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COMPUTING IN NILPOTENT MATRIX GROUPS

A. S. DETINKO and D. L. FLANNERY

Abstract

We present algorithms for testing nilpotency of matrix groups
over finite fields, and for deciding irreducibility and primitivity of
nilpotent matrix groups. The algorithms also construct modules and
imprimitivity systems for nilpotent groups. In order to justify our
algorithms, we prove several structural results for nilpotent linear
groups, and computational and theoretical results for abstract nil-
potent groups, which are of independent interest.

1. Preliminaries and background

1.1. Computing in matrix groups

This paper deals with the development of algorithms for matrix groups, currently a very
active area of computational group theory. Early matrix group algorithms modified
permutation group methods, using induced actions on the underlying vector space. The
feasibility of such approaches is limited, as they can give rise to algorithms with running
times that are exponentially dependent on the size of input data. And, of course, for infinite
matrix groups these approaches cannot be used directly at all. The computational problems
involved have motivated a new phase in the development of algorithms for matrix groups
(for further historical remarks, see the survey [23]).

Nilpotency is an important group property. Methods for computing in finite nilpotent
matrix groups are given in [18]. For a matrix group G over a finite field, or a finite matrix
group G over an algebraic number field, Luks proves in [18, Theorem 3.1, Corollary 3.4] that
one can test in polynomial time whether or not G is nilpotent.Also, in [18, §4.5] methods are
proposed for testing membership, finding presentations, and solving other computational
problems. The methods depend on finding a so-called ‘manageable representation’ for each
term of a normal series of a nilpotent matrix group (see [18, p. 114] and [2]). A different
way of testing nilpotency is described in [7, §2.3]; this is a Monte-Carlo polynomial-time
algorithm for testing solubility and nilpotency of matrix groups over finite fields.

Aspects of computing in a nilpotent matrix group over an algebraic number field are
considered in [3]. This research was prompted by the Tits alternative: a finitely generated
matrix group either contains a free subgroup of rank 2, or is soluble-by-finite. In the former
case, many basic computational problems are undecidable. So it is desirable to have an
efficient algorithm for testing whether a finitely generated matrix group is soluble-by-finite.
In [3, §6], Beals gives a polynomial-time algorithm for deciding whether a finitely generated
matrix group over an algebraic number field is nilpotent-by-finite. Other computational
problems have been solved for such groups (see [3, Theorem 1.5]). Some methods from
[3] can be used for computing in nilpotent matrix groups, but most of the algorithms in
[3] are practicable only if the groups are of small degree. Similar problems are dealt with
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Computing in nilpotent matrix groups

in [11] and [19], where algorithms for polycyclic and polycyclic-by-finite matrix groups
over number fields are described. Since finitely generated nilpotent groups are polycyclic, a
broad range of algorithms for polycyclic groups is applicable to finitely generated nilpotent
linear groups (see [17, 25]). In particular, [17] contains an algorithm for testing nilpotency
of a polycyclically presented group.

The main objective of this paper is to introduce novel ways of computing in nilpotent
matrix groups, based on standard linear group theory.Although we treat groups defined over
a finite field, many of the concepts can be extended to finitely generated nilpotent groups
over other fields, such as number fields. Thus we regard this paper as a starting point for
further work on computing with nilpotent linear groups over an arbitrary field.

Our approach uses structural results for nilpotent linear groups [26, 27], methods for
computing in associative algebras [21], and standard techniques of computational group
theory [12]. We provide the following algorithms for a matrix group G over a finite field,
defined by a generating set of matrices:

• testing nilpotency of G,

and, if G is nilpotent,

• testing irreducibility of G,

• constructing explicit nontrivial G-modules,

• testing primitivity of G, and

• constructing explicit nontrivial G-systems of imprimitivity.

Additionally, the final section of the paper discusses the construction of small-degree mono-
mial (and hence permutation) representations of a nilpotent linear group.

Our algorithms are deterministic, and always return definitive answers, without
exceptions. The basic themes driving all of our algorithms are a reduction to completely
reducible groups, and the computation of a series of subnormal subgroups with abelian
factors. For the irreducibility and primitivity testing algorithms, another theme is the con-
struction of modules for abelian normal subgroups of an input nilpotent completely reducible
matrix group.

Irreducibility testing of matrix groups over a finite field, and primitivity testing of
absolutely irreducible matrix groups over a finite field, are studied in the papers [13, 14, 15].
Nilpotent primitive linear groups have a much more transparent structure than arbitrary
primitive linear groups: see [27, Chapter VII], [9], and [8] (where the nilpotent primitive
linear groups over a finite field are completely classified up to conjugacy); for instance, odd-
order primitive nilpotent linear groups are cyclic. It therefore seems reasonable to develop
algorithms for irreducibility and primitivity testing directly for nilpotent matrix groups,
taking advantage of the special structure of these groups. There are several attractive
features of our overall approach to irreducibility/primitivity testing of nilpotent matrix
groups: it does not depend heavily on the ground field, and hence can be extended to finitely
generated groups over infinite fields; primitivity testing does not require that input groups be
absolutely irreducible; and irreducibility/primitivity testing and the construction of modules
or imprimitivity systems are done in parallel. In fact, our algorithms for testing nilpotency,
and those for testing irreducibility/primitivity, are all based on the same set of ideas and
techniques. In the course of developing such algorithms we prove several auxiliary results on
abstract and linear nilpotent groups (see Subsections 3.2 and 3.3), which are of independent
interest.
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1.2. Notation and terminology

As usual, GL(n, F) is the group of n × n invertible matrices over a field F. Let V be the
underlying n-dimensional F-vector space; note that the group GL(V ) of invertible F-linear
transformations on V is isomorphic to GL(n, F). Elements of GL(n, F) act on the left of V .

Throughout the paper, G is a subgroup of GL(n, F) given by a generating set {g1, . . . , gr}
of matrices.

A G-submodule of V is a subspace U of V such that GU ⊆ U . When we talk of G-
modules we can mean either G-submodules of V , or G-quotient modules of V : quotients
U/W where W ⊆ U are subspaces of V and GU ⊆ W .

Let X �= 0 be a G-module. If X has no proper nonzero G-submodules, then X is
irreducible; otherwise it is reducible. Let X1, . . . , Xk be nonzero G-submodules of X such
that X = X1 ⊕· · ·⊕Xk . We say X is decomposable if k > 1, whereas X is indecomposable
if no such nontrivial direct sum decomposition of X exists. If each Xi is an irreducible G-
module, then X is completely reducible. Under our definitions, an irreducible G-module is
completely reducible.

All of the above terminology is also applied to G itself: G is irreducible, reducible,
completely reducible, indecomposable, decomposable, according as the G-module V is
irreducible, reducible, completely reducible, indecomposable, decomposable, respectively.

Given an extension field E of F, it is possible to define V as an E-vector space by
‘extension of scalars’, in such a way that GL(n, F) embeds as a subgroup of GL(n, E)

acting on V . If G is irreducible as a subgroup of GL(n, E) for every extension field E of
F, then G is absolutely irreducible. In fact, G is absolutely irreducible if and only if G is
irreducible as a subgroup of GL(n, F̄); F̄ the algebraic closure of F.

A composition series of the G-module V gives rise to a basis of V by extending bases
of terms in the series, and with respect to this basis each element g of G has block upper
triangular form 


a1(g) a12(g) . . . a1k(g)

0 a2(g) . . . a2k(g)
...

...
. . .

...

0 0 . . . ak(g)


 (1.1)

where the assignment g �→ ai(g), 1 � i � k, defines an irreducible representation G →
ai(G) � GL(ni, F), and the aij (g) are ni×nj matrices over F. In particular, G is completely
reducible if and only if some such block upper triangular form for G has aij (g) = 0 for
all i �= j and g ∈ G. We call ai(G) an irreducible part of G. Suppose that another
block triangular form for G yields irreducible parts bi(G) of degree mi . If mi = nj and
x−1bi(g)x = aj (g) for some x ∈ GL(mi, F) and all g ∈ G, then the irreducible parts
bi(G), aj (G) are equivalent. By the Jordan–Hölder theorem, the multiset of irreducible
parts of G (counting multiplicities) obtained from any block upper triangular form (1.1) of
G is unique up to equivalence.

If V = V1 ⊕ · · · ⊕ Vm where m > 1 and the Vi are subspaces of V permuted by G

under the usual left matrix multiplication action, then G is imprimitive, and {V1, . . . , Vm}
is a G-system of imprimitivity. If no such decomposition of V exists, and G is irreducible,
then G is primitive. We say G is monomial if it has an imprimitivity system of size n, for
in this case G is conjugate by a change-of-basis matrix to a group of monomial matrices in
GL(n, F). Note that in our definition of imprimitivity, G need not be irreducible. However,
if G is irreducible and imprimitive, then it acts transitively on an imprimitivity system
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{V1, . . . , Vm}, so that all the Vi are of equal dimension and m divides n; also, m divides |G|
if G is finite.

Let S be any set of n × n matrices over F. The enveloping algebra 〈S〉F of S over
F is the smallest F-subalgebra of the full n × n matrix algebra Mat(n, F) containing S.
A G-submodule W of V is said to be a simple G-module if 〈GW 〉F is a simple algebra (here
GW is the restriction of G to W ). For example, W is simple if GW is irreducible. Let GW

be completely reducible; then 〈GW 〉F is a semisimple algebra, and if the irreducible parts
of GW are all equivalent (the completely reducible G-module W has a single homogeneous
component), then W is a simple G-module. Conversely, if 〈GW 〉F is a semisimple algebra,
then GW is completely reducible. By Wedderburn theory, any semisimple algebra A ⊆
Mat(n, F) is a direct sum of simple subalgebras, and those summands are the only minimal
nonzero ideals of A.

For the rest of the paper, F is a finite field of characteristic p.
With all elements of G in the form (1.1), we define a homomorphism γ : G → GL(n, F)

by

γ : g �→ diag(a1(g), a2(g), . . . , ak(g)).

The kernel of γ is a normal nilpotent subgroup of G; actually it is a p-group, and if G itself
is nilpotent then ker γ is the Sylow p-subgroup of G.

The group theory notation that we use is mainly standard, as in [20]. The normal closure
of a subgroup K in a group H is written KH . For a finite nilpotent group H and prime q

dividing |H |, it will sometimes be convenient to denote the Sylow q-subgroup of H by Hq ,
and the Hall q ′-subgroup by Hq ′ . In a q-group H , �1(H) denotes the subgroup generated
by all elements of order q.

2. Nilpotency of matrix groups

2.1. Reduction to completely reducible groups

The aim of this subsection is twofold: firstly, to show that we can always construct
completely reducible G-submodules of V when G is nilpotent; and secondly to indicate
the principal importance of the case that G is completely reducible when testing nilpotency
of G. The completely reducible case is similarly important in our algorithms for testing
irreducibility and primitivity of G, and constructing nontrivial G-modules or G-systems of
imprimitivity for a nilpotent matrix group G.

An element g of GL(n, F) is unipotent if (g − 1n)
n = 0n, where 1n and 0n denote,

respectively, the n × n identity and zero matrices. Since F has characteristic p, g is
unipotent if and only if |g| is a p-power. If for some extension E of F, g is conjugate to
diag(a1, . . . , an) ∈ GL(n, E), then g is semisimple. By Maschke’s theorem, the semisimple
elements of GL(n, F) are precisely those of order not divisible by p. We should emphasise
at the outset that for arbitrary G � GL(n, F), the conditions that

• G is generated by semisimple matrices, and

• G is completely reducible

are not equivalent, but that when G is nilpotent, these two conditions do coincide (see results
2.2 – 2.4 below).

