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SEIR EPIDEMIC MODEL WITH DELAY
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Abstract

A disease transmission model of SEIR type with exponential demographic structure is
formulated, with a natural death rate constant and an excess death rate constant for infective
individuals. The latent period is assumed to be constant, and the force of the infection is
assumed to be of the standard form, namely, proportional to I(t)/N(t) where N(t) is the
total (variable) population size and / (r) is the size of the infective population. The infected
individuals are assumed not to be able to give birth and when an individual is removed from
the /-class, it recovers, acquiring permanent immunity with probability / (0 < / < 1) and
dies from the disease with probability 1 — / . The global attractiveness of the disease-free
equilibrium, existence of the endemic equilibrium as well as the permanence criteria are
investigated. Further, it is shown that for the special case of the model with zero latent
period, Ro > 1 leads to the global stability of the endemic equilibrium, which completely
answers the conjecture proposed by Diekmann and Heesterbeek.

2000 Mathematics subject classification: primary 92D30; secondary 39B72.
Keywords and phrases: SEIR model, delay, conjecture, permanence, extinction, global
stability.

1. Introduction

Mathematical models have become important tools in analysing the spread and control
of infectious diseases. Attempts have been made to develop realistic mathematical
models for the transmission dynamics of infectious diseases. The development of such
models is aimed at both understanding observed epidemiological patterns and predict-
ing the consequences of the introduction of public health interventions to control the
spread of diseases. However, a model's ability to predict disease control depends
greatly on the assumptions made in the modelling process [1]. Most epidemiological
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models descend from Kermack and McKendrick's classical SIR model in [20] (see,
for example, [3,11,14,16,19,25,26] and the references therein). Among them, Het-
hcote [14] proposed the following famous SIR model (see [14] and [15]) with vital
dynamics (births and deaths) of:

dS SI

dR
— = -/** +a/,
dt

where the total population size Nit) = S(t) + /(/) + R(t) and the per capita birth rate
are assumed to be positive constants. Such assumptions, however, seem unrealistic
because population size is always varying in the real world.

Later, in order to study disease within a variable population, Diekmann and Heester-
beek [9] improved system (1.1) by assuming that:
(1) The population has an exponential demographic structure.
(2) The infected individuals lose the ability to give birth.
(3) When an individual is removed from the /-class, he or she recovers and acquires

permanent immunity with probability / (0 < / < 1) and dies from the disease with
probability 1 — / .

Thus Diekmann and Heesterbeek [9, page 56] modify model (1.1) into the following
SIR model:

dS SI
- = b S + bR-nS-y-,

Here 5 denotes susceptible, / infected and R recovered individuals, /x is the per capita
death rate due to causes other than the disease, y is the expected number of contacts
per unit of time multiplied by the probability of transmission given contact, and a is
the removal rate. The parameter b is the per capita birth rate with b > /x.

The assumptions of system (1.2) are more realistic than those for (1.1). However,
in the natural world, for some diseases (for example, tuberculosis, influenza, measles)
on adequate contact with an infective, a susceptible individual becomes exposed, that
is, infected but not yet infective. This individual remains in the exposed class for a
certain latent period before becoming infective (see, for example, Cooke et al. [8],
Hethcote et al. [17,18]). Thus it is realistic for us to introduce a latent delay into
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system (1.2) and consider the corresponding SEIR epidemiologic model. We assume
that the latent delay is constant, denoted by r. Using techniques similar to those in
[8,12,22], the probability that an individual survives the latent period [/ - x, t] is
e"Mr, since the number of susceptible individuals that become exposed at time t — x
are y(S(t - x)I(t - x))/N(t - x). There will then be

S(t-x)l{t-x) _Mr
y e M

N(t - x)

individuals surviving in the latent period r and becoming infective at time t. Thus we
obtain the following delayed SEIR model:

dE(Q = S(t)I(t) S(t-x)I(t-x) _ M t _

dt Y N(t) Y N(t-x) e • ' (1.3)
dl{t) _ S(t -x)I(t -x) _IIZ

dt ~ ~ M + Y N(t - x) €

dR(t)

dt
=-nR{t) + fal(t),

where N(t) = S(t) + E(t) + I(t) + R(t) denotes the total population, E denotes
the number of exposed individuals and x is the latent period. The other coefficients
have the same definition as in model (1.2), with the following nonnegative initial
conditions:

