)an|QJ X [O! 1)]r (N - Q]) X [Oy 1]}

and
B _ _ A X
.Z)n = \/-Z)n,j; Hn = \/ (Tn)lI{!
i 0

we have that

-1 +oo
E(T,) = E(P, Vv H, T,) = E#, T,) + E(Pﬂ { V (T)'P, V (Tn)"ﬁ,l)

—wm

-1
=K, T,) + E(P'n V (TP, v G)

+o
where G € V (T,)'H, is the partition according to (2k, + 1)

-H-names centered at the time when S = «

= E(Hm Tn) + ; EQj(Pn S{D (Tn)lpn) . ,U(Qj)

= E(T) + QZ EQj(]jn,j S/ (Tn)lpnq) " #(Q]’)

= E(r) + 2 EB)u(Q,), where Q; ¢ i/ T'H.

—kn
But by construction we have that

i) E(B;) = Eq¢ n (Vi 1P), which is near ,E(P; T', H) for most Q;, and
ii) E(B;) =1, log v for a set of Q; of measure ¢, on which we do not have
better control of entropy.
Thus for large n, E(T',) will be near ,E(H, T) + L,E(P;H,T) = LE(P VvV H,T).
But the return time to M under T, is constructed to be the same as the
return time to NV under S X 77, hence is [,(1 ++ 2~ ). Thus for large n we have
EP, Vv H,T) will be near E(P Vv H, T).

https://doi.org/10.4153/CJM-1978-048-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-048-7

544 M. RAHE

p

y
SLI//TQQ
jam

Qs

N = {S =a} X Xy

5. The dy matching. In order to deal with the question of the dy distance
between (P VvV H, T) and (P, V H, 1) we need the following lemma on the
disjointness of H — K and zero entropy processes.

LEMMA. Let P, H, R, Q be finite partitions for a transformation T with

+oo ~+oo
V1O VIR, EWQ;T,H) =ER;T,H); (PVHT)isH—K:

and
+o ) ~+o . +o )
VTP 1LVIQ given\V TH,

then
+oo . +o . +oo .
VTP LVTR givenVT'H.

In particular, we take Q to be the trivial partition and E (R, T) = 0to get
+oo . +co . +oo X
VTP LVNTR givenVTH.

Proof. We shall show first that P 1 R given V2 7H. Then replacing P by
V™, TP and R by V", TR, the hypotheses remain in force so V", 7P 1
V2, TR given V2 TH for all n, from which we get our result.

Suppose then that P and R are not independent given Ve I'"H. Hence
+oo
\Y FH) - E(P

+o

VT’HVR) =c¢>0.

—w

E(P
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Since (P VvV H, I') is H — K, we can find an # such that
E(P iH) — E(P

Now set T = 7", Vi1 TiR = R, V=1 7Q = Q, V'-' T'H = H and the
hypotheses remain in force with 7, R, Q, H replacing 7', R, Q, H. Also,

E(P J{O/O 1'H> - E(P

Further,

s

+o
"HNY TPV TPV .. ) < ¢/2.

+(D
V TH v R)

—

+
\/T"H\/R) >c¢>0.

—a

- oo

\/ THP Vv Q) \/ 1"H)

—1

vaH)

v Q
( \/T’P\/]’H) +E(@

(o |

On the other hand,

J78) ~ 2 4 EQ:T, )

IlV

VTi(Pv Q)+\O/OT1'H) =E®PV Q;T,H)

too _
,IH)

ooy o

<EPVR; T, H =E(PVR

=E(P R\/7 (PVR)\/T'H)—l-E(

lIA

E(P R \/ T"H) + E( \/ TR V T’H)

—o -

4o
< E(P V TiH) — ¢+ ER; T, H).

But E(R; T,H) = nER;T,H) = nE(Q; T, H) = E(Q; T, H) so the result
is impossible, since ¢ > 0.

dy matching. Since by hypothesis (P VV H, T') is H — FD and (P, V H, 1)
— (P V H, T) indistribution and entropy, for all sufficiently large #n we should
havedy[(P Vv H,T), (P, V H, T)] < ¢2/100. We now show that the processes
cannot be matched that well.

If dgl(P VvV H, T), (P, V H, T)] < ¢%/100 we can construct an ergodl(‘
process U with associated measure » acting on a space Z and partitions P, P, H
of Z with Y.»((P, — P,) U (P, — P <)) < ¢2/100, where the sum is over
each set in the partitions, and where (U, PV H) ~ (T, P vV H) and (U,
Pv H)~ (T, P,V H).
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Given a typical cylinder set Q; ¢ V', TH, we can match the distribution
(Vi (T,)P,|0; NS = a}) and the distribution (V{* TP|Q; N {S = a})
well in the d sense. To match them we merely scan a generic string of the U
process while looking for the Q; string with « in the correct (middle) position
relative to it. Each time we encounter the Q;, « combination we match the
P, — l,-string and the P> — [,-string which lie above and to the right of . The
limiting frequencies of matched pairs of /,-strings give a probability measure
and we will have d[{(71,)'P,|Q; N {S = a}}i", {TP|Q}1"] < ¢/10 for all
except a set of Q; of measure less than ¢/10.