For each g ∈ GL(n, F) there exist a unique semisimple matrix gs ∈ GL(n, F) and
a unique unipotent matrix gu such that g = gsgu = gugs . This is called the Jordan
decomposition of g; gs is the semisimple part of g, and gu is the unipotent part of g.
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Lemma 2.1 (see [22, Corollary 1, p. 135]). If g ∈ GL(n, F) has order peq and gcd(p, q) =
1 = ape + bq, then gu = gbq and gs = gape

.

The Jordan decomposition of g can be found by Lemma 2.1; see [6] for a method to
compute the orders of elements of GL(n, F) which is usually fast in practice (but is not
polynomial time, as it can involve the factorisation of large integers). There are other means:
in an appendix to [1] it is shown that the decomposition of g as gs + h, where h ∈ 〈g〉F is
a nilpotent matrix, can be accomplished in polynomial time. We have gu = hg−1

s + 1.
Define subsets Gu and Gs of G by

Gu = {gu | g ∈ G} and Gs = {gs | g ∈ G}.
The next result follows from [22, p. 136].

Lemma 2.2. If G is nilpotent, then Gu is the Sylow p-subgroup of G, Gs = Gp′ is a
completely reducible subgroup of G, and G = Gu × Gs .

Corollary 2.3. Suppose that G is nilpotent. Let gi(u) and gi(s) be the unipotent and semi-
simple parts of gi , respectively. Then Gu = 〈g1(u), . . . , gr(u)〉 and Gs = 〈g1(s), . . . , gr(s)〉.

Lemma 2.4 (see [27, §29, Corollary 1]). Suppose that G is nilpotent. Then G is completely
reducible if and only if G = Gs .

We now look at ways of constructing completely reducible G-submodules of V . Of
course, if G is nilpotent and Gu = 1, then V itself is completely reducible. Let H =
〈g1(u), . . . , gr(u)〉. Let Wi be the subspace of V consisting of all gi(u)-fixed points, and
define W = ⋂

i Wi . If G is nilpotent and Gu �= 1, then W �= 0 is the fixed point space
Fix(Gu) of Gu: this is a G-submodule of V , because Gs commutes with Gu; also, W is
completely reducible by Maschke’s theorem, because the action of G on W has kernel
containing the Sylow p-subgroup Gu of G. We proceed to calculate Fix(H) in V/W , and
so on, repeating until we find a proper G-submodule U of V such that Fix(H) in V/U is
V/U . If this recursion does not succeed in n iterations or less to find such a U , then G is
not nilpotent. Success confirms that H is unipotent.

Another way to construct completely reducible G-submodules of V , related to the above,
uses a correspondence between the structure of 〈G〉F and the action of G on V . Let R =
〈R1, . . . , Rr 〉F, where Ri = gi(u) − 1n. Suppose that G is nilpotent; then the radical of
〈G〉F is spanned by {gx | g ∈ Gs, x ∈ R}. Denote by Rk the ideal of R generated by all
length-k products x1 · · · xk , xi ∈ R. Either R = 0 and so V is completely reducible, or we
have a strictly descending chain R ⊃ R2 ⊃ · · · ⊃ Rm−1 ⊃ Rm = 0 of ideals of R, where
m � n, and

RV ⊃ R2V ⊃ · · · ⊃ Rm−1V ⊃ 0 (2.1)

is a chain of G-modules. We can use (2.1) to write G in upper block triangular form (1.1):
each quotient RiV/Ri+1V is annihilated by R and therefore is completely reducible. Note
that Rm−1V ⊆ Fix(Gu), the nullspace of R, and if g ∈ Gu then the blocks ai(g) in (1.1)
are all the identity; that is, Gu is upper unitriangular.

Sometimes the irreducible parts of G are equivalent. For example, this is certainly true
if G is a p-group (all irreducible parts are trivial). Also note the following lemma.
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Lemma 2.5 (see [27, §29, Theorem 3]). If G is nilpotent and indecomposable, then up to
conjugacy in GL(n, F), the elements of G have the form


a(g) c12(g)a(g) . . . c1k(g)a(g)

0 a(g) . . . c2k(g)a(g)
...

...
. . .

...

0 0 . . . a(g)




where G1 = a(G) = a(Gs) � GL(n1, F) is the irreducible part of G, and the cij (g) are
contained in the Mat(n1, F)-centraliser of G1 (which is a field). Thus 〈Gs〉F is simple.

Corollary 2.6. If G has a representation (1.1) and aij (g) �= 0 for some g ∈ G and i, j ,
but either ni �= nj , or ni = nj and ai(g), aj (g) are not conjugate in GL(ni, F), then G is
not nilpotent.

Now we explain how nilpotency testing reduces to the situation that G is given by a
generating set of semisimple matrices (which certainly occurs for nilpotent completely
reducible G, although remember that given such a generating set we cannot initially tell
whether or not G is completely reducible). Suppose that we have computed gi(u) and gi(s)

for all i, 1 � i � r (for example, by Lemma 2.1). If either [gi(u), gj (s)] �= 1n for some i, j ,
or we fail to confirm by the method detailed after Lemma 2.4 that H = 〈g1(u), . . . , gr(u)〉
is unipotent, then G is not nilpotent by Lemma 2.2. If G passes both of these tests, then H

is a p-group and [H, K] = 1, where K = 〈g1(s), . . . , gr(s)〉. We are then faced with testing
nilpotency of K . At this stage, nilpotency of G is equivalent to nilpotency of K , for if K

is nilpotent then so too is G, as the direct product of K and the p-group H . We give an
algorithm later in Subsection 2.4 for testing nilpotency of a subgroup of GL(n, F) input by
a generating set of semisimple matrices (Algorithm 2).

2.2. Nilpotent completely reducible matrix groups

In this subsection we outline structural results for nilpotent completely reducible matrix
groups.

The following lemmas hold over any field.

Lemma 2.7. If G is nilpotent and completely reducible, then every subgroup of G is com-
pletely reducible.

Proof. (Cf. [27, §29, Theorem 5].) By Lemma 2.4, G consists of semisimple matrices, so
every subgroup is completely reducible, by Maschke’s theorem.

Lemma 2.8. If G is completely reducible, then every subnormal subgroup is completely
reducible.

Proof. This is achieved by repeated application of Clifford’s theorem.

Let

1 = Z0(H) � Z1(H) = Z(H) � Z2(H) � . . .

be the upper central series of a group H �= 1. That is, Zi(H)/Zi−1(H) = Z(H/Zi−1(H)),
i � 1. The next two lemmas contain ideas that recur throughout the paper (see [18, §4.5]).

Lemma 2.9. For any group H , and any fixed a ∈ Z2(H), the assignment h �→ [h, a] defines
a homomorphism ϕa : H → Z(H) ∩ [H, H ].
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Lemma 2.10. Suppose that H is a nonabelian group such that Z(H)∩[H, H ] is cyclic. Let
a ∈ Z2(H) \ Z(H). Then there exists ha ∈ H , ha �= 1, such that H = 〈ha, CH (a)〉.
Proof. By Lemma 2.9, H/ ker ϕa

∼= ϕa(H) is cyclic, so H is generated by ker ϕa = CH (a)

and one other element.

Lemma 2.10 will be applied in practice to normal subgroups H of G. In that setting, the
following procedure can be employed to find an element of Z2(H) \ Z(H).

Algorithm 1: SecondCentralElement(G, H)

Input: G = 〈g1, . . . , gr 〉 � GL(n, F), H = 〈h1, . . . , hs〉 � G, H nonabelian.

a := hj �∈ Z(H);
while there exists gi such that [gi, a] �∈ Z(H) do

a := [gi, a];
return a.

As long as G is nilpotent, the loop is guaranteed to terminate in time that is polynomial
in the nilpotency class of G (see [18, §4.5]). Always a ∈ H \ Z(H), and at termination
a ∈ Z2(H) \ Z(H). Indeed, at termination [G, a] � Z(H), so that ϕa(H) and ker ϕa =
CH (a) are normal subgroups of G for ϕa as in Lemma 2.9. Supposing that Z(H) ∩ [H, H ]
is cyclic, we have ϕa(H) = 〈e1, . . . , es〉 = 〈ea〉 say, where ei = [hi, a]. Finding ea is
basically an order calculation, for if we know the orders |ei | then we know a generator of
each Sylow subgroup of ϕa(H), and a generator of the entire group is the product of these
(the Sylow q-subgroup of ϕa(H) is 〈eη1

1 , . . . , e
ηs
s 〉 = 〈eηt

t 〉 where e
ηi

i is the q-part of ei ,
and e

ηt
t has maximal order among the e

ηi

i ). Define ha = h
ε1
1 · · · h

εs
s to be the preimage of

ea = e
ε1
1 · · · e

εs
s under ϕa . Then H = 〈ha, CH (a)〉.

The nilpotency class cl(G) of G is the largest class of a Sylow subgroup of G. Let t �= p

be prime. The class of a Sylow t-subgroup K of GL(n, F) is known: by [5, C.3(a)] we know
that cl(K) � (t − 1)sn + n where t s is the order of a Sylow t-subgroup of F

×. So when G

is nilpotent,

n · max{(t − 1)s + 1} (2.2)

is an upper bound for the number of rounds in which Algorithm 1 will terminate; if this
bound is exceeded without termination, then we report that G is not nilpotent.

From now on in this subsection, G is irreducible unless stated otherwise.
The centraliser of G in Mat(n, F) is an extension field D of F, so that Z(G) � D

× is
cyclic. Thus Lemma 2.10 and the preceding discussion are valid for H = G.

Lemma 2.11 (see [28, 1.19, p. 12]). G is isomorphic to an absolutely irreducible subgroup
G̃ of GL(m, D), where n = m|D : F|. Moreover, G̃ is primitive if G is primitive.

Lemma 2.12. Let G be primitive. If A is an abelian normal subgroup of G, then A is cyclic.

Proof. By Clifford’s theorem, A is completely reducible with equivalent irreducible parts.
Therefore 〈A〉F is a field.
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Remark 2.13. Although G̃ in Lemma 2.11 is irreducible over the algebraic closure D̄ of D,
if G is primitive then G̃ may not be primitive over D̄. However, if G̃ is primitive over D̄

then the image of an abelian normal subgroup A of G under the isomorphism G → G̃ is
diagonalisable, and so scalar, and thus A is central in G.

We can consider G to be an absolutely irreducible matrix group, by Lemma 2.11. This
has useful implications when G is nilpotent; for example, we derive a strong restriction on
the exponent of Z2(G)/Z(G).

Lemma 2.14. If G is nilpotent and b ∈ Z2(G), then bn ∈ Z(G).

Proof. See [26, Lemma 19, p. 58].

Lemma 2.15. Suppose that G is nonabelian nilpotent. Let a ∈ Z2(G) \ Z(G). Then the
following statements hold.

(i) There exists ga ∈ G such that [ga, a] = ea generates the cyclic group ϕa(G) � Z(G),
and G = 〈ga, CG(A)〉, where A = 〈a〉G = 〈a, ea〉.

(ii) G/CG(A) ∼= AZ(G)/Z(G).

(iii) |ea| = |G : CG(A)| divides n.

Proof. We already know by Lemma 2.10 that G = 〈ga, CG(a)〉. Since ea is central in G,
CG(a) = CG(A). Then statement (i) is clear.

As G/CG(A) and AZ(G)/Z(G) are both cyclic, to prove part (ii) we have only to show
that these groups have the same order. But this follows from the observation that [gl

a, a] =
[ga, a]l = [ga, a

l] for all l � 1. Then part (iii) is a consequence of (ii) and Lemma 2.14.

To recap: after finding a := SecondCentralElement(G, G), we calculate a gener-
ator ea of the cyclic group ϕa(G), and then A = 〈a, ea〉 is a noncentral abelian normal sub-
group of G. This procedure to construct A will be labelled NoncentralAbelian(G, a).
Let ga ∈ G be such that ϕa(ga) = ea .A generating set for CG(A) can be found from the gen-
erating set {g1, . . . , gr} for G and the transversal {1, ga, . . . , g

t−1
a } for the cosets of CG(A)

in G, by the classical result of Schreier [23, Lemma 1.1]. We call this procedure, which
returns CG(A) in the form of a generating set, Centraliser(G, A). If G is nilpotent,
then the output of Centraliser(G, A) has size dividing rn.