5(0, E{t), l(t), R(t) > 0, te [ -T , 0], N(0 > 0 on [-r, 0]. (1.4)

For the continuity of the solutions to system (1.3), in this paper, we require

e,.du, S ( 0 ) = 0 . a 5 )

By system (1.3), we get

dN(t)

dt
(1.6)

REMARK 1.1. It is easy to see that model (1.3) is an extended version of model
(1.2) since (1.3) is reduced to (1.2) if r = 0.

REMARK 1.2. Model (1.3) is different from some previous delay epidemiological
models that engage non-delay coefficients ([2,3,25,29,30]) in that only the infective
term /(r) of the incidence term yS(t)I(O/N(t) has a delay ([2,3,25]).
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REMARK 1.3. Model (1.3) is different from the SEIR model given by Cooke et al.
[8]. In our model the infected individuals lose the ability to give birth, and when an
individual is removed from the /-class, he or she recovers and acquires permanent
immunity with probability / (0 < / < 1) and dies from the disease with probability

1 - / .

By the second and the fourth equations of (1.3) and (1.5), we get

E(t) = f y
5 ( H ) / ( M )

 e-^-u)du, R(t)= ['faI(u)e-^-u)du. (1.7)
J,-z N(u) J

Define

and m(t) = b - (b + (1 - f)a)i(t), then (1.6) becomes

dN(t)
dt

= (m(0 - n) N(t). (1.9)

It follows from (1.5) and (1.7)-(1.9) that N(t) = JV(f-r)exp(/,'_r m(s)ds). System
(1.3) becomes the following equivalent integro-differential equation system for t > 0:

= b - W(O - m(t)s(t) - ys(f)i(t),

= yj(r)i(O - ys(t - x)i{t - r)e-^m(s)ds - m(t)e(t),

= ys(t - x)i{f - T)e-t-mis)ds - (m(r) +a)i(O,

dt
de(t)

p
dt

= faiit) - m(f)r{t)
dt

with

*(O,«(O, i (O, r (0>0, r € [ - r , 0 ] ,

- e(t) + i(t) +r(t) = 1 on [—r, 0]

as the initial conditions.
By the second and the fourth equations of (1.10) and (1.5), we get

V f rw
e(t) = I ys(u)i(u)e '» y> du,

J'7 (1-12)

Jo
For system (1.3), using arguments similar to those of [8, Corollary 2.1], we have

the following result.
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LEMMA 1.1. LetSit), E(t), I(t), R(t) be the solution ofsystem (1.3) on t > Owith
initial conditions (1.4). Then s(t), e(t), i(t), r(t) is the solution of (1.10) with initial
conditions (1.11). Moreover, s(t),e(t), i(t),r(t) > 0, t > 0. If s(t) and i(t) are
positive on the initial interval, then s(t) and i(t) are positive for all t > 0.

Epidemic models with delays have received much attention since delays can often
cause some complicated dynamical behaviours. Delays in many population dynamics
models can destabilise an equilibrium and thus lead to periodic solutions by Hopf
bifurcation [21]. Similar results are also obtained for epidemiological models (Brauer
et al. [4,5]; Busenberg et al. [6,7]; Hethcote et al. [15,17,19]). It is interesting for
us to consider the effects of time delay on the dynamical behaviours of model (1.3).

In this paper, by constructing a proper Lyapunov function, we get the global sta-
bility of the disease-free proportion equilibrium. Using Thieme's persistence criteria
[27] (for persistence and its application, and also referring to the works of Hale and
Waltmann [13,28], Liu et al. [23,24], and Xiao and Chen [31]), we get the delay-
dependent sufficient conditions under which the system is endemic in the sense of
permanence. Our disease-free result generalises the corresponding results in Diek-
mann and Heesterbeek [9]. Further, we prove that for the special case of model (1.3)
without latent period r, that is, system (1.2), existence of the endemic equilibrium
indicates its global stability, which completely answers the conjecture proposed by
Diekmann and Heesterbeek [9].

