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1. Introduction. The concept of an s-ply transitive (1 < 5 < n) permuta­
tion group on n symbols is of considerable importance in the classical theory of 
finite permutation groups, which was in the height of its development in the 
period around the turn of the century. The obvious generalization to a permu­
tation group which is s set-transitive (i.e., a group which, for each pair of 
5-element unordered subsets 5, T of the given n symbols, contains a permuta­
tion which carries S into T) seems to have received little attention. A dis­
cussion (8, p. 257) of the symmetry of an arbitrary ^-person game leads in a 
natural way to the notion of a set-transitive permutation group (i.e., a group 
which is ^ set-transitive for all s) on the n players of the game. In the preface 
to (8), credit is given to C. Chevalley for solving the problem of determining 
all set-transitive groups. Since, to our knowledge, nothing has appeared in the 
literature on this problem, we believe that a complete and relatively simple 
solution is of interest. 

In §2, the definitions are given, and the alternating and symmetric groups 
An and Sn, along with the trivial cases for n < 3, are considered. The properties 
of ^ set-transitive groups which are used for their enumeration are derived in 
§3, the principal results being contained in Theorems 5 and 6, which state that 
these groups are transitive and primitive. In this connection, a recent paper by 
Bays (1), relating a concept of primitivity for ordered pairs to the degree of 
transitivity of a permutation group, is of interest. In §4, a theorem on the 
distribution of prime numbers (2), is used to eliminate the possibility of set-
transitive groups for n > 82. Various special results in (5) and (7) are used to 
obtain Theorem 10, which states that set-transitive groups, other than An 

and Sn, are possible only for n = 5, 6, and 9. Finally, in §5, all of the set-
transitive groups of degree 5, 6, and 9 are determined. The results of this 
section are given in Theorem 11. 

2. Definitions. We begin with a formal statement of the principal defini­
tions and their immediate consequences. Since every permutation on n symbols 
sends the complete set of n symbols into itself, we exclude this trivial case from 
the following definition. Thus the case n = 1 is excluded. Further, the identity 
group I onn symbols can clearly be omitted from consideration, so that in the 
sequel, by a group @, we will mean a permutation group © ^ / on the set N 
of n > 2 symbols, N = [1, 2, . . . , n]. 

DEFINITION 1. A group © is s set-transitive (1 < s < n — 1) if for every 
pair of subsets S, T of N = [1, 2, . . . , n], each containing 5 elements, there 
exists a permutation in © which carries 5 into T. 
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It should be noticed that according to this definition, "1 set-transitive" and 
"transitive" mean the same thing. We have the following immediate conse­
quences of Definition 1 : 

(i) If the group © contains an s set-transitive subgroup § , then © is s 
set-transitive. 

(ii) If the group © is &-ply transitive, then © is s set-transitive for all s < k. 
(iii) If the group © contains permutations which carry the set 5 = [1,2, 

. . . , s] into any other set T containing s elements, then © is 5 set-transitive. 
With N= [1,2,3,4,5,6,7], the group © = {(1234567), (235)(476)}, is an 

example of a group which is 2 set-transitive but not doubly transitive. © is 
not 3 or 4 set-transitive. 

DEFINITION 2. A group © is set-transitive if © is 5 set-transitive for all 
5 (1 < 5 < n — 1). 

Since the alternating group An (n > 3) is {n — 2)-ply transitive and since 
A 2 is intransitive, we have 

THEOREM 1. The alternating group An is set-transitive except for n = 2. The 
symmetric group Sn is set-transitive. 

Proof. For n > 3, we have by (ii) that An is 5 set-transitive for all 5 < n — 2. 
Since, in particular, An is transitive, An contains a permutation which sends n 
into any other symbol j . Therefore An contains a permutation which sends 
S = [1, 2, . . . , n — 1] into any other n — 1 element set T. By (iii), An is 
n — 1 set-transitive, and hence set-transitive. Since Sn is ^-ply transitive for 
all n, Sn is set-transitive. 