In a special case, the above deliberations can be re-cast using Galois theory. Suppose
that A is a nonscalar normal subgroup of G such that 〈A〉F is a field (here G need not
be irreducible, nor nilpotent). The multiplicative group of 〈A〉F is completely reducible,
with equivalent irreducible parts of degree |〈A〉F : F1n| dividing n. Also, G/CG(A) is
isomorphic to a subgroup of Gal(〈A〉F/F1n), and so is cyclic of order dividing n. Let A =
〈a〉, and define the homomorphism θ : G → Aut(A) by θ(g) : a �→ gag−1, g ∈ G. Let ki

be integers such that θ(gi)(a) = aki , where 1 � ki < |a| and gcd(ki, |a|) = 1, 1 � i � r .

Choose a generator a �→ ak
ε1
1 ··· kεr

r of the cyclic group 〈θ(g1), . . . , θ(gr)〉 ∼= G/CG(A),
and set ga = g

ε1
1 · · · gεr

r . Then G = 〈ga, CG(A)〉. We label this procedure for later reference
in the final algorithm of Section 3: GaloisGenerator (G, A) returns ga for given A.

2.3. Abelian completely reducible matrix groups

Frequently in this paper we encounter an abelian completely reducible subgroup A of
GL(n, F) and wish to calculate the simple algebras (fields) Ai ⊆ 〈A〉F such that 〈A〉F =⊕

i Ai . These simple algebras can be found by a ‘cutting procedure’ as in [21, §3]. For
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the sake of completeness, we give here details of this procedure, which takes as input any
commutative semisimple algebra over a finite field, such as any subalgebra of 〈A〉F. It is
assumed that we are able to compute efficiently an F-basis for any subalgebra of 〈A〉F given
by an algebra generating set (see [21, p.223]), and also efficiently compute the factorisation
into irreducibles of a polynomial over a finite field (see [21, p.224] or [12, §7.2]). We rely
on the following lemma.

Lemma 2.16. Let a ∈ Mat(n, K), where K is any field.

(i) The minimal polynomial of a over K is irreducible if and only if 〈a〉K is a field.

(ii) 〈a〉K is a direct sum of fields if and only if the minimal polynomial of a over K has no
repeated irreducible monic factors.

Let B be any subalgebra of 〈A〉F, and let {a1, . . . , am} be an F-basis of B. At the first
stage of the procedure, we factorise the minimal polynomial f (ξ) of a1 over F0 = F. If
f (ξ) is irreducible, then 〈a1〉F is a field, F1, and we move on to the next basis element a2;
that is, we replace F0 by F1, a1 by a2, and repeat. Otherwise we find f (ξ) = h(ξ)h̄(ξ)

for nonconstant coprime F-polynomials h(ξ), h̄(ξ). Note that h(a1) �= 0, h̄(a1) �= 0 and
h(a1)h̄(a1) = 0. The identity polynomial is an F-linear combination of h(ξ), h̄(ξ), so that
B = Bh(a1) ⊕ Bh̄(a1) is a nontrivial decomposition of B into a direct sum of ideals. The
cutting procedure is now applied to both of the F-algebras Bh(a1) and Bh̄(a1). At any
subsequent stage of the procedure we have B as a direct sum of algebras, each over some
extension field of F in B. Thus B will ultimately be returned as a direct sum of F-extension
fields. These summands constitute the output of the above described recursion, which we
label Cutting(B).

2.4. Testing nilpotency

In this subsection, G is completely reducible unless stated otherwise. We also assume
that Algorithm 1 terminates in a number of rounds not greater than that specified by (2.2),
for all normal subgroups H of G. (If termination is not achieved thus for some H , then we
will know that G is not nilpotent.) Whenever this procedure is invoked, its first argument is
always fixed as our original input group G.

To test nilpotency of G, we attempt to construct a short subnormal series of G with abelian
factors, adapting a normal series proposed by Luks [18, §4.5]. If we find G to be nilpotent,
then our method will have computed its Sylow subgroups as well. In the next section, a
series of such type will also be used to test primitivity and irreducibility of nilpotent matrix
groups.

LetGbe nonabelian, and finda ∈ Z2(G)\Z(G)via SecondCentralElement(G, G).
Denote ϕa(G) = 〈[gi, a] : 1 � i � r〉 by Ea , and 〈a〉G = 〈a, Ea〉 by A. Although
Ea � Z(G) is abelian, it is not necessarily cyclic. However, it is possible to get essential
reductions to the cyclic situation. Let

V = V1 ⊕ · · · ⊕ Vk (2.3)

be the decomposition of V into a direct sum of irreducible G-submodules Vi . Then G is
nilpotent if and only if the restriction GVi

of G to Vi is nilpotent for all i, 1 � i � k. The
restriction of Z(G) to Vi is contained in Z(GVi

), so that (Ea)Vi
is cyclic.

Lemma 2.17. If G is nilpotent, then G/CG(A) ∼= Ea is an abelian group that can be
generated by n/2 elements, each of order not greater than n.
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Proof. If dim(Vi) = 1, then (Ea)Vi
= [G, a]Vi

= [GVi
, aVi

] = 1. Let m be the number
of 1-dimensional Vi . Then n � m + 2(k − m), implying that Ea can be generated by
k − m � n/2 elements. Also, as aVi

∈ Z2(GVi
) and GVi

is an irreducible nilpotent linear
group over F, |(Ea)Vi

| � n by Lemma 2.14.

We need to know the primary invariant form of Ea . Lemma 2.17 limits the primes that
can appear in this form.

Corollary 2.18. Each prime dividing |Ea| is not greater than n.

Proof. Let {x1, . . . , xs} be a generating set for Ea , where |xi | � n for all i. The order of
the abelian group Ea then divides

∏s
i=1 |xi |. A prime divisor q of |Ea| must divide some

|xi |; hence q � n.

We may not have a decomposition of V into irreducible G-submodules. However, V

is completely reducible as an Ea-module, so let the Vi in (2.3) be the Ea-homogeneous
components of V . We now describe how to obtain a transversal for the cosets of CG(A)

in G. Each Vi is a sum of isomorphic irreducible Ea-submodules of V , and the Vi are
pairwise nonisomorphic simple Ea-modules. The simple components Si in a semisimple
decomposition 〈Ea〉F = ⊕

i Si may be efficiently calculated by the cutting procedure in
Subsection 2.3, thereby yielding the Ea-homogeneous components Vi = SiV of V ; here
it is crucial that Ea is an abelian completely reducible subgroup of GL(n, F). If U is an
irreducible Ea-submodule of V and g ∈ G, then gU is an irreducible Ea-submodule of
V isomorphic to U . Therefore gVi = Vi , and (2.3) is a direct sum of G-modules. Since
〈(Ea)Vi

〉F is a field, (Ea)Vi
is cyclic. As in the proof of Lemma 2.17, we may argue that

(Ea)Vi
= 1 if dim(Vi) = 1, so that Ea � ×i (Ea)Vi

can be generated by up to n/2 elements.
With a generator for each (Ea)Vi

in hand, the elements of Ea as words in the el = [gl, a]
are easily found. For instance, supposing that dim(V1) > 1, we first find a representative
b1 for a generator of the cyclic group Ea/B ∼= (Ea)V1 , where B = Ea ∩ ×j �=1(Ea)Vj

is
the kernel of the projection homomorphism Ea → (Ea)V1 . Hence T = {1, b1, . . . , b

m−1
1 },

m = |Ea/B|, is a transversal for the cosets of B in Ea . The Schreier lemma [23, Lemma
1.1] then says that

e1e1
−1, . . . , erer

−1, bm
1

generate B; here x is the element of T such that Bx = Bx. After applying the same process
to B in place of Ea and B ′ = B ∩ ×j �=2(Ea)Vj

in place of B to find a generator b2B
′ of

B/B ′ ∼= BV2 , and so on, we eventually get a generating set b1, b2, . . . , bk for Ea such that

Ea = {bi1
1 b

i2
2 · · · bik

k | 0 � ij < mj }
where mj is the order of bj mod 〈bj+1, . . . , bk〉. By calculating the prime factorisation of
each order |bj | we can even find the primary invariant form of Ea . The preimage of this form
under ϕa : G → Ea is a transversal for the cosets of CG(A) in G, and then the Schreier
lemma once more yields generators for CG(A).

The import of the above is that definitions of the procedures labelled in Subsection 2.2 can
be extended to G with noncyclic centre, and we are able to construct: (i) an abelian normal
subgroup A = NoncentralAbelian (G, a) of G such that A � Z2(G), A �� Z(G), for
any a ∈ Z2(G) \ Z(G), and (ii) a generating set for CG(A), Centraliser(G, A). These
are the basic steps in a recursive procedure to construct a series of G with abelian factors.
Indeed, set A1 = A and CA1 = CG(A1); if CA1/A1 is abelian, then

〈1n〉 � A1 � CA1 � G
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is such a series. Otherwise, since CA1 is completely reducible and a nonabelian normal
subgroup of G, after replacing G by CA1 we can find an abelian normal subgroup A2 of
CA1 such that A1 < A2 � Z2(CA1), A2 �� Z(CA1), and CA1/CA2 is abelian, where CA2

denotes the centraliser of A2 in CA1 . Apart from CA2/A2, each factor of consecutive terms
in the following series is abelian:

〈1n〉 � A1 � A2 � CA2 � CA1 � G.

After l iterations we have the series

〈1n〉 � A1 � A2 � . . . � Al � CAl
� . . . � CA2 � CA1 � G (2.4)

where the Ai are abelian and CAi
is the centraliser of Ai in CAi−1 . Each factor of consecutive

terms in (2.4) is abelian, except possibly CAl
/Al . To obtain CAi

from CAi−1 and Ai from
Ai−1, first calculate ai = SecondCentralElement (G, CAi−1). Then

Ai = 〈Ai−1, NoncentralAbelian (CAi−1 , ai)〉 = 〈Ai−1, ai, ϕai
(CAi−1)〉,

so that, since Ai−1 and ϕai
(CAi−1) are central in CAi−1 , CAi

= Centraliser (CAi−1 , Ai)

is the centraliser of ai in CAi−1 . Recall then from the discussion after Lemma 2.10 that CAi

is normal in G if CAi−1 is. Hence all terms CAi
in (2.4) are normal in G. The same is not

true of the Ai ; Ai is only certain to be normal in CAi−1 . Construction of (2.4) is summarised
below.

Algorithm 2: TestSeries(G, l)

Input: G = 〈g1, . . . , gr 〉 � GL(n, F) nonabelian, l � 2 an integer.

A0 := 〈1n〉;
CA0 := G;
for 0 � i � l − 1 do

while CAi
/Ai is nonabelian do

ai+1 := SecondCentralElement(G, CAi
);

Ai+1 := 〈Ai, NoncentralAbelian (CAi
, ai+1)〉;

CAi+1 := Centraliser(CAi
, Ai+1);

return Ai+1, CAi+1 .

For nilpotent G, Lemma 2.17 constrains the size and number of generators of each factor
CAi−1/CAi

in (2.4). We similarly seek a bound on l.

Lemma 2.19. If A is an abelian completely reducible subgroup of GL(n, F) then the
F-dimension of 〈A〉F is not greater than n.

Proof. 〈A〉F is contained in a direct sum of fields, whose F-dimensions sum to n.

Lemma 2.20. In any series (2.4), l � n − 1.