This paper is organised as follows. In Section 2, we obtain the threshold and the
two equilibria of model (1.3). Stability of the disease-free equilibria are presented
in Section 3. In Section 4, sufficient conditions for permanence of system (1.10) are
obtained. In Section 5, we prove that for the special case of model (1.3) without
a latent period r, existence of the endemic equilibrium indicates its global stability,
which completely answers the conjecture proposed by Diekmann and Heesterbeek [9].
Finally, in Section 6 we summarise and discuss the results of this paper.

2. Preliminary results

Now we consider the equilibria of system (1.10). When the infective fraction / = 0,
then e = r = 0, and 5 = 1. This is the disease-free equilibrium for proportions. We
note that this is the only equilibrium on the boundary of D. We have the following
threshold parameter for the existence of interior equilibrium:

R0 = ye-bx/(b + a). (2.1)

Denote (,s*,e*,j*,r*) as the interior equilibrium of (1.10). Since s*-f e* + i* + r* = 1,
then 0 < s*, i* < 1. By the first and third equations of (1.10), we get

b - bi* - m V - ys*i* = 0, ys*i*e-f'-'m'ds - (m* + a)i* = 0, (2.2)
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where m* = b - (b + (1 — f)a)i*. By the first and second equations of (2.2), we have

(b + a)-[b + (\ -/)«]/*
J —

exp(-fcr) exp{[fc + (1 - / )o] /T} '

and thus

(6 + a)-[6 + (l-/>]i* 6(1-T)
y exp(-ftT) exp{[fc + (1 - /)a]i*r} 6 + [y - b - (1 - / )«] /• '

that is,

[y-b- ( 1 -
(2.4)

Let G(i*) denote the difference between the left- and right-hand sides of (2.4). Thus
we have G(0) = l/R0 - 1 and G(l) > 0. Then if Ro > 1, we have G(0) < 0,
which implies that Equation (2.4) admits at least one positive solution j * € (0, 1).
Using (2.3) and (1.10), we can get the corresponding s*, e*, r*. Therefore we get the
following lemma.

LEMMA 2.1. System (1.10) has at least an endemic equilibrium if Ro > 1.

3. Disease-free equilibrium

THEOREM 3.1. Ify < b + a, all solutions of system (1.10) with initial conditions
(1.4) will approach the disease-free equilibrium as t -*• oo.

PROOF. Let s(t), e(t), i(t), r(t) be a solution of (1.10). We define

V(t)=e(t) + i(t).

From (1.10) and noting 0 < s(t), e(t), /(/), r(t) < 1, s(t) + e(t) + i(t) + r(t) = 1,
we have

V(t) = ys(t)i(t) - m(t)(e(t) + i(0) + fai(t)

= ys(t)i(t) -(b-[b + (l- /)o)i(r)](l - s(t) - r(t)) + fai(t)

= [y - [b + (1 - f)a])s(t)i(t) - [b + (1 - f)a)i(t)r(t) - fai(t) - be(t)

= [y - [b + (1 - /)«] - fcc)s{t)i(t) - [b + (1 - /)«]»(t)r(t)

-be(t)-fai(t){l-s(t))
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-f)a]i(t)r(t)-be(t)-fai(t)(l-s(t))<O.

Then lim^oo V(t) exists and we have lim,^.^ V (f) > 0. We prove lim,-,^ V(t) = 0 .
Assume that it is not true, that is, that lim,-^ V(t) > 0. Thus

limd -s(t)) > lim V(r) > 0.

Hence we get
V(O < -be{t) - / o i ( O d - *(O) < -PV(f).

