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BICYCLIC BICUBIC FIELDS 
CHARLES J. PARRY 

1. Introduction. There is an extensive body of literature on the bicyclic 
biquadratic fields. These fields provide the simplest examples of abelian non-
cyclic extensions of Q. In sharp contrast, there is a dearth of literature on the 
bicyclic bicubic extensions of the rational numbers. These fields together with the 
abelian noncyclic octic extensions provide the next simplest abelian noncyclic 
extensions. 

In this article, we shall study abelian bicyclic bicubic extensions of Q of 
degree 9. Hasse [4, v-ix] has stated as important objectives: the computation 
of an integral basis, the determination of class number and the calculation of 
fundamental units for abelian fields. In this article, we will solve the first problem 
completely, and show that the solution to the unit problem leads to a solution of 
the class number problem. Moreover, we shall give a method for determining 
the unit group up to a subgroup which has index 1 or 3 and so determine the 
class number up to a factor of 3. 

2. Notation and terminology. The following notation will be used through­
out this article. 

Q: Rational number field. 
£ = £27n/3; Primitive cube root of unity. 
£ = Q(Q: Third cyclotomic field. 
K: Bicyclic bicubic extension of Q of degree 9. 
Kt (i = 1, 2, 3, 4): Cyclic cubic subfields of K. 
f: Conductor of A'. 
ft (/ = 1, 2, 3, 4): Conductor of the field Kh 

U = Kt(Q. 
L = K(Q. 
NE/F'- Norm function for the extension E/F. 
SE/F- Trace function for the extension E/F. 
DF: Discriminant of the field F over Q. 
h: Class number of K. 
hi'. Class number of Kj (i — 1, 2, 3, 4). 
U: Unit group of K. 
Ut\ Unit group of Kt (/ = 1, 2, 3, 4). 
V = U\U2U^U^\ Product of subgroups in U. 
â: Complex conjugate of a complex number a. 
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An integer (x + j v ^ 3 ) / 2 of k is said to be normalized if either x = 2,y = 
0(mod 3) or x = 3xo, y = 3jo with XQ = 2,jo ̂  O(mod 3). A normalized integer 
is said to be strongly normalized if y > 0. 

LEMMA 1. If a is an integer of k relatively prime to 3 then a has exactly 
one normalized associate. If (a, 9) = 3, then a has exactly two normalized 
associates. 

Proof. Since there are exactly six units in k, the lemma follows by an exam­
ination of cases. 

COROLLARY. If a is an integer of k, which is not a rational integer, with 
(a, 9) = 1 {respectively 3), then a has exactly one (respectively two) associate(s) 
j3 such that either (3 or (3 (hut not both) is strongly normalized. 

Proof. If /3 is normalized and not a rational integer, then exactly one of (3 or 
/? is strongly normalized. 

3. Integral basis. It follows from Gras [1], Hasse [2] or Maki [5] that the 
field Kj (i = 1,2,3,4) generated by the roots of a polynomial 

qi(x) = x3 - (f/3)x-fai/27 

where Af = aj +21bf and or, = (<?, + 3bty/—3)/2 is strongly normalized. It will 
be shown that a^ and a^ can be determined from ot\ and OO­

LEMMA 2. Let d = (/i,/2),£ = (c*i, OCT) and 7 = l/3(ori, #2) or 7 = (c*i, ai) 
according as 3 divides both of oc\ and 0^2 or not. Then N^/Q^SI) = d and there 
exist integers /3\ and $2 of k such that a.\ — lèf3\ and 0C2 — lb&2- Moreover, 
either 7/?i/?2 = p or 3p where p is a square free integer of k relatively prime 
to 3 and divisible by no rational integer. 

Proof. First note that Nk/Q(oti) =f is square free except for a possible factor 
of 9 and a, is an integer of k. Since the integers of k form a UFD, we can write 

a{ = 7TC
Q

l7r\7T2 . ..7ÏY7IY+1 ...7Ts7Ts+\ ...7Tt6\ 

a2 = 7re
0

27T\7T2 . . . 7Tr7Tr+\ . . . 7TiV7r' + 1 . . . 71^62 

where 7r0 = (—3 + 3 V^—3)/2 and TT\ , . . . , 7i>, 7r;
v+1,..., ir'u are distinct, noncon-

jugate, normalized primes of k which do not divide 3, e\, €2 are units of k, and 
e\, e2 £ {0, 1}. Since the product of normalized integers, not divisible by 3, 
is again normalized and since a\ is normalized, we see e\ — 1 when e\ — 0. 
Similarly, e2 = 1 when <?2 = 0. If e\ = 1, then by dividing both sides of the 
expression for a\ by 3 and examining congruences modulo 3, we see ei = 1 or 
(—1 + y ^ 3 ) / 2 according as b\ = 1 or 2(mod 3). Similarly, when e2 — 1, Q — 1 
or (—1 + <\/—3)/2 according as /?2 = 1 or 2(mod 3). Let m — min{<?i,(?2} and 
note 

£ = 7TQ7r r + i . . . 7 T , . 