Proof. For all i, 2 � i � l, we must have 〈Ai〉F �= 〈Ai−1〉F, because otherwise CAi−1 �
CAi

. Thus dim〈Ai〉F > dim〈Ai−1〉F. Also dim〈A1〉F > 1, since 〈A1〉F = F1n contradicts
A1 �� Z(G). By induction, then, dim〈Ai〉F � i + 1. Hence l � n − 1 by Lemmas 2.8
and 2.19.
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Corollary 2.21. TestSeries(G, l) returns a series of G with abelian factors for some
l < n.

Corollary 2.21 is startling at first sight, as it says that G is soluble, which was never
one of our assumptions. But recall that we did make an assumption about the time in
which SecondCentralElement(G, −) terminates. For this condition to be satisfied,
it is sufficient, but not necessary, that G be nilpotent. Apart from the bounds provided by
Lemma 2.17, which impinge on efficiency estimates, nowhere else in the reasoning leading
up to Corollary 2.21 is nilpotency of G required. Thus in constructing (2.4), for some
l < n we discover either that G is not nilpotent, or that G is soluble. In the latter case, the
abelian series of G obtained can be used to do much more that just nilpotency testing —
see Remark 2.24 below.

The next issue to address is an exponential growth of the number of generators for the
terms CAi

of (2.4). This can be avoided by proceeding as in [18, §4.2]. Relying on the fact
that each CAi

is normal in G, the idea is to store for CAi
not a full generating set, but rather

a generating set for a subgroup of CAi
whose normal closure in G is CAi

.
Suppose that G/CA1 is cyclic: this is the key case, especially later in Section 3 where

we consider irreducibility and primitivity testing of nilpotent matrix groups. Say G/CA1 =
〈gCA1〉 and |G : CA1 | = m. By Schreier,{

gigjgigj

−1 | 0 � i � m − 1, 1 � j � r
}

is a generating set for CA1 , where x denotes the representative of xCA1 in the transversal
{gi | 0 � i � m − 1} for the cosets of CA1 in G. It is not difficult to see that CA1 is the
normal closure in G of the subgroup with generating set

{gjgj
−1, gm | 1 � j � r}. (2.5)

We expand (2.5) to a full generating set for CA1 by adding the conjugate of each element
gjgj

−1 by each power gi of g, 1 � i � m − 1. More generally, we have the following
proposition.

Proposition 2.22. Suppose that Ci−1 = 〈h1, . . . , hs〉G and Ci−1 has a subgroup Ci normal
in G such that Ci−1/Ci = 〈hCi〉 is cyclic of order m. For x ∈ Ci−1 denote by x the element
of {1, h, . . . , hm−1} such that xCi = xCi . Then Ci = BG where B is the subgroup of Ci

generated by {
hjhj

−1
, gkhg−1

k gkhg−1
k

−1
, hm | 1 � j � s, 1 � k � r

}
.

Proof. Given x ∈ Ci−1, define ω(x) to be the element xx −1 of Ci . Note that ω(x) = x if
x ∈ BG. Since xy ∈ x y〈hm〉, it follows that ω(xy) ∈ ω(x)ω(y)x

−1
BG, so that

ω(x), ω(y) ∈ BG =⇒ ω(xy) ∈ BG (2.6)

for all x, y ∈ Ci−1. In particular ω(gkh
lg−1

k ) = ω((gkhg−1
k )l) ∈ BG, 1 � l � m − 1.

We next show that ω(ghg−1) ∈ BG for all g ∈ G by induction on the word length of g.
This is trivially true if g is a generator gk , so write g = gku and assume that ω(uhu−1) ∈ BG.
Set uhu−1 = hl , meaning that uhu−1 = hlz for some z ∈ BG. Therefore

ω(ghg−1) = ω(gkh
lg−1

k . zg−1
k ) ∈ BG

by (2.6).
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Suppose that hj = hlj ; then

ω(ghjg
−1) = ω(hj )

g−1
ω(ghlj g−1) ∈ BG.

Consequently, ω(x) ∈ BG for all x ∈ Ci−1, and so all Schreier generators ω(hlx) of Ci

are in BG, as required.

By Proposition 2.22, CAi
= BG

i where the subgroup Bi has generating set of size i(r+1).
For fixed input G and all factors CAi−1/CAi

cyclic, this is only linear growth in the size
of generating sets for the Bi with increasing i (up to maximum size (n − 1)(r + 1), by
Corollary 2.21). If CAi−1/CAi

is noncyclic, then we must include in a generating set for
Bi commutators of transversal elements, as well as the usual power relators. For example,
suppose that G/CA1 = 〈gCA1〉 × 〈hCA1〉, |gCA1 | = l, |hCA1 | = m. Then

CA1 = 〈
gjgj

−1, gl, hm, [g, h] : 1 � j � r
〉G

.

Since CAi−1/CAi
can be generated by at most n/2 elements, CAi

= BG
i where Bi � CAi

is generated by at most i(r + n(n + 2)/8) elements.
Calculation of the abelian terms Ai in (2.4) depends on calculating ϕai

(CAi−1) =
ϕai

(Bi−1)
G. So suppose that we have a generating set for an abelian subgroup H of G

and wish to calculate the primary invariant form of HG, given that HG is also abelian. First
we calculate an F-basis of 〈H 〉F. The G-closure 〈HG〉F of 〈H 〉F may be found by succes-
sively adding gi-conjugates of basis elements to the original F-basis. This process is capped
by the upper bound n on dimF(〈HG〉F). Note also that the H -homogeneous components of
V are HG-modules. Given the discussion after Corollary 2.18, we confine attention to the
case that 〈HG〉F is a field. But in that case HG is cyclic, so HG = H .

Suppose that all factors of consecutive terms in (2.4) are abelian. We have seen that in
constructing this abelian series we produce generators in primary invariant form for each
Ai and each factor CAi−1/CAi

. Thus (2.4) can be refined to a series

〈1n〉 = H0 � H1 � H2 � . . . � Hm = G (2.7)

with all factors cyclic, Hi/Hi−1 = 〈hiHi−1〉 say.

Lemma 2.23. Suppose that Hi−1 is nilpotent and p1, . . . , ps, q1, . . . , qt are the primes in
the primary invariant forms Hi−1,p1 × · · · × Hi−1,ps of Hi−1 and 〈hi,q1〉 × · · · × 〈hi,qt 〉
of 〈hi〉. Then Hi is nilpotent if and only if [Hi−1,pj

, hi,qk
] = 1n for all pj , qk , pj �= qk .

Proof. Since Hi−1,pj
is the Sylow pj -subgroup of Hi−1, and Hi−1 is normal in Hi , each

Hi−1,pj
is normal in Hi .

If Hi is nilpotent and pj �= qk , then Hi−1,pj
, 〈hi,qk

〉 lie in different Sylow subgroups of
Hi , and therefore they centralise each other.

Suppose that [Hi−1,pj
, hi,qk

] = 1n for all pj �= qk . Let I = {p1, . . . , ps}∩ {q1, . . . , qt }.
A Sylow pj -subgroup of Hi is 〈hi,pj

, Hi−1,pj
〉 or Hi−1,pj

according as pj ∈ I or pj �∈ I

respectively, and 〈hi,qk
〉 is a Sylow qk-subgroup of Hi if qk �∈ I . Clearly then every Sylow

subgroup of Hi is normal in Hi , and so Hi is nilpotent.

Remark 2.24. The series (2.7) yields a polycyclic generating sequence h1, . . . , hm for G.
Using this sequence and (2.7) we may write down a polycyclic presentation for G (see [25,
pp. 394–395]), thus gaining access to numerous algorithms for polycyclically presented
groups (see, for example, [12, Chapter 8]).
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Lemma 2.23 affords a method for testing nilpotency of any subgroup G of GL(n, F)

with a series (2.7). Testing can begin at the term in (2.7) that corresponds to Al in (2.4).
This method additionally finds the Sylow subgroups of G, if G is nilpotent. Certain Sylow
subgroups we can identify beforehand as abelian.

Lemma 2.25. Let q �= p be a prime greater than n. A q-subgroup H of GL(n, F) is abelian.

Proof. By Maschke’s theorem, H is completely reducible. Consider an irreducible part
L of H ; by Lemma 2.11 this is isomorphic to an irreducible linear q-group L̃ over the
algebraic closure F̄ of F. Then L̃ is monomial over F̄, and since q > n, L̃ is a group of
diagonal matrices over F̄. So each irreducible part of H is abelian, implying that H itself
is abelian.

Corollary 2.26. Let q �= p be a prime greater than n. If G is nilpotent, then the Sylow
q-subgroup of G is central.

Hence the q-parts of the generators of G can be excised in nilpotency testing of G (see
also [18, §5], and cf. Corollary 2.18).

Now we are in a position to state a nilpotency testing algorithm for G generated by
semisimple matrices; we are relaxing the condition that G is completely reducible, al-
though remember that G will indeed be completely reducible if it is nilpotent. At the end of
Subsection 2.1 we explained how such an algorithm allows nilpotency testing of an arbitrary
nonabelian subgroup of GL(n, F).

Algorithm 3: IsNilpotent(G)

Input: G = 〈g1, . . . , gr 〉 � GL(n, F) nonabelian, gi semisimple matrices.
π := the set of primes less than or equal to n.

1. Calculate the π -part gi,π and the π ′-part gi,π ′ of each generator gi of G. Set Gπ =
〈g1,π , . . . , gr,π 〉 and Gπ ′ = 〈g1,π ′ , . . . , gr,π ′ 〉.

2. If Gπ ′ �� Z(G) then by Corollary 2.26 report ‘G is not nilpotent’. Else go to the next
step.

3. Run TestSeries(Gπ, n − 1). If this procedure does not terminate with an abelian
series of Gπ then by Corollary 2.21 report ‘G is not nilpotent’. Else go to the next
step.

4. Test nilpotency of Gπ using Lemma 2.23 and refinement of the abelian series
computed in the previous step. If Gπ is not nilpotent, or the characteristic p of F

is in π and a p-element of Gπ is detected, then report ‘G is not nilpotent’. Else report
‘G is nilpotent’, for Gπ ′ is abelian and G = Gπ × Gπ ′ from step (2).

The basic steps inAlgorithm 3 comprise the construction of abelian subnormal subgroups
of G and their centralisers, which in turn use algorithms for cutting up a commutative
semisimple algebra into its simple components, and for computing the primary invariant
form of abelian groups. The overall efficiency of Algorithm 3 is justified by various bounds
on the lengths of series, and the order and number of generators of series factors. These
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bounds are expressible in terms of the degree n, the size q of the field F, and the number of
generators r , of the input completely reducible group G.

Let G be nilpotent. The construction of abelian subnormal subgroups of G calls Algo-
rithm 1 (SecondCentralElement(G, −)), which terminates in a number of rounds l

not greater than the nilpotency class of G; hence l � qn (see (2.2)). The number of group
operations needed to construct each abelian subnormal subgroup depends on the size of
a generating set for a related subgroup of G (whose normal closure in G is a centraliser
at the previous stage), a number which is never more than n(r + n(n + 2)/8), by virtue
of Lemma 2.20 and Proposition 2.22. Hence the computation of abelian subnormal sub-
groups is polynomial-time in n, q, r . Constructing centralisers is also a polynomial-time
process, because of the above bound on the number of generators, and also bounds on the
length of transversals which we use in the algorithm to compute Schreier generators (see
Lemmas 2.15 and 2.17). We repeat the construction of abelian subnormal subgroups and
centralisers at most n − 1 times (Lemma 2.20).

In several stages of the algorithm (constructing transversals in Centraliser(G, A),
and steps (1) and (4) of Algorithm 3) we should compute the order of an element g of G

or a factor group. By [6], computing orders uses on average O(n3 log q) field operations.
But in Algorithm 3 we will know, or can readily find, k such that |g| divides k and all prime
divisors of k are less than or equal to n (cf. Lemma 2.15 and Corollary 2.18). Hence, we
can apply the OrderBounded function from [12, pp. 72–73], which calculates |g| in time
at most O((log k)3).