Here y3 = min{6, /lim,^oo V(t)}, which indicates that lim,-^ V(t) = 0, a contra-
diction. This proves Theorem 3.1. •

4. Endemic equilibrium

In this section, we prove that Ro > 1 implies that system (1.10) is permanent.
There have been many papers devoted to the persistence theory of delay differential
equations (see Hale and Waltman [13], Freedman and Moson [10], Thieme [27,28]
and the references therein). In this paper, we engage Thieme's persistence theory [27].
Before stating our theorem, we present the following definitions that are similar to
those in [21,31].

DEFINITION 1. System (1.10) is said to be uniformly persistent if there is an r\ > 0
(independent of the initial data) such that every solution (s(t), e(t), i(t), r(t)) with
positive initial conditions satisfies:

lim inf 5(0 > r], lim inf e(t) > t), lim inf/(f) > r), lim inf r(t) > r).
f->oo /->oo ;->oo <-»oo

DEFINITION 2. System (1.10) is said to be permanent if there exists a compact
region fi0 C Intfi such that every solution of Equation (1.10) with positive initial
conditions will eventually enter and remain in region £l0.

Clearly, for a dissipative system, uniform persistence is equivalent to permanence.

THEOREM 4.1. System (1.10) is permanent provided that Ro > 1.

To prove Theorem 4.1, we need the following lemma.

LEMMA 4.2 (Liu et al. [24]). Given d* > d and the system

v'{t) = d*v(t - r) - dv{t), v(t) = 9{t) > 0, t € [-r, 0],

u(0) > 0,

then Urn,-,,*, v(t) = +oo.
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And now we present the persistence criteria by Thieme [27]. Consider a metric
space X with metric d. Let X be the union of two disjoint subsets X\, X2, and <t> a
continuous semiflow onX,, that is, a continuous mapping 4> : [0, oo) x X , -*• X\
with the following properties: 4>, o * , = <E>,+J, for t, s > 0, and O0(x) = *, for
x e X | . Here <t>, denotes the mapping from X, to Xx given by <£,(*) = <£>(*, *). The
distance d(x, K) of a point * e X from a subset y of X is defined by

d(x,y) = 'mfd(x, v).

Let y2 be a subset of X2; Y2 is called a weak repeller for X[ if, for all X\ € X|,
limsup,_ood(<l>,(jci), Y2) > 0, and Y2 is called a uniform strong repeller for X) if
there is some e > 0 such that liminf,_).ood(4>,(xi), y2) > e, for all J:I € X\.

(Hi) There exist S > 0 and a subset fi of X with the following properties:

• If x e X and rf(x, X2) < 5, then d(4>,(x), S) - • 0, t -> oo.
• Bf]BsX2 has a compact closure. Here BSX2 = {x G X; d{x, X2) < 8}.

LEMMA 4.3 ([27, Theorem 4.6]). Let X\ be open in X and forward invariant
under 4>. Further, let (Hi) hold. Assume that

«2 = U co(y), Y2 = {xe X2; *,(*) € X2, V/ > 0},

where J22 has an acyclic isolated covering M = U™=1 Mk such that each part Mk

of M is a weak repeller for X\. Then X2 is a uniform strong repeller for X\.

We are now able to prove Theorem 4.1.

PROOF OF THEOREM 4.1. We begin by considering the following subsystem (4.1)
of system (1.10):

P =b- bi(t) - m(.t)s(t) - ys(t)i(t),
dt (4.1)

= ys(t - r)i(r - T)e-S'-<m(s)ds - (m{t) + a)i(t).
dt

Claim 1. /?0 > 1 leads to the permanence of system (4.1).
By (1.8) and the initial conditions of system (1.10), we have that the initial condi-

tions for (4.1) are

\

C+([-r, 0], R2
+), <p,(0) > 0, i = 1, 2,

l, 6e[-x,0],
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where R\ = [(s, i) € R2 : s, i > 0; s + i < I). Let C + ( [ - r , 0], R\) denote the
space of continuous functions mapping [—r, 0] into R\. We choose

C, = {fa>, <pd € C + ([- r , 0], R\) : <po(9) = 0, <p,(0) > 0, 9 e [-r, 0]},

C2 = {(<Po, <Px) € C + ([- r , 0], R\) : <po(9) > 0, <px{9) = 0 J e [-r, 0]}.