7 = TTi . . . 7 T , . 
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Setting 

0X = rf-m7Ts+l . . . 7r/Cl and 02 = ^-m^+[ ... 7Tf
l{e2e

m 

where e = (—1 — >/—3)/2, the result follows. 

PROPOSITION 3. Let f = df/ for / = 1,2 and Nk/Q(8) = c, Nk/Q(l) = g. 
Thenf3 = gf[f2' and fa = cf[f{. Moreover a3 = ±7/3\02 or a3 = ±7/31 ft and 
a4 = ±80\02 or a4 = ±6J3\(32. 

Proof. By the cubic formula, Kt = Q(6j) fori= 1,2 where 

ft = l / 3 ( ^ + ^ ) . 

Also 

#; = 1 / 3 ( C ^ + C 2 v ^ ) and ^ = 1 / 3 ( C 2 V ^ + C v ^ ) 

are the conjugates of 0t and are also contained in K[. Now 

and since there are exactly 4 cubic intermediate fields between k and L, we may 
number L3 and L4 so that 

L3 = k(y/f\cc\f2cc2) and L4 = k(y/f\a\f2ct2). 

Now 

fKXrf2a2 = dfllfSI3idfilSP2 

= d2f[f{8h20\02 

= (cgfcflf2
fl20,02 

= c\{lî)f[f{l20X02 

= (<n?gflfiîpxp2 

so 

^3 - K(^gf[f{î0x02) = K(j/fa^~3). 

Since gf(f2î0i02 and /3a3 are both cube free integers of /:, it follows that 
/3 = gflfi_*nd a3 = ±j0{02 or a3 = ±7ftf t . Similarly,/4 = cf[f{ and 
a4 = ±S0\02 or a4 = ±60\02. 

COROLLARY 1. For any prime p, either p divides none or exactly 3 of the 
conductors j \ , j 2 , f3, fa. 
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COROLLARY 2. We may choose f\ with ( / i ,3) = 1. If this is done then 

a 3 = 7/?i/?2 or a3 = 7/?i/?2 # « d &4 = ^/3i^2 ^ «4 = <$/?i/?2-

/V00/. The first statement is immediate form Corollary 1. Under the hypoth­
esis (/ i , 3) = 1, <?i = 0 in the proof of Lemma 2. Hence c\ = 1 and so /3\ will 
be normalized. Also m = 0 so that 5 is normalized. If e2 = 0 then all of 7, 7, 
P\, fi\, 02, Pi and a 3 are normalized so the sign in the equation a 3 = ±7/3i/?2 
or a 3 = zb7y51 ̂ 2 must be positive. If ^2 = 1 and a 3 = ±7/3i/?2 then divide 
both sides of the equation by 3 and take congruences modulo 3. Since 7, j5\ and 
(^2/^0^2) are normalized this reduces to 

2 + b3V^3 = ± ( - 1 + v / Z3)e2 (mod3). 

Recall e2 — 1 or (— 1 + \/—3)/2, but in either case the sign must be positive. 
Similarly, the sign must be positive if a 3 = ±7/?i/Î2- Likewise the sign in the 
equation for a^ must be positive. 

THEOREM 4. 77ie discriminant DK is given by 

n = l(9piP2--.Pn)6 if3\f2 
K \(PlP2---Pn)6 ifi\fl 

where pi,p2,... ,pn are the distinct prime divisors off\f2 other than 3. Moreover, 

r = l9pip2...p„ if3\fi 

[P\P2.'.Pn ifi\h-

Proof. A prime p ramifies in K if and only if p\f or p\f2. Moreover, in 
K (p) = (PiP2P3)3 with NK/Q(Pi) = p or (p) = P\ with NK/Q(PX) = /?3 

where each Pt is a prime ideal of K. If p ^ 3, Dedekind's formula shows that 
the different AK/Q is exactly divisible by (P1P2P3)2 or by P\ depending on 
the factorization of p. In either case p6 is the exact power of p dividing the 
discriminant DK. If 3 t /2 then 3 \DK and we are done. If 3|/2 then (3) = P3 in 
K2 where P is a prime ideal of norm 3. Since P4 exactly divides the different 
AKIJQ and (A#/#2,3) = 1, it follows that P4 exactly divides AK/Q. Hence 3 1 2 

exactly divides the discriminant DK. 
The conductor/ of K is clearly the least common multiple of the conductors 

fi of the fields K[(i = 1 , 2 , 3,4). T h u s / has the stated value. 

COROLLARY. DK = DKXDKIDKI>DKA. 

/ / 3 | / I let pi(x) = qt(x) and otherwise set 

< \ 3 2^-fi Mai - 3) + 1 . 
/ ? / ( * ) = * - x + — — x — /or * = 1,2,3,4. 
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Let 6j be a root ofpi(x) then Maki [5] shows that 1,0,-, 0- form an integral basis 
for Ki/Q where d\ is a conjugate of Ot. 