Also note that in step (4) of Algorithm 3 all primes dividing the order of g ∈ Gπ are
less than or equal to n, and that an upper bound on the power of a prime dividing |g| is
log2 | GL(n, F)| � n2 log2 q ([18, §4.4]). By the above bounds on the number of generators
of terms in the abelian series, we need only to calculate orders for a number of group
elements which depends polynomially on n, q and r .

Our procedures use computation in finite fields and elementary computational linear
algebra. The reader may consult [12, §7.1–7.3] for necessary algorithms in those areas,
such as algorithms for computing minimal polynomials and the prime factorisation of
polynomials over F. Prime factorisation of a polynomial f (ξ) over F can be done with
a deterministic algorithm whose complexity is a polynomial in p, logp q, and deg(f ); see
[21, p. 224]. Since in our procedures deg(f ) � n always, we have algorithms that are
polynomial in n, p, and logp q. This is not polynomial in the input size. However, there
exist randomised (Las Vegas) algorithms for factorising polynomials over finite fields which
are polynomial in the input size, so these would be preferred in practice if the characteristic
p of F is large (again, see [21, p. 224]).

3. Irreducibility and primitivity testing of nilpotent matrix groups

In this section we develop algorithms for testing whether a nilpotent subgroup G of
GL(n, F) is irreducible or primitive. Our algorithms also construct, in parallel, proper
nonzero G-submodules of V if G is reducible, and a G-system of imprimitivity if G is
imprimitive.

We point out that the nilpotent primitive subgroups of GL(n, F) have been completely
classified up to GL(n, F)-conjugacy, in [8, 9]. The paper [8] contains an algorithm that
returns the classification as a list of generating sets of matrices, for any input n and F. We
borrow from [8, 9] in parts of our primitivity testing algorithm (see Subsection 3.3).

Suppose that G is nilpotent. If Gu �= 1, then G is reducible, but not completely reducible.
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Indeed, we have seen after Lemma 2.4 how to compute a proper nonzero G-submodule W

of V : W = Fix(Gu) is a completely reducible proper G-submodule of V on which Gu acts
trivially. This fulfils one of our primary goals, namely constructing nontrivial G-modules
in the case that G is reducible. In our ongoing discussion of irreducibility and primitivity
testing of G, we may therefore assume that Gu = 1, so that G is completely reducible and
〈G〉F is semisimple. This assumption holds for the entire section. As we will see, with this
assumption in place, module construction need only ever be undertaken for abelian matrix
groups.

Our approach to all of the computational problems in this section is to lift knowledge
about abelian normal subgroups of G to knowledge about G. If we know a noncyclic
abelian normal subgroup N of G, then primitivity testing of G ends by Lemma 2.12, but
irreducibility testing could continue. That is, there are at least two different N -homogeneous
components of V (remember that N is abelian: modules for completely reducible abelian
linear groups can be constructed by Subsection 2.3), and the set of all components furnishes
either a proper nonzero G-submodule of V — if the permutation action of G on the set
of components is intransitive — or a G-system of imprimitivity. In the latter situation,
irreducibility testing goes down to a strictly smaller degree by the following theorem.

Theorem 3.1. Let K be any field and W the underlying vector space for GL(n, K). Suppose
that H is a completely reducible subgroup of GL(n, K), and N is a normal subgroup of
H . Let W = W1 ⊕ · · · ⊕ Wl be the decomposition of the completely reducible N -module
W into N -homogeneous components Wi (hence W = {W1, . . . , Wl} is a H -system of
imprimitivity). Let StabH (Wi) = {h ∈ H | hWi = Wi} be the stabiliser in H of Wi .
Then H is irreducible if and only if H acts transitively on W , and Wi is an irreducible
StabH (Wi)-module for some, and hence every, i.

Proof. There is nothing to prove if l = 1, so let l � 2.
Suppose that Wi is an irreducible StabH (Wi)-module for some i. Suppose also that H

is transitive on W , so all of the stabilisers are conjugate and every Wi is an irreducible
StabH (Wi)-module. Let Z be the Mat(n, K)-centraliser of H . Since Z centralises N , Wi is
a Z-module for all i. The restriction Zi of Z to Wi is a division algebra.

For each i, 2 � i � l, H contains an element hi such that hiW1 = Wi , so that, up to
conjugacy, hi is an l × l block monomial matrix with a single nonzero block xi in column 1,
at row i. If z = diag(z1, . . . , zl) ∈ Z, then zhi = hiz implies that zi = xiz1x

−1
i . Thus Z is

isomorphic to Z1, so is a division algebra. It follows that H is irreducible.
The converse is a standard statement, by Clifford’s theorem (see [20, pp. 217–218]).

Theorem 3.1 is especially apt when G is nilpotent: finite nilpotent groups without a
noncyclic abelian normal subgroup are of a very restricted kind, which we describe in
Subsection 3.2.

To utilise Theorem 3.1 when G � GL(n, F) has a known noncyclic abelian normal
subgroup N , first we need to find the N -homogeneous components {Wi | 1 � i � l} of
V . This can be done using the cutting procedure of Subsection 2.3, which finds the simple
components Ai of a commutative semisimple F-algebra A. That is, each Ai is a field and
an ideal of A, and A = ⊕

i Ai . If A = 〈N〉F then the N -homogeneous components of V

are the Wi = AiV . Now we have a permutation representation ρ : G → Sym(l) arising
from the action of G on the set of Wi . If ρ(G) is intransitive then we stop, and return a
proper nonzero G-submodule of V . Fix a value of i. Since ker ρ � StabG(Wi), the sets
G/ StabG(Wi) and ρ(G)/ρ(StabG(Wi)) are bijective, so we obtain a transversal for the
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cosets of StabG(Wi) in G directly from a transversal for the cosets of ρ(StabG(Wi)) in the
permutation group ρ(G). Then the Schreier lemma yields generators for StabG(Wi). By
Theorem 3.1, G is irreducible if and only if StabG(Wi) is irreducible in GL(Wi).

Actually, to acquire nontrivial G-submodules or G-systems of imprimitivity in V , rather
than a noncyclic abelian normal subgroup of G, we could ask more generally for any
normal subgroup N with at least two inequivalent irreducible parts. The challenge then
is to determine an imprimitivity system for G with at least two components. This task is
manageable when N is abelian.

Let G be nilpotent, and let H be the product of all Sylow q-subgroups of G, where q

ranges over the primes greater than n dividing |G|. Write G = H × K . By Corollary 2.26,
H � Z(G). We suppose that H = 〈g〉 is cyclic, for if H is noncyclic then G is reducible, and
we get a proper nonzero G-submodule of V from the H -homogeneous components of V .
If K is irreducible, then G is irreducible; likewise, if K is primitive, then G is primitive.
Suppose that K is reducible, with irreducible module 0 �= U < V . For all i, giU is an
irreducible K-submodule of V isomorphic to U , and either U is a G-module, or the sum
W = ∑|H |−1

i=0 giU is direct. If W = V , then we surely have a G-system of imprimitivity;
however Theorem 3.1 is of no help because this system constitutes just one K-homogeneous
component. In all but this last case, then, and just as for nilpotency testing, for irreducibility
and primitivity testing we can assume that the primes dividing |G| are small: that is, no
greater than n.

3.1. Abelian groups

In this subsection G is an abelian completely reducible subgroup of GL(n, F).
It is well known that an abelian irreducible subgroup of GL(n, F) is cyclic: its F-

enveloping algebra is a field. Therefore if G is noncyclic then it is reducible with at least
two inequivalent irreducible parts, so 〈G〉F is the direct sum of at least two different simple
subalgebras, which can be found as in Subsection 2.3.

We turn now to questions about irreducibility and primitivity of completely reducible
abelian subgroups of GL(n, F). We first recall some facts about irreducible abelian linear
groups.

Lemma 3.2. Suppose that 〈G〉F is a field.

(i) There is a single isomorphism type of irreducible G-submodule U of V .

(ii) The F-dimension of U is |〈G〉F : F1n|, and divides n.

(iii) G is irreducible if and only if |〈G〉F : F1n| = n.

Lemma 3.3. Let G = 〈g〉 � GL(n, F). Then the following statements are equivalent.

(i) G is irreducible.

(ii) 〈G〉F is a field extension of F of degree n.

(iii) The characteristic polynomial of g is the minimal polynomial of g.

(iv) 1, g, g2, . . . , gn−1 are F-linearly independent.

(v) CMat(n,F)(g) = 〈g〉F.

Let |F| = q. The largest order of an irreducible cyclic subgroup of GL(n, F) is qn −1. A
cyclic subgroup of this order, called a Singer cycle, is irreducible. For any n and q, Singer
cycles always exist, and they form a single conjugacy class in GL(n, F). It is possible to write
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down explicitly a standard generator for any Singer cycle conjugacy class representative.
By Lemma 3.2, a subgroup of a Singer cycle is irreducible if and only if it has order not
dividing qm − 1 for any m properly dividing n.

If Cutting(〈G〉F) determines that 〈G〉F is not a field, then G is reducible, and we
have proper nonzero G-submodules of V . Suppose now that 〈G〉F is a field. Thus G is
cyclic, and knowing this fact and any generating set for G, it is easy to write down a single
generator g of G. The F-dimension of 〈G〉F tells us whether or not G is irreducible, by
Lemma 3.2(iii). Suppose that G is reducible. Take a direct decomposition V1 ⊕ · · · ⊕ Vk of
V into m-dimensional subspaces Vi , where m = |〈G〉F : F1n| is the degree of the minimal
polynomial of g. Let 〈h〉 be an irreducible subgroup of GL(m, F) such that |h| = |g|, and
let H = 〈diag(h, . . . , h)〉 � GL(n, F). Then xHx−1 = G for some x ∈ GL(n, F) and xVi

is an irreducible G-submodule of V .
For the remainder of the subsection G is irreducible. Primitivity of G can be decided as

in the next lemma.

Lemma 3.4 (see [27, §15, Theorem 3]). Let H be any irreducible subgroup of GL(n, F).
Then H is imprimitive if and only if for some proper divisor m of n, H contains a subgroup
of index n/m which is the H -stabiliser of an m-dimensional subspace of V .

The following procedure either reports that G is primitive, or returns a G-system of
imprimitivity.

1. List the subgroups of G of index m for all m < n dividing n.

2. Search in the list of step (1) for a subgroup H with a module U of dimension m

(V is a direct sum of isomorphic irreducible H -modules by Lemma 3.2). If no such
H exists, then G is primitive.

3. Assuming that suitable H and U were found in the previous step, test whether H =
StabG(U). If so, thenG is imprimitive with imprimitivity system {U, gU, . . . , gm−1U}
where G = 〈g, H 〉. If H �= StabG(U) for all H , U then G is primitive.

Note that the calculations in steps (1)–(3) above are straightforward, because G is cyclic.
Primitivity of G can also be tested using an order criterion derived from Lemma 3.4:

G is imprimitive if and only if |G| divides m(qn/m − 1) for some prime divisor m of n (see
[9, Proposition 2.8]). Thus in step (1) above we can restrict to prime m only.

3.2. Constructing abelian normal subgroups

If we ever detect an abelian normal subgroup N of G with at least two inequivalent
irreducible parts, then Cutting(〈N〉F) finds either a nonzero proper G-submodule of V ,
or a G-system of imprimitivity. For the purposes of irreducibility and primitivity testing of
nilpotent linear groups, this observation prompts the abstract group-theory question: which
finite nilpotent groups do not have a noncyclic abelian normal subgroup? Our answer to
this question gives precise information about the isomorphism type of such groups, and
hence (by Lemma 2.12) about the isomorphism type of nilpotent primitive subgroups of
GL(n, F).