Denote X2 = CX\JC2, X = C+([-r, 0], R\) and Xi = IntC+([-r , 0], R\), then
X2 = dXy.

We verify below that the conditions for Lemma 4.3 are satisfied.
The definitions of X\ and X2 imply that Xt, X2 are disjoint sets and that X\ is open.

And by Lemma 1.1, we get s(t), i(t), e{t), r{t) > 0, t > 0. Thus s(t) + i(t) < 1 for
all t > 0, proving that Xi is positively invariant.

To show that condition (Hi) of Lemma 4.3 holds, select B = X and an arbi-
trary positive constant S. We note that X is also invariant. Then d(<S>,(x), B) =
</(*,(*), X) = 0, x e X. And B f| BSX2 = X f| fijXj = {* € X; d(x, X2) < 5}.
Hence the interaction of B f] BSX2 has a compact closure {x € X; d(x, X2) < 8}.

Consider the £22 in Lemma 4.3. By system (4.1), all points in Ct will ultimately
enter Xt while those in C2 will converge to the constant solution E\ with

>,) € C + ([- r , 0], /?2) : <po{9) = 1, Vl(0) ̂ O J e [-r, 0]}.

Hence f22 = (iTi). Clearly it is isolated and acyclic.
Now we prove E\ is a weak repeller for X\. Assume the contrary, that is, that there

exists a positive solution (s(0, i(0) of system (4.1) with lim^ooCsfr), i(0) = (1.0).
Then for sufficiently small e with e < (1 — (b + a)ebT/y)/2, there exists a positive
constant T = T(s) such that s(t) > 1 - s, 0 < i(t) < e for all t > T. Then we have
m(t) < b for all t > 7\ By the second equation of (4.1), we have

y ( l - e ) i ( t - z ) e - b x - ( b + a ) i ( t ) , t > T + r. (4.2)

Consider the equation

f dx(t)/dt = y(l - s)x(t - T)e-bz - (b + a)x(t), t >T + r,

\x(t)=i(t), te[T,T + r].

By (4.2) and the comparing theorem, we have i(t) > x(t) for all t > 7\ On the other
hand,

0.
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By Lemma 4.2, we get x(t) —*• oo as t —> oo. Thus /(0 —> oo as f —> oo, contradict-
ing i(r) < £ , ( / > T). Then system (4.1) satisfies all conditions of Lemma 4.3 and we
have that X2 is a uniformly strong repeller for X\. Noting system (4.1) is dissipative,
then system (4.1) is permanent. This proves Claim 1.

By (1.12), we can get the permanence of e{t), r{t), thus proving Theorem 4.1. •

5. Model (1.3) with zero latent period

In this section, we study system (1.2), that is, system (1.3) with r = 0. By (2.1),
noting T = 0 in system (1.2), we get the basic reproduction number for system (1.2):
Ro = Y/ib + a). Let

RO>1. (5.1)

Introducing the relative quantities >> = I/N,z = R/N into (1.2) with// = S+I+R
being the total population, one obtains the two-dimensional system

y = y(y(l - y - z) - « + «(i - f)y + b(y - l)) = Ft(y, z),
z = y(fa + (1 - f)az) - bz(l - y) = F2(y, z),

supplemented by the scalar equation

at

Then the system (5.2) has a unique nontrivial equilibrium (y, z) (0 < y < 1,
0 < z < 1, 0 < y + z < 1). For the endemic equilibrium, we have the following
theorem.

THEOREM 5.1. If (5.1) is satisfied, then (y, z) is globally asymptotically stable in
the set D = {(y, z) : y > 0, z > 0, y + z < 1}.

REMARK 5.1. Theorem 5.1 gives a complete and positive answer to the conjecture
by Diekmann and Heesterbeek [9, page 218].