It follows from the theorem that, in the determination of all set-transitive 
groups, we need only consider those groups © ^ / which do not contain the 
alternating group. For n = 2, there are none. For n — 3, the only such groups 
are the three cyclic groups {(12)}, {(13)}, and {(23)} which are not 1 or 2 
set-transitive. Having disposed of these trivial cases, we will henceforth 
assume that n > 4. 

3. Properties of 5 set-transitive groups. In this section we derive properties 
of 5 set-transitive groups which are needed for their enumeration. The prin­
cipal result is that an 5 set-transitive group is primitive if 5 > 1. 

THEOREM 2. A group ®, which is the conjugate in Sn of an s set-transitive 
group $Q, is s set-transitive. 

Proof. Let <r be a permutation in Sn such that © = a § a"1. Let 5 = [1, 
2, . . . , s], and / = [71,72, • • -js] be an arbitrary s-element subset. Define the 
set / = [iu ii* • • • y is] by or"1 S = J, and the set K = [ku k2, . . . , ks] by 
(f~l J = K. Since § is s set-transitive, there exists a permutation r g § such 
that TI = K. Then 

(TTcf1 Ç © , o-rcr-1 S = (TTI = aK = / . 
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THEOREM 3. If the group © is s set-transitive, then © is n — s set-transitive. 

Proof. Let S = [1, 2, . . . , n - s], C(S) = [n - s + l,n - s + 2, . . . ,n]. 
Let J = [ji,J2, . . . jjn-s] be an arbitrary (n — ̂ -element subset, and 
C(J) = [ii, H, . . . , is] be the complement of / in N. There exists a permu­
tation a Ç © such that <rC(S) = C(I), so that a(S) = / . 

THEOREM 4. If the group © is s set-transitive, then the order of © is m 

where m is the order of the subgroup ®\of © consisting of those permutations which 
carry the subset S = [1, 2, . . . , s] into itself. 

Proof. It is clear that the subset ©i of © consisting of those permutations 

which carry 5 = [1, 2, . . . , s] into itself is a subgroup. Since there are t = 

distinct ^-element subsets of N, denote them by I\ = 5, Ii, . . . , It, and 

denote by o-i, o-2, . . . at a set of permutations in © such that <rk Ii = Ik, for 

k = 1 , 2 , . . . , / . Then o-i, o-2, . . . , cr̂  form a complete set of representatives 

of © modulo ®i, so that the order of © is mt, where m is the order of ®i, and 

COROLLARY, ijf the group © is set-transitive, then the order of © is divisible by 
the least common multiple of the binomial coefficients 

(").© (»:,)• 
The 2 set-transitive group © = {(1234567), (235) (476)} of degree 7 has 

order 21. Since f ~J = 21, © has minimum order for a 2 set-transitive group 

of this degree. Since 

© cannot be 3 or 4 set-transitive. 

THEOREM 5. If the group © is s set-transitive for at least one s, then © is 
transitive. 

Proof. Assume that © is intransitive and let L C N be the smallest tran­
sitivity set of ®. Then L has / elements where / < \n, and we may assume by 
Theorem 3 that / < s. Since I < s < n — 1, there exists an s-element subset S 
of N such that L C 5 and such that C(S), the complement of 5 in N, contains 
an element not in L. By removing an element of L from 5 and replacing it by 
an element from C(S), we can construct an ^-element subset T such that 
L (JH T. Since ® is s set-transitive, there exists a permutation a Ç ® such that 
aS = T. Since I is a transitivity set of ©, <rL = L, and since L C 5 , 

( : • 

0 
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aL = L C aS = T. But this contradicts the choice of Ty proving that ® 
must be transitive. 

THEOREM 6. If the group © is s set-transitive for at least one s > 1, then © is 

Proof. By Theorem 3, we may suppose that 5 < \n. © is transitive by 
Theorem 5, and assume that © is imprimitive. Then the set N = [ 1 , 2 , . . . , » ] 
can be partitioned into r > 2 subsets iV*, each containing / > 2 elements, such 
that every permutation in © carries each Ni into some Nj. 

Il s < /, there is an s-element subset 5 which is a subset of Ni. Since s > 1, 
there is an s-element subset T which contains elements from both Ni and iV2. 
But since © is s set-transitive, there exists a permutation in © which carries 
S into T and this contradicts the assumption that @ is imprimitive. 