Proposition 3.5. Let H be a finite nonabelian nilpotent group. Then H does not have a
noncyclic abelian normal subgroup if and only if H = H2 × H2′ where the 2′-subgroup
H2′ of H is cyclic and the Sylow 2-subgroup H2 of H is one of the following: Q8 when
|H2| = 8; dihedral or semidihedral or generalised quaternion when |H2| > 8.
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Proof. It is a routine exercise to check that if H2 is a 2-group as stated, then a maximal
abelian normal subgroup of H2 is cyclic. It follows that every abelian normal subgroup of
H2 — and thus of H if H2′ is cyclic — is cyclic.

Suppose that H does not have a noncyclic abelian normal subgroup. Then for every
prime q dividing |H |, every abelian normal subgroup of Hq is cyclic. By [16, Satz 6.7,
p. 304], this means that Hq is cyclic if q is odd, and Hq has a cyclic subgroup of index 2 if
q = 2. Thus H2′ is cyclic. As a nonabelian 2-group with a cyclic maximal subgroup, H2 is
a dihedral or semidihedral or generalised quaternion, or a group with presentation〈

a, x | x2 = a2s−1 = 1x−1ax = aa2s−2 〉
, s � 3;

see [20, 5.3.4, p. 141]. The last sort of group has a noncyclic abelian normal subgroup,
namely 〈a2s−2

, x〉.
We next give some related results specifically about groups of prime power order.

Lemma 3.6. Let q be any prime. Suppose that H is a q-group with [H, H ] cyclic, and set
X = CH ([H, H ]).

(i) If H �∼= Q8 and X is noncyclic, then H has a noncyclic abelian normal subgroup N .

(ii) Suppose that X is cyclic. If q > 2 then H is cyclic, and if q = 2 then either H is
cyclic, or |H | > 8 and H is dihedral or generalised quaternion or semidihedral.

Proof. Set Z = Z(X). We have [X, X] � [H, H ] � Z so that X is either abelian or has
nilpotency class 2.

(i) Let X be noncyclic. If X is abelian, then N can be the characteristic subgroup X of
H . We assume that X is nonabelian, so that it is class-2 nilpotent, and X/[X, X] is abelian
noncyclic. Define N1 to be the noncyclic characteristic subgroup {h ∈ X | hq ∈ [X, X]} of
X (hence N1 is characteristic in H ); that is, N1 is the preimage in X of �1(X/[X, X]). If
N1 is abelian, then N = N1 suffices.

Suppose that N1 is nonabelian, and choose a, b ∈ N1 such that [a, b] �= 1. Since
aq ∈ Z and N1 has class 2, [a, b]q = [aq, b] = 1, so [a, b] has order q. Since [X, X] is a
cyclic q-group, either 〈aq〉 � 〈bq〉 or 〈bq〉 < 〈aq〉. Without loss of generality put aq = c,
c ∈ [X, X], and bq = cs for some positive integer s. Let d = asb−1; then d �∈ Z (if d ∈ Z,
then ad−1 = d−1a implies that [a, b] = 1). Also

dq = asqb−q [b−1, as]q(q−1)/2 = [b−1, as]q(q−1)/2 = [b−1, a]sq(q−1)/2 = [a, b]sq(q−1)/2.

Hence d2q = 1, |d| = q if q > 2, and dq ∈ Z. Define N2 = 〈d, Z〉. Since [H, H ] �
Z � N2, N2 is normal in H . If q > 2 or q = |d| = 2, then N2 is noncyclic, and we can
take N = N2. If q = 2, |d| = 4, and N2 is cyclic, then |Z| = 2; in other words H is
an extraspecial 2-group. The only extraspecial 2-group without a noncyclic abelian normal
subgroup is Q8.

(ii) [4, Theorem 1] exhibits the q-groups K such that CK(�(K)) is cyclic, where
�(K) = Kq [K, K] is the Frattini subgroup of K . Here K = K0, or K is a central product
K0 � K1, where K0 is a cyclic group or a 2-group of maximal class (that is, a dihedral or
generalised quaternion or semidihedral), and K1 is extraspecial. However if K = K0 � K1
then CK([K, K]) contains K1 and so is noncyclic.

All of the possibilities for H listed in Proposition 3.5 are metacyclic: each has a cyclic
subgroup of index 2. A slightly longer list of groups results if we replace ‘normal’ by
‘characteristic’ in Proposition 3.5; essentially, we must also take central products with
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extraspecial groups. The groups of prime power order with every abelian characteristic
subgroup cyclic were known to P. Hall (see [16, Satz 13.10, p. 357]).

Proposition 3.5 shows that the strategy in irreducibility and primitivity testing of at-
tempting to construct noncyclic abelian normal subgroups will definitely fail only for a
small range of metacyclic nilpotent groups — which includes all the nilpotent primitive
groups! Specialised techniques for testing metacyclic nilpotent subgroups of GL(n, F) are
developed in Subsection 3.3.

We may fail to construct noncyclic abelian normal subgroups of G � GL(n, F) even
if they do exist. In this event, we advance the algorithm by constructing another kind of
abelian normal subgroup. The next lemma contains the basic idea.

Lemma 3.7. Let H be a nilpotent group, with a normal nonabelian subgroup C. Then H

has an abelian normal subgroup in C but not in Z(C).

Proof. Because H/Z(C) is nilpotent with nontrivial normal subgroup C/Z(C), there is a
nontrivial cyclic central subgroup T/Z(C) of H/Z(C) in C/Z(C). Thus T is abelian, and
it is certainly normal in H .

With the extra hypothesis that H/C is cyclic, we can show how to locate abelian normal
subgroups of H as in Lemma 3.7. Two preliminary results are required.

Lemma 3.8. Let H be a finite nilpotent group of class 2 such that [H, H ] is cyclic. Then
there is a subset {ai, bi | 1 � i � k} of H such that

[ai, bi] �= 1,

[ai, aj ] = [ai, bj ] = [bi, bj ] = 1,

for all i �= j , 1 � i, j � k, and each element of H has a unique representation in the form

a
e1
1 b

f1
1 . . . a

ek

k b
fk

k z

for some z ∈ Z(H) and 1 � ei, fi � |[ai, bi]|.
Proof. Denote Z(H) by Z. If e is the exponent of the abelian group H/Z, then for some
a ∈ H , aZ has order e. The image of ϕa (see Lemma 2.9) is a cyclic group, say of order t .
Thus at ∈ Z and e divides t . Also [a, b]e = 1 for all b ∈ H , implying that t = e. Hence
there exist (non-commuting, so non-central) elements a1 and b1 of H such that [a1, b1] = c

has order e.
Since H has class 2, both CH (a1) and CH (b1) are normal subgroups of H . Set CH (a1)∩

CH (b1) = A1. It is not hard to see that |H : CH (a1)| = |H : CH (b1)| = e and thus

|H : A1| = |H : CH (a1) ∩ CH (b1)| � |H : CH (a1)||H : CH (b1)| = e2.

On the other hand, the cosets a
e1
1 b

f1
1 A1 for e1, f1 ranging over {1, . . . , e} are distinct, for[

a
e1
1 b

f1
1 , b1

] = ce1 ,
[
a1, a

e1
1 b

f1
1

] = cf1 ,

and thus a
e1
1 b

f1
1 = a

e′
1

1 b
f ′

1
1 modulo A1 implies that ce1 = ce′

1 and cf1 = cf ′
1 ; that is, e1 = e′

1
and f1 = f ′

1. Thus |H : A1| = e2 and H = 〈a1, b1, A1〉.
If A1 is abelian, then A1 = Z and we stop: k = 1. Otherwise, we repeat the above with

H replaced by A1 (note that Z � A1). Continuing in this fashion, we eventually obtain the
desired generating set of H modulo Z.
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Variations of the next result are used to great effect in work by Suprunenko; see for
example [26, Chapter II]. This is also an instance of the famous Hall–Higman theorem
[20, 9.3.2, p. 269].

Lemma 3.9. Let q be a prime, and let K be a nilpotent group containing a normal
q-subgroup H of class 2 such that [H, H ] is cyclic and H/[H, H ] is elementary abelian.
Let {ai, bi | 1 � i � k} be a generating set of H modulo Z := Z(H), as in Lemma 3.8, so
that {aiZ, biZ | 1 � i � k} is a basis of the GF(q)-space H/Z. Then for each g ∈ K we
can use this generating set to construct an element bg of H \ Z such that [bg, g] ∈ Z.

Proof. Note that an element bg as stated surely exists.We must solve an eigenvector problem
in H/Z: find exponents εi, ηi , not all trivial, such that 0 � εi, ηi � q − 1 and

(ga1g
−1)ε1(gb1g

−1)η1 · · · (gakg
−1)εk (gbkg

−1)ηk = a
ε1
1 b

η1
1 · · · aεk

k b
ηk

k (3.1)

modulo Z. Say

gaig
−1 = a

α1i

1 b
β1i

1 · · · a
αki

k b
βki

k zi

gbig
−1 = a

γ1i

1 b
δ1i

1 · · · a
γki

k b
δki

k z′
i

for some zi, z
′
i ∈ Z. Then

[gaig
−1, bj ] = [aαji

j , bj ] = [aj , bj ]αji

and

[gaig
−1, aj ] = [bβji

j , aj ] = [bj , aj ]βji .

Since [H, H ] is cyclic, we can therefore determine all of the exponents αji, βji simply by
evaluating commutators. That is, we will find

x = a
ᾱ1i

1 b
β̄1i

1 · · · aᾱki

k b
β̄ki

k ∈ H

such that [x, aj ] = [gaig
−1, aj ] and [x, bj ] = [gaig

−1, bj ] for all j , so that x−1gaig
−1 ∈

Z, and then the uniqueness statement of Lemma 3.8 permits us to equate exponents on x

and gaig
−1. In the same way we can determine all γji, δji . Equation (3.1) then yields a

system of linear equations in the εi, ηi , which we rearrange into a homogeneous system
Mv = 0 over GF(q). Specifically, v = (ε1, . . . , εk, η1, . . . , ηk)

T and M is the 2 × 2 block
matrix (

α − 1k γ

β δ − 1k

)
where α, β, γ and δ are the k × k matrices (αij ), (βij ), (γij ) and (δij ), respectively. Any
nonzero solution of this system will provide a suitable element bg .

If K � GL(n, F) then bg in Lemma 3.9 can be explicitly computed by the method used
in the proof of that lemma.

Like all of the results presented so far in this subsection, the next proposition is true not
just for linear nilpotent groups, but generally for abstract nilpotent groups. We state it in a
form amenable to its application later in the paper.

Proposition 3.10. Let G = 〈g, C〉 be nilpotent, where C is a nonabelian normal subgroup
of G. Then we can explicitly construct either an abelian normal subgroup of G in C but not
in Z(C), or a noncyclic abelian normal subgroup of G.
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Proof. Given the normal closure in C of a subgroup H , we find the normal closure in G

of H directly as follows. Let {1, g, . . . , gl} be a transversal for the cosets of C in G. If we
know a generating set {h1, . . . , hs} for HC , then

HG = 〈gjhig
−j : 1 � i � s, 0 � j � l〉.

Find a ∈ Z2(C) \ Z(C) by SecondCentralElement(G, C). The normal closure
NoncentralAbelian(C, a) of 〈a〉 in C is contained in Z2(C). Let A = 〈a〉G. Of course,
A � Z2(C) and A �� Z(C). If A is abelian, then we are done.

Suppose that A is nonabelian, and hence class-2 nilpotent. We may assume that A is a
q-group. Since A has class 2, a generating set for the abelian normal subgroup [A, A] of
G is easily written down as the set of commutators of pairs of generators of A. If [A, A] is
noncyclic then we are done, so let [A, A] be cyclic. We have generators for the nontrivial
group A/[A, A], and can do membership testing in [A, A] because it is cyclic, so we can
find the noncyclic normal subgroup B of G in A such that �1(A/[A, A]) = B/[A, A].
If B is abelian, then we stop; otherwise by Lemma 3.9 we determine b ∈ B \ Z(B) with
[b, g] ∈ Z(B). Since b is not in Z(B), it cannot be in Z(C).

