LEBESGUE CONSTANTS
FOR REGULAR TAYLOR SUMMABILITY

R. L. Forbes
(received September 21, 1964)

th
1. Introduction. The n  Taylor mean of order r of a
sequence { sn} is given by

©
(1.1) a': = = ank sk
k=0
where
n+i _n 0

i-r (3] k
(1.2) ——————-( ) —1 = =z anke , lr@](i,

(1-r0) k=0

Cowling [1] has shown that this method is regular if and:
only if 0<r<1. Since r =0 corresponds to ordinary
convergence, it will be assumed here that 0 < r < 1.

th
The n  Taylor-Lebesgue constant of order r is given
by

w/2
f | = a , sin(2k+1)u]
0 k=0 °F

du
sin u

alwn

r
(1.. 3) LT(n) =

These constants have already been studied by Ishiguro [2] and
Lorch and Newman [6] who showed, independently, that

(1. 4) L;(n) = -z-zlog-zr—n-i-a+o(i) as n -+ ©
T
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where

EREN

1 . o0
fsmtdt_az-f [E-[sintl]f-i-t-
0 171 i t

. 2
(1.5) @ = -—y+ :
hig

where vy is Euler's constant.

Here it will be proved that

(1. 6) L;(n-i) = LB(-E)+ o(1) as n = o

th
where LB(x) is the x Borel-Lebesgue constant. Using the
result of Lorch [4],

2 T
n 2 n T t )
(1.7) LB&) -IZ:—Z log—r- -y - Iog—-—2 - '({ ] (ﬂ] sin t dt

+ O(V-%) as n =
where
_ r{x)
(1.8) Y(x) = =
it follows that
(1.9) L;,(n) = L;(n-1)+ 0(%) " as n-w
n
= LB(—r-) + o(1) as n =+ oo .

2. Proof of 1.6. Using (1.2),

> w/2 i- n
(2.1) L;,(n-i) =-1-r{ (—-pi) |sin[(2n-1)u + no ]|

du
sin

?

u
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where

6 .
(2.2) P

The following lemmas and corollaries are required, the
proofs being given in Section 4:

LEMMA 1

)’

where A 1is a positive constant.

-ZAuZ
e

A

for 0<u<

(N

COROLLARY 1

A

i-r o -Anu2 T
———) e for 0<u<-—.
p = =2

LEMMA 2

4ru

2 2
| (—1-;-5] -e (1-r) |<Bu.4 for u20,

where B 1is a positive constant.

COROLLARY 2
_ 2nru
n 2
| (—1:—1:) - e (1-7) | anu4 for u>0.
p — —
LEMMA 3 [Due to Miracle (see 4.9 of [7])].

ki3
< <=,
for 0____u.__2

where C 1is a positive constant.
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COROLLARY 3

”Si.n[(Zn-i)v:x+ né ]| - ,sin[(2.2+ 1)%” , < Cnu3 + %

for 0<ug

Vi3

.

The following standard results are also required:

(2.3)Eu<sinu_<_u for 0 <ux
hig - - =

ME]

(2.4) 0<=u-s'u’iu__<_u3 for u>0.

The integral in (2.1) can be reduced, in three steps, to a
simpler, approximate integral, the error committed at each
step being o(1) as n = ©. To facilitate computation, it is
convenient to reduce the range of integration by replacing w/2

by & where § =n " . Further analysis will show that € must
be chosen to lie between 1/3 and 1/2. Hence, to be specific,
let

-3/8
(2.5) 6 = n 3/ .

Then the error committed by replacing w/2 by 6 is

w/2 n

2 i-r A du
p { ( 5 ) |sin [(2n-1)u + né]| T
w/2 du
2 -A — .
é; f nu /e by Corollary 1 and (2. 3)
8
-Anéz
cIe
T 3/8 -Anil4
3 by (2. 5)
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= o(1), exponentially, as n == .
The steps in the reduction of the integral are then

2nru

1-r n (1 )2
(a) the replacing of (—p—} by e °r »

(b) the replacing of sin[(2n-1)u + n8] by sin[(2-2-+ 1) :ur] ’

and
(c) the replacing of sin u by u.

The error committed in (a) is

Zm:'u2
) n 2
2 f (—1-——1-'} -e (-7 sin[(2n-1)u + n8] } 'du |
L P sin u
0
2 8 4 du
< = .
== _(/)‘ Bnu Z/n o by Corollary 2 and (2. 3)
-1/2
Bn
= —— 2.5
n by (2.5)
= o(1) as n = o .

The error committed in (b) is

aanu
5 2
2 (1-1) . inf(224 12 du
p _({ e [ |sin[(2n-1)u + ne]] - [sm[(Z;*‘ 1’1-1‘” ] sin u
2 0 3, ru) _du ol
2 2.3
<= { (Cnu + 1-::) im e by Corollary 3 and (2. 3)
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Cn—-i/B - -3/8

n
= 2.5
3 + 1-r by ( )

o(1) as n =,

The error committed in (c¢) is

anu
2 6 (1- r) 1
=/ e | sin [(2240) £ | - 2 du
T sinu u
0
<Ef u - .smuch:L
= u sin u
4]
<) uau by (2. 3) and (2. 4)
0
-3/4
= > by(2.5)
= of1) as n =,

(2. 1) then becomes

2nru

5 2
(2. 8) L,rr(n-i) =—12; [ e (1-1) | sin
‘ 0

as n = o .