LEMMA 5. The basis 1, 0,, 6\, 02, ff2, 03, ffv 04, ffAfor K/Q has discriminant 
36DKlDKlDK3DK4. 

Proof A straight forward, but tedious calculation using the standard repre­
sentation of the discriminant as a determinant, gives the result. 

THEOREM 6. An integral basis for K/Q consists of' 1, 6\, 6\, 62, ff2, 6$, 06, 07» 
08 where 

05 = l / 3 [ - e + e0i +0 2 + 03+0 4] 

06 - l / 3 [ - e + t0\ + 02 + 03 + 04] 

07 = l / 3 [ e 0 i + 0 2 + 0 3 - 0 4 - 0 4 ] 

08 = l/3[e0', + 0'2 - 03 - 03 + 04] 

and e =f2(mod3) is 0 or 1. 

Proof First we need to show that 05, 06, 07 and 08 are integers. Since 3 f/i 
it follows from Cardan's formula, (see [6, p. 179]) 

0, = \/3[l+^f^ + ^fà~{] 

and for / = 2 ,3 ,4 

Bi = l /3[c + # t o + ^ p ; ] . 

Here we choose conjugates so that 

^ l ^ + C ^ + C 2 ^ ] 

where e' = 1 or e according as / = 1 or / > 1. 
Now by Corollary 2 to Proposition 3, 

0102 = l/9[e(l + ^ i " + ^ 0 + Ifh^i + ^ 2 ~ 

+ y/f\h<x\CL2 + y/fifictxcti + \ff\fioc\â2 + \/f\f2a{a2] 

= l / 3 [ - e / 3 + e0 !+0 2 

where we are assuming for the moment that a^ = Ï/3\j32 and a 4 =è(5\P2. Since 
(/1? 3) = l, Lemma 2 shows that both 7 and 5 are relatively prime to 3 and are 
normalized. Thus 

7 = l/2(w + v \ / ^ 3 ) and 5 = l /2(r + s V ^ 3 ) with w, v, r , s G Z 

and u = r = 2(mod 3) and v = s = 0(mod 3). 
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Now 

1 \V2 1/3 cu 6/3 + e6{+62 + —(yf^ 
o 

•V^3 
+ l/f&l) + ^ — ( v ^ I - v ^ ) + (Ç) (v^* + v ^ I ) 

^ 
6 

1/3 

(v^404 - V ^ a 4 ) 

(l/3+? + f + ? + ç ) + ( 9 l + 9 ! + 
CUOT, 

CV <?'" £X, + y ( 0 3 + 2 ^ ) + | - 0 4 + y ( 0 4 + 20i) 

= 1/3 (^ + f + 1/3(l + ? + f ) ) + £ , + , 2 

By an analysis of cases cu + gr = —2ru(r + u) = 4(mod 9), so that 

0 = 36^2 = -e + ee{ + 02 + 03 + 04(mod3). 

Hence 

05 = l/3(—e + c0i + 02 + 03 + 04> 

is an integer of K. If a^ = îfiifti and/or a4 = Sfiifc then the signs are changed 
on the cv and/or gs terms respectively. Since these terms vanish modulo 3, the 
same proofs holds. Since 06, 07 and 0g are conjugates of 05, they are also integers 
of AT. 

By direct computation, the index of the basis 1, 0\, ff{, 02, 02, 05, 06, Oj, 
and 08, relative to the basis of Lemma 5, is 3~3. Therefore the new basis has 
discriminant equal to DK/Q and so is an integral basis for K/Q. 

4. Class number considerations. The following class number relation is 
immediate from [7]. 

PROPOSITION 7. 35h = Q* hlh2h3h4 where Q* = [U : U{U2U3U4] = [U : V]. 

LEMMA 8. Q* = 3a with 0 ^ a ^ 5. 

Proof. Let G denote the Galois group of K/Q and G, denote the Galois 
groups of K/Kj for / = 1, 2, 3,4. 
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For any subgroup H of G, let H denote the sum of the elements of H in the 
integral group ring ZG. The direct norm relation 

G1+G2 + G3 + G4 = 3e + G1 

where e is the identity of G, shows that for any unit e of K, e3 G V. Hence 
g* = 3a with 0 ^ a ^ 8. 