System (5.2) always has the trivial equilibrium Po(O, 0). The isoclines at which
y = 0 are y = 0 and yz = y — a — b + (b — y + a(l — /))y, which is a straight
line intersecting the line y = 0 at z = Z\ = 1 — (a + b)/y and the line y = 1 at
z = zi = —ctf/y. Note that z, < 1 and z\ > 0 if and only if (5.1) is satisfied, while
Z2 < 0 always. If 0 < / < 1 then the isoclines at which z = 0 are given by

_ b-by-{\- f)ay '
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!\y

(a) (b)

FIGURE 1. The equilibria for system (5.2) under various conditions: (a) 0 < / < 1; (b) / = 0.

which are two increasing functions of y (these two isoclines have vertical asymptote
y = yt — b/(b + {\ -f)a) and horizontal asymptote z = ZT, = —fa/(b + (l — f)a)
respectively). So there are two intersections with the sloping isocline

yz = y - a - b + (b - y + a(l - f))y

whenever (5.1) is satisfied. One equilibrium Pt is in the interior of the triangle D and
another equilibrium P2 is in the region {(y, z) '• y > yi, z < Z3}. If / = 0 then the
isoclines at which z = 0 are z = 0 and y = b/(b + a). Thus the system (5.2) has an
equilibrium Po(O, 0), an equilibrium Pj(l, 0), and an equilibrium P4 in the interior of
the triangle D. The equilibria of system (5.2) are illustrated in Figure 1 under various
conditions.

The variational matrix of system (5.2) is given by

• * - (
Y(l-z)-a-b + 2y[a(l - f) + b - y]

fa + {l-f)az + bz
-yy

- f)ay - b{\ - y)J '

The stability of the equilibria Po, P\, P2, Pi and PA is determined by the eigenvalues
of the matrices J(P0), J(P,), J(P2), J(Pi) and J(P4) respectively.

LEMMA 5.2. IfO<f<l and (5.1) is satisfied, then

(i) the equilibrium P\ is locally asymptotically stable;
(ii) the equilibria Po and P2 are saddle points.

PROOF, (i) See Diekmann and Heesterbeek [9, page 218].
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(ii) The variational matrix of the system (5.2) at P2 is

+a(l -f) + b) -yy
(l-f)az + bz (1 - flay

yy \
- b(\ - y)J '

We claim that its sign pattern is ( I + ) .
The signs of the anti-diagonal elements are clear, so we concentrate on the diagonal

elements, starting with position 11. The assumption (5.1) implies y > b + a, or
—y + b + a < 0, and hence centainly -y + b + a — af < 0. The element at
position 22 is positive for large y, but changes sign at y = b/(b + (1 — f)a). Hence
the determinant of J(Pz) is negative and P2 is a saddle point.

It is easy to see that the variational matrix of the system (5.2) at Po is

- > ) •

The assumption (5.1) implies that its sign pattern is (+ °).
So the determinant of J (Po) is negative and Po is also a saddle point. The proof of

Lemma 5.2 is now complete. •

In quite the same manner, we can prove the following result.

LEMMA 5.3. Iff = 0 and (5.1) is satisfied, then

(i) the equilibrium P4 is locally asymptotically stable;
(ii) the equilibria Po and P3 are saddle points.

PROOF OF THEOREM 5.1. Because the z-axis is invariant, at the y-axis we have
dz/dt = fay > 0, and on the line y + z = 1 we have d(y + z)/dt = b(y — 1) < 0
for y < 1. Hence D is positively invariant, and in particular, every positive semiorbit
starting in D is bounded. By Lemmas 5.2-5.3, the point (y, z) is locally asymptotically
stable. The Poincare-Bendixson theorem implies that the cu-limit set <w(y(|2)) is
therefore either the point (y, z) or a nontrivial periodic orbit. Therefore the proof of
the conjecture is completed by showing that system (5.2) has no nontrivial periodic
orbit in D.

Define B(y, z) = y~xz^ for (y, z) e D. By (5.1), we have

, 3(gF2) _, _
+ — = y z '((a + b-y -af)y - yz

dz
+

ay dz
+ (y-a-b) + (a + b-y- a fly)

- y-l
Z-1 «a+b-y- a fly - yz + (y - a - b))
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FIGURE 2. The direction field chart for system (5.2) under various conditions: (a) 0 < / < 1; (b) / = 0.