If I < s, then since s < \n, we have I <\n and r > 3. Then there is an 
s-element subset S which contains elements only from the sets of imprimitivity, 
Ni, N2, • . • , Nk where 1 < k < \(r + 1), such that 5 contains Nh N2, . . . , 
7Vfc_i. Since r > 3, r — k > J(r — 1) > 1, and the r — k sets of imprimitivity, 
Nk+i, . . . , iVr, are disjoint from those from which S was constructed. 
Therefore there is an s-element subset T, constructed by replacing one of the 
elements of iVi by an element from Nk+i, which contains elements from k + 1 
different sets of imprimitivity. Again, the existence of a permutation in © 
which carries 5 into T contradicts the assumption that © is imprimitive. 

In the next section, we use a classical result (3, p. 199) due to Jordan and 
Netto, which connects primitivity with the degree of transitivity of ©, to show 
that set-transitive groups are rare exceptions. 

4. Determination of the values of n for which set-transitive groups may exist. 

THEOREM 7. If the group © is s set-transitive (s > 1), and if there exists a 

prime p such that \n < p < n and such that p divides f j , then & is (n — p+1)-

ply transitive. 

Proof. Since the order of © is mi J by Theorem 4, if a prime p divides 

© contains an element of order p. The elements of order p in ©, when written 
as a product of cycles on disjoint letters, are products of cycles of length p. 
Since p > \n, the elements of order p in © are cycles of length p. Such a cycle 
generates a cyclic subgroup § of © which is of degree p. Thus § is primitive 
and leaves n — p letters unchanged. Since © is primitive by Theorem 6, we 
obtain the conclusion of the theorem by employing the result mentioned above 
(3, p. 199) which states that if a primitive group © contains a primitive sub­
group of degree m which leaves the remaining n — m letters unchanged, then 
© is (n — m + l)-ply transitive. 

COROLLARY 1. If the group © is s set-transitive (s > 1), and if there exists a 
prime p such that max (s,n — s) < p < w, then © is (n — p + l)-ply transitive. 

( : ) • 
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Proof. If p > max (s, n — s), then p > \n and p divides 

(n\ n\ 
\s/ ~ s\ (n-s)l' 

so that the hypotheses of the theorem are satisfied. 
In the determination of set-transitive groups, the critical value of s is 

s = [i^L where as usual this symbol denotes the greatest integer in \n. 

COROLLARY 2. If the group © is [%n] set-transitive, and if there exists a prime 
p such that \{n + 1) < P < n, then © is (n — p + I)-ply transitive. 

Proof. For p > \{n + 1) > \\{n + 1)] = max {[\n\, n - [in]), and the 
hypotheses of Corollary 1 are satisfied for 5 = [\n]. 

We now make use of various known limits of transitivity to eliminate the 
possibility of the existence of [\n] set-transitive, and therefore set-transitive, 
groups. The principal criterion is given in the following theorem. 

THEOREM 8. / / there exists a prime p such that \{n + 1) < p < \n, then a 
group © on n symbols, which does not contain the alternating group An, cannot be 
[%n] set-transitive. 

Proof. Assume that © is [%n] set-transitive. Then if a prime p exists in the 
given range, © is (n — p + l)-ply transitive by Corollary 2, Theorem 7. But 
since ^n + 1 = n — f w + 1 < n — p + 1, and since \n + 1 is an upper limit 
for the degree of transitivity (3, p. 152) for a group © not containing An, we 
have a contradiction. 

There are many refinements of Bertrand's postulate which states that a 
prime exists in the range between x and 2x. One such result which is con­
venient for our purposes is due to Breusch (2). He shows that for x > 48, 
there always exists a prime between x and 9x/8. For n > 82, x = \(n + 14) 
> 48, and there exists a prime between \(n + 14) and 9(« + 14)/16. Since 
\{n + 1) < \{n + 14), and 9(w + 14)/16 < \n for n > 82, there exists a 
prime in the range given in the hypothesis of Theorem 8. By examining a 
table of primes, we find a prime strictly between \{n + 1) and \n for all 
n > 26, and we have 

THEOREM 9. A group © on n > 26 symbols, which does not contain the 
alternating group An, cannot be [\n] set-transitive, and therefore is not set-
transitive. 