Suppose now e G U with e ^ V and that e3 G £/,, for some / = 1,2,3,4. Set 
e3 = eo and note since e ^ £//, AT = A (̂e) = Kj(tfëô). But AT, does not contain 
the third roots of unity so Ki(tfëô)/Kj is a nonnormal extension, while K/Kj 
is a normal extension. Thus e3 ^ £//. Now choose bases B for £/ and 5* for 
V such that #* = (ei,e2,... ,eg) where C2/— I and 62/ form a basis for Uj with 
/ = 1, 2, 3,4. We may assume that all elements of B and B* are positive. Let A 
denote the 8 x 8 matrix which expresses the cubes of the elements of B in terms 
of the elements of 5*. Then by changing only the basis B, we may assume that 
A is a triangular matrix. Now Q* detA = 38. Replacing e, with ejx if necessary, 
we may assume that the diagonal elements an are all positive and so an = 1 or 
3. It follows from the remarks above that a\\ — a^i = 3. Suppose that 033 = 1, 
then e3 = €63 for some units e of K and e of K\. If a is a generator of G\ then 

^3(l-a) = ^(1-*) 

again contradicting the above remarks. Hence a^ = 3, so 33 divides det A and 
the lemma follows. 

The class number of a cyclic cubic field is relatively prime to 3 if, and only 
if, the conductor of the field has exactly one prime divisor. An analogous result 
is obtained for bicubic fields. When the conductor/ of K has exactly two prime 
divisors, set / = pq where p ^ 3 is prime and either q ^ p is a prime of q = 9. 

THEOREM 9. 77z£ abelian bicubic field K has class number relatively prime 
to 3 if, and only if, f — pq (as above) has exactly two prime divisors such that 
not both p and q are cubic residues of one another. 

Proof. By Hasse [3, p. 98] the number of ambiguous classes for K/Ki is 
given by 

where d is the number of primes of Kj which ramify in K and 3q* — (N((3) : Uf) 
where N((3) denotes the subgroup of the unit group Ut of Ki consisting of norms 
of elements of K. Note that q* must be 0, 1 or 2. Now (3,/z) = 1 if, and only 
if, (3,aK/Ki) = 1 for some / = 1,2,3,4. Assume that the conductor of K has 
exactly two prime divisors and let /?, q be as above. We may choose K\ and K2 
so that K\ has conductor p and K2 has conductor q. If q is not a cubic residue 
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modulo p then q (or 3 when q — 9) stays prime in K\ and so q (or 3) is the 
only prime divisor of K\ which ramifies in K. Thus 

d = 1 and CIK/KX = ?>q ~2h\. 

But 3 | h\ and g* ^ 2, so g* = 2. Hence 3 f tf*-/*-,, so (3,/z) = 1. A similar 
argument can be given when /? is not a cubic residue modulo q. 

Conversely, assume (3, h) = 1. If 9|/i/ for some /, then class field theory shows 
that 3\h. Thus for each / = 1, 2, 3,4 the conductor of Kt has at most two prime 
divisors. Since any prime divisor of the conductor of K, divides the conductors 
of exactly 3 of the subfields K{, it follows that the conductor of K can have at 
most two prime divisors, and so has exactly two prime divisors. Let p and q be 
as above, but suppose that both are cubic residues of one another. Then p splits 
into three distinct prime divisors in K2 and q (or 3) splits into 3 distinct prime 
divisors in K\. Thus d — 3 for each of the extensions K/K\ and K/K2, hence 

ciK/Ki = 3q'hi, 

so q\ — q\ — 0. Now 9 \ h i , for any /, while h\, h2 are relatively prime to 3 and 
/*3, /*4 are divisible by 3, so Proposition 7 shows Q* = 3 3 . If A is the matrix 
described in the proof of Lemma 8, then det A = 3 5 . Hence the diagonal entry 
an — 1 for some / ^ 6. For such an /, 

e{ = c 1
, e 2 - ...etLlei 

where ei is a unit of K and 0 ^ h] ^ 2. In the proof of Lemma 8, it was shown 
that the right hand side of the equation must contain units from at least two 
fields Kj. Thus bk ^ 0 for some k with 1 ^ k ^ 4. Now e^ G Kj for j — 1 or 2 
and 

NK/Kj(ei) = e2/_xe2j, 

but k = 2j — I or 2/', and so qj ^ 1, contradicting q* = 0. Thus not both p and 
q can be cubic residues of one another. 

COROLLARY 1. There are infinitely many fields K with class number not di­
visible by 3 and for each of these fields Q* = 27. 

COROLLARY 2. If p and q are distinct primes congruent to 1 modulo 3 or 
q = 9 and not both p and q are cubic residues of one another, then any cyclic 
cubic field Kj of conductor pq has class number ht = 3(mod9). 

Proof. Let K be the bicubic abelian field with conductor pq. It follows from 
Theorem 9 that /z, ^ 0(mod9). Suppose hi = 3/z', then h' is the order of the 
3-complement of the ideal class group of Kj. Call this group H' and decompose 
it into orbits under the action of the Galois group G(Ki/Q). Each orbit, except 
the identity, has length 3 so h! = l (mod3). Hence hj = 3(mod9). 

https://doi.org/10.4153/CJM-1990-025-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-025-8


BICYCLIC BICUBIC FIELDS 499 

COROLLARY 3. If p and q are distinct primes congruent to 1 modulo 3 or 

q = 9 and both p and q are cubic residues of one another, then any cyclic cubic 

field K[ with conductor pq has class number hj = 0(mod9). 