Consider D = 〈b〉G � B. Now 〈b〉C = 〈b, b1, . . . , bs〉 for some bi ∈ Z(B). Hence

D = 〈gjbg−j , gj big
−j : 1 � i � s, 0 � j � l〉.

Every gjbig
−j is central in B, and because [b, g] ∈ Z(B) implies that gjbg−j ∈ bZ(B),

every gjbg−j commutes with every gkbg−k . That is, D is an abelian normal subgroup of
G in C but not in Z(C).

We give a name to the algorithm described in the proof of Proposition 3.10, which
features significantly in the final irreducibility/primitivity testing algorithm.

Algorithm 4: GoodAbelianNormal(G)

Input: G = 〈g, C〉 � GL(n, F) nilpotent, C � G nonabelian.
Output: an abelian normal subgroup N of G, where N is noncyclic, or N � C and
N �� Z(C), constructed by the proof of Proposition 3.10.

A central task inAlgorithm 4 is finding the element b, which in turn depends on computing
the generating set in Lemma 3.8. To end this subsection, we discuss a possible way in which
that computation can be substantially reduced.

Retain the notation and assumptions of Lemma 3.8, and suppose that H is a q-group for
some prime q. Let H = 〈h1, . . . , hs〉. Then the Frattini subgroup �(H) of H is

〈[hi, hj ], hq
i : 1 � i, j � s〉.

If �(H) is nonabelian, then we are unable to proceed further. However, if �(H) is abelian,
then either it is noncyclic, and thus a noncyclic abelian normal subgroup of any group in
which H is normal, or �(H) is cyclic. The isomorphism types of q-groups H such that
�(H) is cyclic are given in [4, Theorem 2]. For example, if q is odd, then the possibilities
for H are the nonabelian groups E × (G0 �D) where E is elementary abelian, G0 is cyclic
or nonabelian with a cyclic maximal subgroup (see [20, 5.3.4, p. 141]), and D is 1 or an
extraspecial group of exponent q. We focus on the case that H is extraspecial.
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Lemma 3.11. Let H be an extraspecial q-group. If K is any nonabelian subgroup of H of
order q3, then K is normal in H , and H = KCH (K).

Corollary 3.12. Let H be an extraspecial q-group of order q2k+1, k � 1. Then we may
construct a generating set {ai, bi | 1 � i � k} of H such that

Z(H) = 〈[ai, bi]〉,
[ai, aj ] = [ai, bj ] = [bi, bj ] = 1,

for all i and j �= i.

Proof. We describe the first stages in a much simplified version of the recursive method
used in the proof of Lemma 3.8.

Choose non-commuting generators a1, b1 of H ; then H1 = 〈a1, b1〉 is extraspecial
of order q3. Let d be any other generator of H . By Lemma 3.11, d = ai

1b
j
1c for some

c ∈ CH (H1). Then i, j can be found directly because Z(H) = 〈[a1, b1]〉, [a1, d] =
[a1, b1]j , and [b1, d] = [a1, b1]−i . We thereby obtain a generating set for C � CH (H1)

such that H = H1C, from which it follows that CH (H1) = C. If CH (H1) is abelian, then
H = H1 and we are done. Otherwise, we replace H by the extraspecial group CH (H1) and
repeat the above.

3.3. Nilpotent metacyclic groups

This subsection is devoted to testing irreducibility and primitivity of nilpotent meta-
cyclic subgroups G = 〈g, A〉 of GL(n, F), where A is cyclic and a maximal abelian normal
subgroup of G; that is, CG(A) = A �= G. We further assume 〈A〉F to be a field, so that the
irreducible parts of A are pairwise equivalent.Any nilpotent primitive subgroup of GL(n, F)

is a metacyclic group of this form.
Note that [G, G] � A is cyclic and A � X := CG([G, G]). Either X is cyclic (X = A)

or X is nonabelian (X �= A). The Sylow q-subgroup Xq of X is CGq ([Gq, Gq ]).
Lemma 3.13. (i) IfG2′ is nonabelian, thenG contains a noncyclic abelian normal subgroup.

(ii) Suppose that G2′ is abelian. If X2 is cyclic, or X2 is noncyclic and G2 ∼= Q8, then
|G : A| = 2; otherwise, G contains a noncyclic abelian normal subgroup.

Proof. (i) Let Gq � G2′ be nonabelian. Since [Gq, Gq ] is cyclic, and Xq is noncyclic
by Lemma 3.6(ii), we have by Lemma 3.6(i) that Gq contains a noncyclic abelian normal
subgroup.

(ii) Here G2′ � Z(G) and so G2′ � A. If X2 is cyclic, then G2 has an abelian subgroup
of index 2 by Lemma 3.6(ii), and thus |G : A| = 2. Suppose that X2 is noncyclic. If
G2 �∼= Q8, then G has a noncyclic abelian normal subgroup by Lemma 3.6(i). If G2 ∼= Q8,
then G/A ∼= G2/(A ∩ G2) is a cyclic quotient of Q8, implying that |G : A| = 2.

Since G is metacyclic, X is very easy to calculate. If {1, g, . . . , gk−1} is a transversal for
the cosets of A in G, and A = 〈a〉, then [G, G] = 〈gi[g, a]g−i : 0 � i � k − 1〉. Therefore
X = 〈gj , a〉 where j is the least integer in the range 1, . . . , k such that gj commutes with
[g, a]. (When we call on this subsection in the final algorithm in Subsection 3.4, k will
divide n.) So we have an explicit generating set for X, and the proof of Lemma 3.6(i) gives
instructions for calculating a noncyclic abelian normal subgroup of G as in Lemma 3.13.
We label this procedure.
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Algorithm 5: NoncyclicAbelian (G)

Input: G = 〈g, A〉 nilpotent, A maximal abelian normal in G, 〈A〉F a field. Further, either
G2′ is nonabelian, or CG2([G2, G2]) is noncyclic and G2 �∼= Q8.
Output: an abelian noncyclic normal subgroup B of G, constructed by the method in the
proof of Lemma 3.6(i) and the method for calculating CG([G, G]) above.

For the rest of this subsection |G : A| = 2, G = G2 × C where C = G2′ � Z(G) is
cyclic, g ∈ G2, and A = (A ∩ G2) × C. Under these assumptions, the characteristic p of
F must be odd: a completely reducible 2-subgroup of GL(n, F) is trivial if p = 2.

Denote the field 〈A〉F by �.

Lemma 3.14. G is irreducible if and only if A is irreducible.

Proof. Suppose that A is reducible, with nonzero module U �= V . By Lemma 3.2(i),
U ∼= gU as A-modules. As U + gU is a G-submodule of V , and obviously G is reducible
if U + gU �= V , we suppose that V = U + gU . Then V = U ⊕ gU and {U, gU} is a
G-system of imprimitivity (of no help to us in testing irreducibility of G, since it is made
up of a single homogeneous component for the normal subgroup A). With respect to the
basis afforded by U and gU ,

g =
(

0m g1
g2 0m

)
for some g1, g2 ∈ GL(m, F), and A = 〈diag(a, a)〉 where 〈a〉 := A1 is an irreducible
cyclic subgroup of GL(m, F). The relation g2 ∈ A implies that g1g2 = g2g1 ∈ A1. Since
g normalises A, it follows that g1 ∈ NGL(m,F)(A1) and g2

1 ∈ CGL(m,F)(A1) = 〈A1〉×F .
However g1 �∈ CGL(m,F)(A1) = A1, for if g1 centralised A1 then g would centralise A. In
particular, n > 2. Conjugation by g defines an element of Gal(�/F) of order 2, so the order
m of this Galois group is even.

Replace G by G2. Since G is a nonabelian 2-group with a cyclic subgroup A of index 2,
by [20, 5.3.4, p. 141] either G is generalised quaternion, or G splits over A. Thus we may
suppose that g2 = ±1n and so g2 = ±g−1

1 .
We claim that there exist ξ1, ξ2 ∈ 〈A1〉×F such that ξ1g

−1
1 ξ1g

−1
1 = 1m and ξ2g

−1
1 ξ2g

−1
1 =

−1m. Conjugating G by (
1m −ξ

ξ−1 1m

)
(3.2)

where ξ = ξ1 or ξ = ξ2 then produces a visibly reducible group. To verify the claims,
first note that conjugation by g1 is a Galois automorphism σ of 〈A1〉F/F of order 2. Since
α := g2

1 is σ -invariant, α is in the image of the norm map of the Galois extension 〈A1〉F/E,
where E is the σ -invariant subfield; that is, α = ξσ (ξ) for some ξ ∈ 〈A1〉F. Then

α ξg−1
1 ξg−1

1 = ξ g1ξg−1
1 = ξσ (ξ) = α

so ξg−1
1 ξg−1

1 = 1m. The same reasoning goes through after changing α to −α.

We define a procedure ModulesMetacyclic(G) for determining G-modules when
A (and thus G) is reducible. These are available from irreducible modules U for the cyclic
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group A: either U + gU < V is a G-module (which must be true if n is not divisible by
4), or xU is a G-module where x is the product of (3.2) and the change-of-basis matrix
afforded by {U, gU}.

Lemma 3.14 warrants yet another reduction: A can be assumed irreducible, so that G is
irreducible, and we are left to test primitivity of G.

We now re-state some material from [8]. Given that A is irreducible, then n is even, say
n = 2m, and the Mat(n, F)-centraliser of G is the field extension K = {x ∈ � | xg = gx} of
degree m over F (K is the subfield of � invariant under the Galois automorphism induced
by conjugation action of g). There is a field K1 ∼= K and a K-algebra isomorphism φ

from CMat(n,F)(K) onto Mat(2, K1) such that φ(C) is scalar and φ(G2) is an absolutely
irreducible subgroup of GL(2, K1) (cf. Lemma 2.11). The map φ has a particularly simple
description: each element g of G is a 2 × 2 block matrix over the field K1; moreover,
as a 2 × 2 matrix over K1, g is invertible; φ then merely identifies g ∈ GL(m, F) with
g ∈ GL(2, K1).

The next suite of results comes from [8, Sections 3 and 4].

Lemma 3.15. If G is primitive, then φ(G2) is primitive, m is odd, K = 〈C〉F, and K
×

does not contain an element of order 4. If φ(G2) is primitive, then C = 〈diag(x, x)〉 up to
conjugacy, where C1 := 〈x〉 � GL(m, F) is irreducible.

Lemma 3.16. Suppose that φ(G2) is primitive. Define d = diag(1m, −1m) and d ′ =(
α β
β −α

)
where α, β ∈ 〈C1〉F, α2 + β2 = −1m. Then G is �×-conjugate either to 〈A, d〉

or to 〈A, d ′〉, where A consists of matrices of the form
(

µ ν
−ν µ

)
, µ, ν ∈ 〈C1〉F = K1.

Theorem 3.17. G is primitive if and only if C1 � GL(m, F) and φ(G2) � GL(2, K1) are
primitive.

Theorem 3.17 equates primitivity testing of G with a pair of much easier problems: testing
primitivity of abelian linear groups (for which see Subsection 3.1), and testing primitivity of
2-dimensional linear groups. Suppose that G is imprimitive because φ(G2) is imprimitive;
for |G2| > 8 this happens if and only if φ(A2) is reducible. Since φ(G2) is monomial,
the one-dimensional components of a φ(G2)-system of imprimitivity are m-dimensional
F-subspaces of V permuted by G. So we have a G-system of imprimitivity once we have
a φ(G2)-system of imprimitivity. Next we show how to construct an imprimitivity system
for G from one for C1.