- y-lz~2(f ay + (b + «(1 - f))yz - bz)
= -y~lz~\(y +af-a-b)y + fayz'1) < 0

for all (y, z) € D.
Thus the conditions of the Bendixson-Dulac theorem are satisfied and system (5.2)

has no nontrivial periodic orbit in D. Therefore by the Poincare-Bendixson theorem,
the point (y, z) is globally asymptotically stable in D. The proof of Theorem 5.1 is
now complete. •

Since

- f)a)y
dy yy

as z -> oo, y > 0, (5.3)

it is easy to see that system (5.2) has no vertical asymptote in the right half-plane
(y > 0). Moreover, we have the following theorem.

THEOREM 5.4. (1) For the case f = 0, if (5.1) is satisfied, then

lim(y(f),z(f)) = (y,z)
/ - •oo

if and only if y(0) > 0 and z(0) > 0.
(2) For the case 0 < / < 1, if (5.1) is satisfied, then lim,_oo()'(0. z(O) = (?. z)

if and only if (y(0), z(0)) 6 G\, where G\ is the region on the right half-plane and
above F, where F is the stable manifold of saddle point P2.
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PROOF. Since (5.3) holds, it is easy to see that system (5.1) has no vertical asymptote
in the right half-plane (y > 0). For the case (b): / = 0, from Figure 2 (the
direction field chart for system (5.1)) and the above results we see that system (5.1)
cannot have positive periodic solutions. It follows from the phase plane analysis that
lim,_>00(>'(0, z(0) = (9,1) if and only if y(0) > 0 and z(0) > 0. For the case (a):
0 < / < 1, similarly. From Figure 2 and the phase plane analysis it is easy to verify
that linWooMO, z(O) = (y, I) if and only if (y(0), z(0)) € G,. •

6. Summary

In this paper, we extend the SIR epidemic models (1.2) in Diekmann and Heester-
beek [9] into SEIR type (1.3) with a constant exposed period. Our model is different
from previous delayed epidemiological models in which the delay-dependent coeffi-
cients e~^x is ignored ([2,3,25,29,30]) and where only the infective term I(t) of the
incidence term yS(t)I(t)/N(t) has delay ([2,3,25]). Our model is also different from
the delayed SEIR model with delay-dependent coefficients by Cooke et al. [8], as in
our model we assume infected individuals lose the ability to give birth and when an
individual is removed from the /-class, it recovers and acquires permanent immunity
with probability / (0 < / < 1) and dies from the disease with probability 1 — / .

By constructing a proper Lyapunov function, we get that (in Theorem 3.1) the
disease-free equilibrium (1, 0, 0, 0) is globally attracting provided y/(b + a) < 1.
Using Thieme's persistence criteria [27] for infinite-dimensional systems, we prove in
Theorem 4.1 that the system will be endemic in the sense of permanence when Ro —
ye~bz/(b + a) > 1. Since Ro involves the latent delay r, as r increases gradually,
Ro will get smaller and smaller and consequently the condition for permanence will
become less likely to be satisfied. This suggests that the longer the exposed period
the system has, the less the chances are that it will be endemic, that is, it is helpful for
us to get the disease-free property by properly enlarging the exposed period.

Our disease-free result, Theorem 3.1, generalises the corresponding results by
Diekmann and Heesterbeek [9] for system (1.2). Further, in Theorem 5.1, our re-
sults show that for system (1.2), existence of the endemic equilibrium indicates its
global stability, which completely answers the conjecture proposed by Diekmann and
Heesterbeek [9].

We believe Ro = ye~bz / (b + a) is an important threshold parameter for the disease-
free and endemic cases, however, in this paper, it still remains unsolved for

1 < — — and — — e-"z<\.
b+a b+a

We conjecture it will lead to the disease-free property. We leave this problem for our
future work.
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