Proof Let K be the bicubic abelian field with conductor pq. By Theorem 9, 
the class number h of K is divisible by 3. Hence 3 divides a^/Ki — 3d+q*~3ht, 
but d = 0 and q* ^ 2. Thus 9\ht. 

5. The unit index. In this section we study the unit index (U : V). According 
to Hasse [2] we may choose the fundamental units e2/-i and C2, of Ki to be 
conjugates. The following lemma provides a basis for the study of the unit 
index. 

LEMMA 10. For each i — 1,2,3,4, there exists a cube free positive integer 
bj and an integer Bi of Ki with 

É2i- l4 = bi/Bf and NK,/Q(Bi) = bi. 

Moreover, b{ ̂  1, bj is uniquely determined and bi\f2. 

Proof Let G(Ki/Q) = (a), where a is chosen so that É2, = ^ / - r ^ v Hilbert's 
Theorem 90, there exists an integer B of Ki with C2i—I = Bla. Since B is unique 
up to rational multiples, we may assume it is divisible by no rational prime and 
that it has positive norm. Since (B) = (Ba) as ideals of Kj, it follows that 
only ramified primes of Ki can divide B. Since no rational primes can divide 
B, the ramified primes can only divide B to the first or second power. Hence 
bi — NKI/Q(B) is a cube free positive divisor off2. Now 62/ = e^-i ~ Baa s o 

that 

e a - i ^ 1 = Bl-2a+a2 =Bl+a+a2/B3a = bi/B3a. 

Set Bi = <q}B\ then 

e2l-le
2
l=bl/(e2l

lB(J)3 = bl/Bf. 

Suppose now that 

C2i-l4- = ^ M 3 

where a is a positive cube free integer and A is an element of Kj. Then 

(A/Bi)3 = (*/*>,-), 

so a/ft/ must be a rational cube. Since both a and ft, are positive cube free 
integers, a/ft/ = 1 and so a = ft/. 

Since e2/-i and €2/ form a fundamental system of units of Kj, it follows that 
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LEMMA 11. The unit index (U : V) is a divisor of33. 

Proof. Lemma 8 shows that (U : V) divides 3 5 . If the index is 35 then by 
examining the matrix A described in the proof of Lemma 8, it is seen that the 
equation 

e3 = e?e&e 4 

has a solution e in K with 0 ^ a1 b1 c ^ 2. The proof of Lemma 8 shows that 
not both a and b can be zero. However, 

e — el e2 

and 

<?3(1-ai) = ec
3
+leïc+2 where G(K/Kj) = (<j/) for / = 1, 2. 

It follows that a = 2b and c = 2(mod3). Hence 

e\ = {exe\)a(e\t4) 

has a solution e\ in K with a = 1 or 2. Lemma 10 shows that x3 = bc[b\ has 
a solution x in K, so /?^2 m u s t ^> e a c u ^ e °f a rational integer. Thus the prime 
divisors of b\ and b2 must be identical. Suppose p is any prime divisor of b\, 
then p\f\. Since /? divides exactly three of the conductors f\, f2, fo and/4, we 
may number the fields so that p ~\f2. Thus p\b2 and so the above equation has 
no solution. Hence (U : V) divides 3 4 . 

Suppose now (U : V) = 3 4 , then the matrix A of Lemma 8 shows that 

e — 6je2e3e4e5 

has a solution e m K with 0 ^ a, /?, c, d ^ 2. The proof of Lemma 8 shows that 
at least one of a or b and at least one of c or d is nonzero. Now 

3(l—cri) _ c+d -c+2d - 1 

^ — e3 e4 e5e6 

and 

. 3 (1 - t r 2 ) _ a+b-a+lbl. 
e ~ e l e 2 e5 f c6-

Since e^e^' and e ^ cannot be cubes in K, 

a + / ? ^ 0 ^ c + d(mod3). 

The argument given above shows that b\, £3 and /?2, £3 have identical sets of 
prime divisors, so b\ and b2 have the same prime divisors. This contradicts the 
way K\ and K2 were chosen above. Thus (U : V) is a divisor of 27. 
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Let W denote the units e of K such that e G V or 

/ i \ 3 a\ 2a\ a^ 2a~> a->, 2a^ UA 2a± 

(1) e =e{
]e2 'e3~e4 -e5

3e6 V e 8 

where a\, <?2> #3, a^ are any integers. 

LEMMA 12. If e e U then ex~T G W for any r G G(K/Q). 