For n < 26, a table of primes shows that a prime lies in the required range 
for n = 8, 11, 12 and for all n such that 17 < w < 24. Since the cases for 
n < 4 have been previously discussed, we have only the cases 

n = 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 25 

to investigate. For these cases we first employ a better result on the limit of 
transitivity due to Miller (7, vol. I l l , p. 439) which states that if n = kp + r, 
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where p is a prime greater than the positive integer k and where r > k, then a 
group © on 7z symbols, not containing the alternating group An, cannot be 
more than r-ply transitive, unless k = 1 and r = 2. As an example, with 
n = 25, we obtain from Corollary 2, Theorem 7 with p = 17, that if © is 12 
set-transitive, then © is 9-ply transitive. But 25 = 1-19 + 6 with k = 1, 
£ = 19, and r = 6, so that © cannot be more than 6-ply transitive. Therefore 
there are no groups on n = 25 symbols, other than ^425 and 525, which are 
[\n\ = 12 set-transitive. In this way, the cases n = 10, 14, 15, 16, and 25 are 
eliminated. 

Miller has proved (7, vol. I, p. 200) that a transitive group of degree 13, 
which does not contain the alternating group A13, is at most doubly transitive. 
By Corollary 2, Theorem 7 with p = 11, we have that if © is [\n] = 6 set-
transitive, then © is triply transitive. Similarly, for n = 7, a transitive group 
not containing A7 is at most doubly transitive (5, p. 186; 6, p. 338; 7, vol. I, 
pp. 1-9), while Corollary 2, Theorem 7, with p = 5, gives that if © is [\n] = 3 
set-transitive, then © is triply transitive. 

A 2 set-transitive group © on n = 4 symbols has an order divisible by 

= 6 by Theorem 4. The only such transitive groups are A4 and 54 (6, 

p. 338; 7, vol. I, pp. 1-9). The cases n = 2 and 3 were eliminated in §1. 
We summarize the above results in the following theorem. 

THEOREM 10. A group © on n symbols, which does not contain the alternating 
group Ani cannot be [\n] set-transitive, and therefore is not set-transitive, with the 
exceptions of n — 5, 6, and 9. 

5. Determination of the set-transitive groups for n — 5, 6, and 9. In the 
following determination of set-transitive groups, we use the table of transitive 
groups on n < 9 symbols given by Cole in (6). Although this list has two 
omissions for n = 8, it has been verified by Miller (7, vol. I, pp. 1-9, 12-14) 
and others for n = 5, 6, and 9. 

If a group © on 5 symbols is 2 set-transitive, then by Theorem 4 the order of 

© is divisible by f 9 J = 10. Thus the only possibilities for a 2 set-transitive 

group, other than A$ or 55, are the transitive groups: 

Gi = {(12345), (1325)}, order 20, 

Hi = {(12345), (12)(35)}, order 10, 

and their conjugate subgroups in 55. Since G\ is doubly transitive, it is 2 set-
transitive, and therefore 3 set-transitive by Theorem 3. Since G\ is transitive, 
it is 4 set-transitive by this same theorem. Thus G\ and its conjugate sub­
groups in 5Ô (Theorem 2) are set-transitive. If H\ were 2 set-transitive, then 
the order of Hi would be 10m, where m is the order of the subgroup of Hi which 
carries the set [1,2] into itself. Thus m = 1, and the identity is the only 

(t) 
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element of Hi which carries [1,2] into itself. But (12) (35) Ç Hi carries [1,2] 
into itself. Therefore Hi is not 2 set-transitive. 