Now by the martingale convergence theorem and the independence property
of the preceding lemma applied to the joint process U, there is a set I* with
w(F) > 1 —1¢/10 and a J so that whenever j > J, Q € V., T"H, and
QNS = al N I' # B we have that

A[{TPIQ N (S = a}}1, {TP|Q}i"] < ¢/10.

Note that it is possible to have J > k, but, by part (3) of the proof of the propo-
sition, if Q) € \/";"kn T'H is one of the ‘““bad” H-strings which we used to lay in
P, — [,-strings, we have

d[{ TP}, {TP|Q} 1] < /10,
where Q € Qand Q ¢ V., I"'H. Thus we have that:

in
distribution V' 7"°P|Q0 N C
1

In

= distribution V (7,)'P,|0 N {S = «}
1

In

= distribution V (7,)'P,|Q; N {S = a}
1

¢/10 close in d by limiting
frequency in process U

in

distribution V T"°P|Q; N {S = «af
1
¢/10 close in d by independence

of H — K and zero entropy
processes

In
distribution V T"P|Q;
1

¢/10 close in d by part (3)
in proof of the proposition

£}
distribution V T*P|(.
1
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This is clearly impossible since the d distance must be at least ¢. Hence we have
a contradiction and the theorem is proved.

Appendix. In the preceding argument we used the property that a process
is H-conditionally a K-automorphism on two occasions: once to find an upper
bound for the entropy of the distribution of / — /-strings and again to show
that the dy-match cannot be good. The first use is avoidable by a counting
argument similar to that of Weiss; the other seems inherent to the method of
proof. Since a discussion of the H — K property is not available in print, we
include a short summary of its various characterizations.

Proofs are left to the reader (see [4] and modify results by inserting the
invariant g-algebra VI= 7'H).

Definition. Given an ergodic transformation 7" and a finite partition H, we
say that T'is a K-automor phism relative to or conditioned on NN, T'H (H — K)
if

e —n +o )
(V[TVFH =VI'H
n= 1 —co —»

for every finite partition P.

Lemma 1. Let P, Q, H be finite partitions. Then

=1 =it 1
IME@;VTTVT@VTH>=E@ VFTVIH)
Jom — —m - — 400

LEmMaA 2. Let P, H be finite partitions such that PN H generates under 1.
Let Q be « finite partition. Then

m(VIQVﬂﬂCTWVfTVPﬂ

n=1 n=1

LEMMA 3. Let F be a finite partition. Then

—w

1
( 'VTFVTH)zO
if and only if there exists « finite partition Q such that

Fgﬁ(VTQVTH)

n=1 \—co

Definition. T is of complelely posttive entropy conditioned on VI TiH if and
only if for every finite partition F € VX2 T"H we have

E(F

LemMma 4. T 1s H — K if and only if T is of completely positive entropy
conditioned on NVI= TH.

-1 +oo
VT%VTH)>&
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LemMa 5. If 1 is H — K then T is H' — K with H' = VYT, for 1
nonzero integer. If T is H — K then fuctors of T containing Ve TiHare H — K.
If Tis H— K and S is « root of T for which V2 TiH is a factor, then S is
H - K.

Definition. We say that H is maximal in its entropy class relative to 1 if
Vi 1rig € V2 1iF and EH, T) = E(F, T) imply that VX2 I"H =
Ve TiE, for every finite partition F.

LEMMA 6. 1" is of completely positive entropy conditioned on N2 TH if and
only if H is maximal in its entropy class relative to 1.

Lemma 7. If Pis H — D, then P is H — K.

Proof. By Thouvenot's Corollary 5.1 if P is H — FD then H is maximal in
its entropy class relative to 7.

Definition. 1T is K-mixing conditioned on 7= T'H if for any set A and
finite partition P we have

lim lim lim

N ks Moo

Lemma 8. 7 is H — K if and only if T is K-mixing conditioned on 1= TH.

k —n k
M(A V fH) — M(A V 17'PV T’H) ‘ =0 ae.and L.
—k / —k

—n—m

Lemma 9. Suppose that T 1s H — K, Then given e and [ there exists N, and for
that N @ number K (N) and « set FF(N) with u(FF) > 1 — e such that for ull atoms
Qc V., T"Hwithj, k> K(N)und Q  F we have that N2 TP is e-indepen-
dent of N/ TP given Q.
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