Proof Suppose e — ea
{
] . . . ef then 

3(1-r) _ tfi(l-r) £a&(\-T) 
e~y ' — e , . . . e 8 

For each / = 1,2, 3,4 the terms (^2/—le2/')I—r w ^ ^ e o n e °f 

1 ,«2/-l+«2/- -a2i-\+2a2i _ r 2tf2 /_i-tf2i,«2i-l+«2i 
[ ' e 2 / - l e 2/ U r e 2 / - l e 2/ 

Thus f ' - T G ^ 

THEOREM 13. VK /s o subgroup of U and (W :V) = 3 4 ~ r VV/Z^T r is the rank 

of the n x 4 matrix M = (rrijj) over Z3 where 

°i — P\ Pi '—Pn 

for i — 1, 2, 3,4. / /ere / ? i , . . . ,/?„ denote the distinct prime divisors of the con­
ductor f of K. Moreover, either 

{U :V) = (W : V)=\,3or9 or (U : V) = 3(W : V) = 27. 

Proof Clearly, W is a subgroup of (7. It follows from Lemma 10 that (1) has 
a solution for a\, ci2, 03, a$ if and only if b\x ba

2
2ba^b^4 is the cube of a rational 

number. But this is equivalent to 

m\\a\ +mna2 + #21303 +^14^4 = 0(mod3) 

mn\a\ + mn2^2 + ^ 3 0 3 + ̂ 4 ^ 4 = 0(mod 3). 

The number independent solutions is the dimension of the null space of M over 
Z3. This is 4 - r. Hence (W : V) = 34~r. 

Let /?i be a prime divisor of b\, then /?i divides f. Since any prime divides 
none or exactly 3 of/1, /2, /3 and/4, we may assume p\ does not divide^- Let 
P2 be a prime divisor of /?2- Then the upper left hand corner of M is the 2 x 2 

matrix where m\\m22 ^ 0(mod3). Thus the rank of M is at least 2. 
[m2\ m22] 

Hence (W : V) = 3 4 ~ r divides 9. 
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Next it will be shown that (U : V) divides 3(W : V). First assume that 
(U ; V) = 27 then the matrix A of Lemma 8 shows that the equation 

(2) e3=ea^e^efe^efe6 

has a solution e in K with 0 ^ «/ ^ 2. Assume that e ^ W and note that 

3(1—cri) <73+«4 —tf3+2tf4 a.s + 1 —as+2 

and 

3(1—ai) a\+ai —a\+2ai 2a^ — \ as + \ 
e — t{ e2 t5 e6 . 

Since e ^ W, we may assume that a$ ^ 2(mod 3) so that a$ +1 ^ 0(mod 3). Thus 
both ^1-CTl and é>1-a2 are in W and must be independent. Hence (W : V) = 9. 
Suppose now that e G W\ then 3 divides (W : V). Since (£/ : K) = 33, the 
equation 

(3) ex — e{ e2 e3 e4 e5 e6 e7 

has a solution in K for some Q with 0 ^ c, ^ 2. Now 

3(1-0-]) _ ci+c4 -C3+2c4 C5+c6 —c-6 +2r6 - 1 
^1 - e 3 e 4 e 5 É6 e 7 e 8 • 

Thus not both of C3 + Q and 65 + c^ can be congruent to 0 modulo 3, so e\l~a]) 

is in W. Now ^ and e\l~a]) are independent elements of W so (W : V) = 9. 
Assume now that (U : V) = 9 then either equation (2) or equation (3) has a 

solution in K and as above (W : V) is divisible by 3. 
Finally, we show (U : V) = (W : V) when (W : V) = 1 or 3. First assume 

that (W : V) = 1. Suppose there exists a n ^ G t / with <? ^ W. Then 

e3 = ec[x . . . eg8 with a2l-\ ^ 2#2/(niod3) for some / = 1, 2, 3, or 4. 

Let 7 ̂  / be 1, 2, 3 or 4 and let a be a nonidentity element of G(K/Kj) then the 
expression for <?3(I~CT) involves either the terms 

a2i-i+a2i -a2i~i+2a2i _ r ,2a2/-i -«21 ,fl2/-i+«2/ 
e 2 / - l e2/ U r e 2 / - l e 2/ 

Thus e(l~a) e W, but not in V, contradicting the hypothesis that (W : V) = 1. 
Thus £/ = W and so (U :V)= 1. 

Now assume that (W : V) = 3. Then there is exactly one unit and its square 
(where exponents are reduced (mod 3)), of the form eo = ê 1 . . . e(

8
8 where 

Cj = 0, 1 or 2 are not all zero and C2/-1 = 2c2/(mod3), such that eo is the cube 
of another unit of U. Suppose that (U : W) > 1. Then there exists e G U with 
e jÉ W and e3 — t\x .. .ef where each a, = 0, 1 or 2 and a2j-\ ^ 2a2y(mod3) 
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for some j = 1,2, 3 or 4. In the proof of Lemma 8, it was shown that c, ^ 0 
for units e, from at least two fields Kt. Choose t ^ j such that cit ^ 0(mod3). 
Let a be a generator of G(K/Kt), then by Lemma 12, el~a G W. However, 
the expression for e3{X~a) does not involve either 62,-1 or 62,, so e3{l~a) ^ eo 
or £Q. This implies that (W : V) > 3, a contradiction. Thus (U : W) = \ and 
(£/ : V) = (W : V7) = 3. 