The substitution t =_ir_x§_ yvields
-r

rd n2
2.9) L(-1) =2 [©F o [sin[(22+1)t]| <&
. T == f e sin[( r+ )1t] " + o(1)

as n-+>00 .
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Tl-.-é; can now be replaced by -321 . For sufficiently large n,

-E—i— <-%r and the error committed is
n 2
2 e ot dt
- f e | sin[(2—+1)t] |—
w 5 » r t
i-r
22 (___r& )2
r \i-r
<
= rd
i-r
2rn1/4
2
3/8 (1-r)
i-r
. {torin re by (2.5)
= of(1), exponentially, as n =+ ® .
Hence
r 2 /2 -2%2 n dt
(2.40) L, (a-1) =;{ e sin[(22+0e] | =+ o(1)
as n =

=L (2) + o(1) as n - in Lorch's notation
B3'r

(Theorem 3. 3 of [4])

= LB(-E) + o(1) as n - ® by Lorch's theorem
r *

(Theorem 3. 3 of [4]) .
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3. Remark. The above methods can also be applied to
the Euler-Lebesgue constants of order r already studied by
Lorch [5] and Livingston [3]. It can be shown that

(3.1) L;:(n) = LB(-II-:PI—_) + o{1) as n -

th '
where LIE':(n) denotes the n  Euler-Lebesgue constant of

order r.

4. Proofs of Lemmas and Corollaries. In the proofs,
the following results are required, along with (2. 3) and (2. 4):

(4.1) 0 é e X - (1-x) é x2 for x; 0
(4.2) Hxl - |yl |x- vl for all x and y
(4.3) ]sinx—siny[é'x-y, for all x and y .
From (2. 2),

pz = 41-2rcos2u+r
(4. 4) = (:l-r)z + 4r sin2 u

= (1-i-r)2 - 4y «':os2 u;

hence
(4. 5) 0<1-r<p<i+r<2.

Proof of Lemma 1.

2
1-r 4r sin u
(p} S — by (4. 4)
p

_ 4r(2/w u)2

2
2

1 by (2. 3) and (4. 5)

A
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4ru
2

™

e by (4. 1) .

A

Corollary 1 follows immediately.

Proof of Lemma 2.

4ru
2
(1-r) (i~-r)Z
—] - e
P
4ru2
= 1_éi.§;_u-e (1-7) by (4. 4)
P
(41:u2 4r sinz uJ . (41'u2 4ru2)
2 2 2 2
P P (1-7) P
4ru2
2
. (1-7)
Hence
4ru2
2 2
(1-1'} e (1-1)
P
4r 2 .2 2 1 1
<—(u - sin u) + 4ru -—
= 2 2 2
p (1-r)
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4ru

+le (1-1:)2 ) (1 ) 4ru2 )
2
(1-r)

= f(u) + g(u) + h{u), say.

flu) = f‘% (u+ sin u)(u - sin u)

P
<X > (2u) w by (4.5), (2.3) and (2. 4)
~ (1-r)
- 8ru
(1-r)>
2 2
(1-r) p
< A L (ar sin” u) by (4.5) and (4. 4)
" (1-7)
2 4
cLoru by (2.3) .
= 1
(1-7)
JECARY:
h(u) < (——’“—5—) by (4.1)
- \1-r)
- 16r2u4
(1-n)*
-4ru
2 2
Hence (1:-5} -e (1-r) < (&= >t 32r4) u4 .
P =1-n?  (1-n)
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Proof of Corollary 2.

2

4ru
2 2
4- -
Let a= (_p_r] , b=e (1-r) and {(x) =xn/2, so that

£ (x) = n n/2 1

By the mean value theorem, f£(a) - f(b) =f'(£)(a-b), where
§ lies between a and b, inclusive, and hence 0< £< 1 by
(4.5).

2 -
Therefore, f(a) - f(b) = n /2 -1

> 3 (a-b)

and |f(a) - f(b)l_<_£21- la-b].

That is,
2
Zm:u2 . _4ru
(1-rJn (1-::)2 n (1-1‘]2 (1-r)
iy - e < -
P =2 P
< Bnu by Lemma 2
Proof of Corollary 3.
| ]sm[(Zn-i)u +n6]]| - lsm[(2—+1)——]] |
< |sin[(2n-1)u+ n0] - sm[(2—+1) ]| by (4. 2)
n ru
2n- e - (2— — 4.3
< |[(2n-1)u + n ( r+1)1-r | by (4. 3)
< nle . 2ru ru
i-r i-r
3 ru
< Cnu +T-_; by Lemma 3.
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