By Theorem 4, if a group © on 6 symbols is 3 set-transitive, then the order 

of © is ml 1 = 20m, where m is the order of the subgroup of © which sends 

the set [1,2,3] into itself. The only possibilities for a 3 set-transitive group, 
other than AQ or 56, are the transitive groups: 

G2 = {(12345), (12) (35), (13465), (1325)}, order 120, 
H2 = {(12345),(12)(35),(13465)}, order 60, 

and their conjugate subgroups in SQ. Since G2 is triply transitive, it is both 3 
and 2 set-transitive, and by Theorem 3, G2 is set-transitive, as are its con­
jugates in 56. If H2 were 3 set-transitive, then the order of the subgroup of H2 

which carries the set [1,2,3] into itself would be 3. However, the permutations 

(1),(13)(45),(123)(465),(23)(56) 

in H2 carry [1,2,3] into itself. Therefore H2 is not 3 set-transitive. 
Again using Theorem 4, a 4 set-transitive group on 9 symbols has order 

ml 1 = 126m. The only possibilities, other than A$ and 5g, are the transitive 

groups : 
G3 = {(1254673), (15) (29) (47) (68), (124) (765)}, order 1512, 
Hz = {(1254673), (15)(29)(47)(68)}, order 504, 

and their conjugate subgroups in 5g. Since Hz is triply transitive, Hz is 1, 2, 
3, 6, 7 and 8 set-transitive by Theorem 3. By this same theorem if Hz is 4 set-
transitive, it is 5 set-transitive and consequently set-transitive. That a per­
mutation can be found in Hz which sends the set [1,2,3,4] into each of the 126 
four element subsets of N = [1,2,3,4,5,6,7,8,9] has been checked directly by 
the authors. Therefore Hz is set-transitive, and since Hz is a subgroup of G3, 
Gz is also set-transitive. We summarize these results in the following theorem 
which, as was indicated at the beginning of this section, depends in part on 
the correctness of the list of transitive groups (6, p. 338) for n = 5, 6, and 9. 

THEOREM 11. The only groups on n symbols, other than the symmetric and 
alternating groups Sn and An, which are [\n] set-transitive, are the groups Gi, 
G2, Hz, and Gz, and their conjugates, on 5, 6, 9, and 9 symbols, respectively. 
These four groups are set-transitive. 

In the verification that the group Hz is 4 set-transitive, an element of the 
form re71, where r is an element of order two or three in Hz and a = (1254673) 
Ç Hz, can be found which carries the set [1,2,3,4] into each four element 
subset [a,b,c,d]. For example, with r = (64) (72) (51) (39) and n = 4, ran 

carries [1,2,3,4] into [2,3,5,9]. In the same way, with r = (756) (412) (839) 
and n = 0,1,4,5,6, ran carries [1,2,3,4] into [1,2,4,9], [2,5,6,9], [1,6,7,9], 
[2,3,7,9], and [1,3,5,9], respectively. 

https://doi.org/10.4153/CJM-1955-005-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-005-x


42 R. A. BEAUMONT AND R. P. PETERSON 

It may be of some interest to give an additional description of the four 
set-transitive groups G\, G2, Hz, and G3. As an abstract group, G\ is metacyclic 
with defining relations Rb = S4 = 1, S~l RS = R2 (7, vol. I l l , p. 241). G2 is 
isomorphic to the symmetric group S$, and has the abstract defining relations 
Rs = 54 = (^52)3 = (^35)2 = x (7 v o l I n > p 241). The group Hz is the 
simple group LF(2,S) consisting of all the linear fractional transformations 

, ax + b 
x' = — 

ex + a 
where a, b, c, d are elements of GF(2Z) such that ad — be 7̂  0. As an abstract 
group, Hz = {̂ 4, B) has defining relations 

^7 = B2 = (ABy = (A*BAbBA*B)2 = 1 

(4, p. 174). Finally, G3 is isomorphic to the group of automorphisms of Hz, 
and Gz = {A, B, C}, where C satisfies the relations 

C3 = 1, CAC-1 = A2, CBC~l = ABA*BA*BA. 

Thus Gz has order 1512 and contains Hz as a normal subgroup of index 3. 
Thegenerators^ ,J5,andCaregivenby^ = (1254673),£ = (15) (29) (47) (68), 
and C = (124) (765) in terms of the given generators of Hz and G3 as permuta­
tion groups on nine symbols. 
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