COROLLARY. Iff has exactly Wo distinct prime divisors then (W : V) = 9 
and iff has exactly three prime divisors then (W : V) = 3 or 9. 

Proof. I f / has exactly two distinct prime divisors then M is a 2 x 4 matrix 
and so has rank at most 2. But it was shown in the proof of Theorem 13 that M 
always has rank at least 2, so r = 2 and (W : V) — 9. If/ has exactly 3 prime 
divisors then M is a 3 x 4 matrix so has rank 2 or 3. Thus (W : V) = 3 or 9. 

6. Computation of (W : V). The value of (W : V) can be determined if the 
values of b\, b^, b^ and b$ of Lemma 10 are known. In this section we give 
a method for computing these /?,'s. To simplify notation we let e = 62/—1 for 
/ = 1, 2, 3, or 4 and e' — C2,, e" denote the conjugates of e. Using the notation 
of Lemma 10, G(Kj/Q) = (a) and e' = e\ o" = ea\ 

LEMMA 14. Not both of (3 = 1 + e + eef and 7 = 1 + e + ee" can be zero. If 

(3 ̂  0 then e = ^~G and if 1 ^ 0 then e = l 1 ^ 2 . 

Proof. Since (3 - 7 = e(e' - e") and e' ^ e", it follows that (3 ^ 7 and so at 
least one is nonzero. Note that 

e(3a = e(l + e' + e'e") = e + ee' + 1 = (3 

so 6 = (3l~a when /3 ̂  0, similarly, e = 71~cj2 when 7 ^ 0 . 

LEMMA 15. Let S(e) = s and S(e~l) = t where S denotes the trace of K;/Q. 
Then f3l" — s + t + 3. Hence one of f3 or 7 is zero if, and only if, s +1 + 3 = 0. 

Proof. 

/?7" = ( l + e + ee ' ) ( l+e" + e'e") 

= 3 + e + e + e + ee + ee + ee 

= 3 + S(e) + S(e~1) 

= 3 + s + /. 

LEMMA 16. 

#(/?) = 6 + 3 5 ( E ) + 3S(e_1) + ̂ e e ' " 1 ) A/K/ 

A/(7) = 6 + 35(e) + 3S(e~1) + S(e_1e') 
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where N denotes the norm of Kj/Q. 

Proof. By direct computation 

N(P) = 0f5" = (1 + 6 + ee')(l +ef + e'e")(l + e" + ee") 

- 6 + 3(6 + e' + e") + 3(ec' + e'e" + ee) + (ee/2 + eY'2 + e2e") 

= 6 + 3S(e) + 3S(e~1) + S ( e e / 1 ) 

= 6 + 3.s+3r + 5(É6/_1) 

since ee/2 = eV'"1 and S(efe"~l) = 5(ee / _1). A similar computation gives the 
expression for /V(7). 

LEMMA 17. 

5(ee / _1) + SCe-'c7) = st - 3 W 5(ee / _1) • S(e - 1e') = 9 + s3 + f3 - 6tf. 

P/YW/. Since s • e - 1 = U f - ' c ' + c - V , 

sf = sS(e~l) = 5Cve_1) = 3 + 5(e~ ,e /) + 5(ee /~1). 

Also 

S(e_1e') • S(ee~~l) = 3 + S(e3) + S(e"3) 

= 3 + sS(e2) - rS(e) + 3 + tS(e~2) - ^ ( e _ 1 ) + 3 

= 9 + Atv2 - 2r) - st + t(t2 - 2s) - st 

= 9 + s3 + r3 - 6rt. 

LEMMA 18. 

S(e~]e') = (st-3-D)/2 and 5(ee/_1) = (st-3 + D)/2 

where D2 = 18.vr — 4v3 — 4r3 + s2f2 — 27. (77zé> s/#fl <?/D /s Airtf specified.) 

Proof. Set vt> = 5(e - 1e ' ) and v = SCee'"1). By Lemma 17, 

H' + v = st - 3 and wv = 9 + s3 + r3 — 6sr. 

Hence w and v are roots of the quadratic equation y2 + (3 —.vf)y + 9 + .v3 + f3 —6st. 
The roots are 

\/2(st-3±D) 
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where 

D2 = (3 - stf - 4(9 + s3 + t 3 - 6st) 

= 18tf - 4s3 - 4t3 + s2t2 - 27. 

Note that D is the discriminant of f(x) = x3 — sx2 + tx — 1, which has e as a 
root. Thus D is a perfect square. 

PROPOSITION 19. 

N(P) = 6 + 3s + 3r + 1 /2(tf - 3 + D) W 

TV (7) = 6 + 3s + 3r + 1 /2(st -3-D) 

for some choice of the sign of D. Moreover, 

N(P)N(l) = (s + t + 3)3. 