Lemma 3.18. Let φ(G2) be primitive, and let V = V1 ⊕ V2 where CV1 = CV2 = C1 = 〈x〉
is an irreducible subgroup of GL(m, F). Let {U1, . . . , Uk} be a system of imprimitivity for
C1 in V1, and {U ′

1, . . . , U
′
k} be a corresponding system of imprimitivity for C1 in V2. Define

Wi = Ui ⊕U ′
i and L = {W1, . . . , Wk}. Then for some h ∈ GL(n, F), L is a hGh−1-system

of imprimitivity.

Proof. We assume that G is of the form 〈A, d〉 or 〈A, d ′〉, as in Lemma 3.16. In particular,
A = A2 × C, Im � A2, and A2 ⊂ � = 〈Im〉K, where Im = (

0m −1m
1m 0m

)
. Clearly, L is a

C-system of imprimitivity. We will show that G2 stabilises each Wi , and hence that L is a
system of imprimitivity for G.

Set |F| = q. The enveloping algebra �̃ = 〈Im〉F is a subfield of �, of size q2. Since �×
is cyclic of order q2m − 1 = (qm − 1)(qm + 1), q ≡ 3 mod 4, and m is odd, the Sylow
2-subgroup of �× is contained in �̃×, so A2 ⊂ �̃. Then �̃Wi = Wi implies that L is an
A-system of imprimitivity.
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Now dWi = Wi for all i, and we may choose α, β in the definition of d ′ to be elements
of the ground field F1m. Hence

d ′Wi = diag(α, α)dWi + diag(β, β)
(

0m 1m
1m 0m

)
Wi ⊆ Wi,

completing the proof.

Finally, we propose an algorithm for irreducibility/primitivity testing of nilpotent meta-
cyclic subgroups of GL(n, F). Remember that if a subgroup H of GL(n, F) has noncyclic
abelian normal subgroups, then we conclude either that H is reducible with known H -
submodules of V , or H is imprimitive with a known imprimitivity system and we continue
irreducibility testing of H via Theorem 3.1.

Algorithm 6: IrredPrimMetacyclic(G)

Input: G = 〈g, A〉 � GL(n, F) nilpotent, A a maximal abelian normal subgroup of
G, 〈A〉F a field.

1. Calculate G2 and G2′ .

2. If G2′ is nonabelian, then by Lemma 3.13 construct NoncyclicAbelian (G) �
G2′ . Else go to the next step.

3. Let G2′ be abelian. By Lemma 3.13, if CG2([G2, G2]) is noncyclic and G2 �∼= Q8,
then construct NoncyclicAbelian (G) � G2; else |G : A| = 2 and we go to the
next step.

4. Let |G : A| = 2, G2′ cyclic. If A is reducible, then by Lemma 3.14 so too is G, and
ModulesMetacyclic(G) provides modules for G. Else go to the next step.

5. Let A be irreducible. If φ(G2) is imprimitive, where φ : G → GL(2, 〈G2′ 〉F) is
the injection described before Lemma 3.15, then G is irreducible imprimitive, and a
φ(G2)-system of imprimitivity is simultaneously a G-system of imprimitivity. Else
go to the next step.

6. Let φ(G2) be primitive. If C1 is imprimitive, then G is irreducible with explicit
imprimitivity system per Lemma 3.18. Else the algorithm terminates, reporting that
G is primitive, by Theorem 3.17.

At the termination of Algorithm 6, either we have found an imprimitivity system for
irreducibility testing in a degree strictly dividing n, or we have found that G is reducible, or
primitive, or irreducible imprimitive, with explicitly constructed modules or imprimitivity
system.

3.4. An algorithm testing irreducibility and primitivity of nilpotent linear groups

Let G be a nilpotent subgroup of GL(n, F), generated by semisimple matrices. Our
algorithm for irreducibility and primitivity testing of G is based on what are by now very
familiar notions: repeatedly constructing noncyclic abelian normal subgroups of G (to
decrease the dimension of subspaces under consideration), or constructing proper abelian
normal overgroups in G of abelian normal subgroups of G (to decrease the size of the factor
group in question). Eventually G must be reported imprimitive or reducible, or the process
will encounter a metacyclic group, for which irreducibility and primitivity testing can be
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carried out separately as in Subsection 3.3.
The next two fairly trivial lemmas underpin the operation of the entire algorithm

(Lemma 3.20 recalls comments in the proof of Proposition 3.10).

Lemma 3.19. Let H be a nilpotent group. If K � Z2(H), then KH has nilpotency class at
most 2.

Lemma 3.20. If A = 〈a1, . . . , as〉 is a normal subgroup of H , where H is normal in G and
G = 〈g, H 〉, |G : H | = k, then

AG = 〈gjaig
−j : 1 � i � s, 0 � j � k − 1〉.

Now we present the final irreducibility/primitivity testing algorithm.

Algorithm 7: IrredPrimNilpotent(G)

Input: G = 〈g1, . . . , gr 〉 � GL(n, F) nilpotent, gi semisimple.
Output: proper nonzero G-submodules of V , or a G-system of imprimitivity, or a report
that G is primitive.

(I) If G is abelian, then test irreducibility and primitivity as in Subsection 3.1. Else go to
step (II).

(II) Find a noncentral element a1 := SecondCentralElement(G, G) of G in Z2(G),
and let A1 := NoncentralAbelian (G, a1) = 〈a1, Ea1〉 be the normal closure
of 〈a1〉 in G, where Ea1 = 〈[gi, a1] : 1 � i � r〉.
1. Construct a decomposition of V into a direct sum of simple A1-modules, via

Cutting(〈A1〉F). Since A1 �G, this is either a decomposition into G-modules,
or a G-system of imprimitivity on which G acts transitively. If there is a single
summand, then 〈A1〉F is a field; otherwise we have proper nonzero G-submodules
of V , or we have a G-system of imprimitivity, and then continue irreducibility
testing of G using Theorem 3.1.

2. Suppose that 〈A1〉F is a field. Let ga1 := GaloisGenerator(G, A1) and
CG(A1) := Centraliser(G, A1), so G = 〈ga1 , CG(A1)〉, and |G : CG(A1)|
divides n. If A1 = CG(A1) then invoke IrredPrimMetacyclic(G). Else
go to (III).

(III) Set C = CG(A1). Find SecondCentralElement(G, C) = a2 ∈ Z2(C) \ Z(C)

and determine the normal closure NoncentralAbelian (C, a2) = 〈a2, Ea2〉 of
〈a2〉 inC.Then let Â2 be the normal closure ofA2 = 〈A1, a2, Ea2〉 inG (Lemma 3.20).
By Lemma 3.19, Â2 is either abelian or class-2 nilpotent.

1. If Â2 is abelian, then replace A1 by Â2 and go to (II) part (1). Note that 〈Â2〉F
properly contains 〈A1〉F, because Â2 �� Z(C).

2. Suppose that Â2 is class-2 nilpotent. GoodAbelianNormal(G) returns either:
(a) a noncyclic abelian normal subgroup of G, or (b) an abelian normal subgroup
B of G in C but not in Z(C). In case (a), G is imprimitive and irreducibility
testing of G goes down to a degree strictly dividing n. In case (b), we replace A1
by the abelian normal subgroup 〈B, A1〉 of G, a proper overgroup of A1, and go
to (II), part (1).
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Algorithm 7 terminates in no more than n loops back to (II) part (1) from (III), since each
recursion necessitates adding to a tower of fields in Mat(n, F), each properly containing the
other (cf. Lemma 2.20).

Reduction to smaller dimensions for irreducibility testing possibly occurs in
(II) part (1) and (III) part (2) of Algorithm 7, as well as in (II) part (2), when Algorithm 6
(IrredPrimMetacyclic) may be called. This reduction can occur no more than log2 n

times over the course of the entire algorithm.
Algorithm 7 shares many of its basic computational ingredients with the nilpotency test-

ing algorithm IsNilpotent of Subsection 2.4 (Algorithm 3). Just as in IsNilpotent,
the construction of abelian normal subgroups is based on computing sets of elements
whose sizes depend polynomially on n, |F|, and nilpotency class of input. The procedure
GoodAbelianNormal (Algorithm 4) involves a recursion that terminates in no more
than n2 rounds, but otherwise consists of linear algebra and pre-ordained group operations.
(The longest chain of operations occurs when calculating D in the proof of Proposition 3.10:
in this calculation there are one inversion and O(sn2) multiplications, where s is the size
of a generating set for C; see after Proposition 2.22 for remarks about polynomial growth
in the size of such generating sets.) Also note that in part (2) of step (II), the field arithmetic
in GaloisGenerator (see the end of Subsection 2.2) replaces the more complicated
method of finding a transversal for the cosets of CG(A1) outlined after Corollary 2.18.
Other functions have been analysed earlier as part of IsNilpotent (Algorithm 3).

In steps (5) and (6) of IrredPrimMetacyclic (Algorithm 6) we should perform
primitivity testing on linear groups that are abelian or of degree 2. In fact, as indicated
after Theorem 3.17, the degree-2 case is also concerned mainly with testing abelian groups,
which by Subsection 2.3 amounts to manipulations with the cutting procedure and cyclic
groups of known order.Algorithm 5 (NoncyclicAbelian), at the point of its application
within (II) part (2) of Algorithm 7, is just group operations, the number of which is no worse
than O(n2).

In some parts of Algorithm 7, algorithms for permutation groups are needed, such as
algorithms to calculate orbits and point stabilisers. Those algorithms are available in [24],
and are polynomial-time in the permutation degree (always a divisor of n) and input size;
see [24, pp. 48–49].

4. Permutation representation of nilpotent matrix groups

This very brief final section is about the link between nilpotent linear groups and per-
mutation groups, which can yield permutation representations of nilpotent linear groups of
much smaller degree than the exponential-degree representations arising from action on the
underlying space.

Let G be nilpotent and completely reducible. It is a consequence of [27, §27, Lemma 6]
that G is monomial over the algebraic closure of F, and thus over some finite extension of
F. In the irreducible case we have a familiar bound on the degree of the extension.

Proposition 4.1. If the nilpotent subgroupG of GL(n, F) is irreducible, then G is monomial
over an extension E of F such that |E : F| divides n.

Proof. First suppose that G is absolutely irreducible, and hence nonabelian. If G is primi-
tive, then n = 2 and G has an irreducible abelian normal subgroup of index 2, which can be
diagonalised over the degree-2 extension of F. But then G is monomial over that extension.
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Suppose now that G is imprimitive. If n is odd, then G is monomial over F by [8, Theorem
5.3]; otherwise, by [27, §15, Theorem 4], G is conjugate to a subgroup of a wreath product
H �T where H � GL(2, F) is nilpotent absolutely irreducible primitive and T is a nilpotent
transitive subgroup of Sym(n/2). Since H is monomial over the degree-2 extension of F,
the proposition is proved in this case.

Now let G be irreducible but not absolutely irreducible. For some extension E of F of
degree m dividing n, G is GL(n, E)-conjugate to a group of block- diagonal matrices, where
each block is absolutely irreducible in GL(n/m, E) (see, for example, [10, Theorem 2.10B,
pp. 41–42]). Now we get the result from the previous paragraph.

We can attempt to find a monomial representation of nonabelian G as follows.
1. Find a = SecondCentralElement(G, G).
2. Let A = NoncentralAbelian(G, a).
3. If 〈A〉F is a field, then find x−1Ax = 〈diag(a1, . . . , an)〉; otherwise construct simple

〈A〉F-modules.
If in step (3) the ai are distinct (as happens when A is irreducible), then x−1Gx is monomial
over the smallest field containing the ais (which is the degree-n extension of F when A is
irreducible).

If we apply the above procedure to any subgroup G of GL(n, F), then either we obtain a
monomial representation of G — and hence a permutation representation τ : G → Sym(n)

with abelian kernel — or we discover that G is not nilpotent. In the former case we can
test nilpotency of τ(G) using well-established algorithms for permutation groups. If τ(G)

is nilpotent, then, knowing the primary decompositions of ker τ and τ(G), we can test
nilpotency of G as in Lemma 2.23.
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