Proof. Lemmas 16 and 18 give the values of N({5) and /V(7). It follows from 
Lemma 15 that 

N((3)N(l) = N((3)N(j") 

= N(J3Y) = N(s + t + 3) = (s + t + 3)3. 

PROPOSITION 20. Let b = b\ of Lemma 10. Iff3^ 0 then b is the cube free 
positive kernel of N(J3). Ifl^O then b is the cube free kernel of N(l2). 

Proof If (5 ± 0 then /J1"" = e and so 

,2 W(/3) . ( a \ 3 

where bo is the positive cube free kernel of N(/3). The uniqueness of Lemma 
10 shows that b = b^. 

If 7 ^ 0 then 71 "'^ = e and so 

W(7) \N(1)J 

The uniqueness of Lemma 10 shows that /? is the cube free kernel of /V(72). 

7. Four examples. In the Corollary to Theorem 13, it was shown that (W : 
V) = 9 w h e n / has exactly two prime divisors. From Theorem 13, one would 
generally expect (W : V) = 3 w h e n / has 3 prime divisors and (W : V) = 1 
w h e n / has 4 or more prime divisors. While it appears to be almost certain that 
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this index assumes each of the values 1 and 3 infinitely often, we have not been 
able to prove this. Four examples are described below. In two of these / has 
three prime divisors, but (W : V) = 9 for the first and (W : V) — 3 for the 
second. In the final two examples / has 4 prime divisors, but the unit index is 
3 in one and 1 in the other. 

Example 1. 

/ = 9709 = 7- 19-73 

f I T * i IQ - 1 0 + 4 ( 3 ^ 3 ) 2 

/ , = 133 = 7- 19, a i = ,b\ = 7 

f < u 7 7 ^ 37 + 5 ( 3 y ^ 3 ) 2 

/2 = 511 = 7 • 73, a 2 = , tf2 = 7 

/ 3 = 1387= 1 9 - 7 3 , a 3 = — — ^ 3\b3 = 1 9 2 - 7 3 2 

197 + 3 V - 3 
/ 4 = 9709 = 7- 1 9 - 7 3 , a 4 = — A = 7- 19-73 

f 2 2 0 1 \ 
M = I 0 0 2 1 J has rank 2, so (W : V) = 9. 

VO 0 2 1 / 

Example 2. 

/ = 819 = 9 - 7 - 13 

/ i - 9 , a 1 = ~ 3 +
o

3 v / ~ ^ , / 7 1 = 3 

- 1 6 + 2 ( 3 V - 3 ) 
/ 2 = 91 = 7 • 13, a 2 = ^ ^,/?2 = 13 

/ 3 = 819 = 9 - 7 - 13, a 3 = 3 + 1 1 ( 3 A / 3 ) ^ 3 = 7
2 - 132 

/• Qio o 7 n 5 1 + 5 ( 3 y ^ ) 2 2 

/4 = 819 = 9 • 7 • 13, OL\ — ,/?4 = 3 - 7 

f l 0 0 2A 
M = o 0 2 2 has rank 3, so (W :V) = 3. 

V0 1 2 o i 

Example 3. 

/ = 15561 = 9 - 7 - 1 3 - 1 9 

- 5 7 + 3 v / Z 3 9 9 

/ i = 8 1 9 = 9 - 7 - 13, «i = — ,bx = 3 - 7 2 - 132 
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f2 = 1197 = 9 - 7 - 1 9 ? a 2 ^ - 6 6 + 4 ; V " 3 ) ^ 2 - 3 2 . 1 9 2 

/ 3 - 1729 = 7 - 1 3 - 19,a 3 = 2 9 + 1 . 3 \ b 3 = 72 - 13 • 192 

87 + 7 ( 3 V - 3 ) 
/ 4 = 2223 = 9- 13- 19, a 4 = — ~ A = 3 • IS 

/ 1 2 0 1 \ 

M = 2 0 2 0 h a s m n k 3^ s o ( W / . y ) = 3 

\ 0 2 2 1 / 

Example 4. 

/ = 15561 = 9 - 7 - 13- 19 

f «io o 7 11 24+10(3y^3) 
/ i = 819 = 9 • 7 • 13, a:i = ,/?i = 7 - 1 3 

69 + 3 V - 3 
h = 1197 = 9 • 7 • 19, a2 = V , /?2 = 3 • 72 • 192 

83 + 3 v
/ Z 3 7 7 

/ 3 = 1729 = 7- 13- 19, or3 = - ^ — , / ? 3 = 7 2 - 13- 192 

3 3 + 1 7 ( 3 V - 3 ) 9 

/ 4 = 2223 = 9- 13- 19,<*4 = ~ - ^ -,ib4 = 3 • 132 • 19 

' 0 1 0 1 

M = J l 2 2 0 J has rank 4, so (W : V) = 1. 

, 0 2 2 1 
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