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Spectra of Boolean Graphs Over Finite
Fields of Characteristic Two

D. Scott Dillery and John D. LaGrange

Abstract. With entries of the adjacency matrix of a simple graph being regarded as elements of F2 ,
it is proved that a ûnite commutative ring R with 1 ≠ 0 is a Boolean ring if and only if either
R ∈ {F2 ,F2 × F2} or the eigenvalues (in the algebraic closure of F2) corresponding to the zero-
divisor graph of R are precisely the elements of F4 ∖ {0}. his is achieved by observing a way in
which algebraic behavior in a Boolean ring is encoded within Pascal’s triangle so that computations
can be carried out by appealing to classical results from number theory.

1 Introduction

Let R be a ûnite commutative ring with 1 ≠ 0. As deûned in [1], the zero-divisor graph
Γ(R) of R is the simple graph whose vertices are given by V(Γ(R)) = Z(R) ∖ {0}
(the nonzero zero-divisors of R) such that distinct vertices x and y are adjacent if and
only if xy = 0. he adjacency matrix of a simple graph Γ with vertices v1 , . . . , vn is
the n × n {0, 1}-matrix A(Γ) such that A(Γ)(i , j) = 1 for 1 ≤ i , j ≤ n if and only if v i
and v j are adjacent in Γ, and an eigenvalue of Γ is any eigenvalue of A(Γ) (which is
necessarily real since A(Γ) is symmetric). Note that any two adjacency matrices of Γ
are similar (e.g., [7, Lemma 8.1.1]), so therewill be no harm in using this notation and
terminology without regard for the sequence v1 , . . . , vn .

Let Zn , Fpn , and R[X] denote the ring of integers modulo n, the ûnite ûeld of
order pn , and the polynomial ring with coeõcients in a ring R, respectively. Recall
that a ring R ≠ {0} is Boolean if x2 = x for every x ∈ R, and it is well known that a
ûnite ring R is Boolean if and only if R ≅ Fn

2 (the direct product of n factors of F2)
for some positive integer n ([2, heorem 8.7]). It was proved in [9, heorem 3.4]
that a commutative ring R with 1 ≠ 0 is a Boolean ring if and only if either R ≅ F2,
or R /∈ {Z9 ,F3[X]/(X2)} and Γ(R) satisûes certain reciprocal eigenvalue properties
(namely, if λ is a real eigenvalue of Γ(R) ofmultiplicitym, then either 1/λ or−1/λ is an
eigenvalue of Γ(R) ofmultiplicity m; such properties are examined in the context of
more general graphs in [3, 12]). his result fails when computations take place within
the algebraic closure of a ûnite ûeld. For example, every complete zero-divisor graph
of even order (e.g., Γ(Zp2) for any odd prime p) satisûes these reciprocal eigenvalue
properties over the algebraic closure F2 of F2 (indeed, it is easy to check that the
minimal polynomial of the adjacency matrix of such a graph is (X + 1)2, so its only
eigenvalue is 1 = −1). hus, a stronger result would be given by classifying Boolean
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ringswith respect to eigenvalues overF2, and this is the objective that is accomplished
in this note. Furthermore, it is shown that the adjacency matrix of the zero-divisor
graph of a ûnite Boolean ring can be obtained by reducing the entries of a certain
Pascal-type matrix modulo 2 and, while the real eigenvalues associated with ûnite
Boolean rings remain unknown,1 the eigenvalues over F2 of zero-divisor graphs of
ûnite Boolean rings are determined.

hroughout, the unique (up to isomorphism) Boolean ring of cardinality 2n will
o�en be denoted by B2n . Also, let N, Z, and Sn be the positive integers, the integers,
and the symmetric group on n elements, respectively. If f ∈ Z[X], then f ∈ F2[X]

will denote the polynomial obtained by reducing the coeõcients of f modulo 2.
Given any square matrix M with real entries, the characteristic polynomial of M

will be denoted by CM . If every entry of M is an integer, then let M be the {0, 1}-
matrix given by reducing the entries of M modulo 2. It will be stated explicitly when
the entries of M are to be regarded as elements of F2. In this case, note that the char-
acteristic polynomial of M in F2[X] is given by CM .

2 Preliminary Results and Definitions

Let 2 ≤ k ∈ N, and consider the (k − 1)× (k − 1) Pascal matrices Pk and Qk deûned by
Pk(i , j) = (

i
k− j) and Qk(i , j) = (

i−1
k− j−1) (where (m

n) = 0 if m < n). Hence, Pk and Qk

are determined by the ûrst k rows of Pascal’s triangle. For example,

P4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1
0 1 2
1 3 3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and Q4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1
0 1 1
1 2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

he sequence L1 , L2 , . . . , of Lucas numbers is deûned by the recursion Ln+2 =

Ln+1 + Ln , where the initial values are given by L1 = 1 and L2 = 3. Let φ denote
the golden ratio 1/2 +

√
5/2, and set ξ = −φ−1. he Binet Formula for Lucas numbers

is given by Ln = φn + ξn for every n ∈ N. his formula is easily checked by noting
that φ + ξ = 1, φ2 + ξ2 = 3, and φn+2 + ξn+2 = (φn+1 + ξn+1)(φ + ξ) + (φn + ξn) =

(φn+1 + ξn+1) + (φn + ξn) for every n ∈ N.
Given 2 ≤ k ∈ N, it is well known that the eigenvalues of Qk are given by φk−2,

φk−3ξ, . . . , φξk−3 , ξk−2 (in particular, CQk = ∏
k−2
j=0 (X − φk−2− jξ j) [4, (1.5)]). he fol-

lowing two results verify that if k ≥ 4, then the eigenvalues of Qk over F2 (neglecting
multiplicities) are precisely the elements of F4 ∖ {0}.

Lemma 2.1 If 2 ≤ k ∈ N, then CQk+2 = (X2 − LkX + (−1)k)C−Qk .

Proof he equality φξ = −1 implies

(φk−1ξ, φk−2ξ2 , . . . , φ2ξk−2 , φξk−1
) = (−φk−2 ,−φk−3ξ, . . . ,−φξk−3 ,−ξk−2

),

1However, the real eigenvalues of unrestricted zero-divisor graphs of ûnite Boolean rings are deter-
mined in [8, Remark 6.5].
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so

CQk+2 =
k
∏
j=0

(X − φk− jξ j
)

= (X − φk
)(X − ξk)

k−1
∏
j=1

(X − φk− jξ j
)

= (X − φk
)(X − ξk)

k−1
∏
j=1

(X + φk−1− jξ j−1
)

= (X2
− LkX + (−1)k)

k−2
∏
j=0

(X + φk−2− jξ j
)

= (X2
− LkX + (−1)k)C−Qk . ∎

Recall that the ûeld F4 on four elements is the set containing 0 and the roots
(in F2) of X + 1 and X2 + X + 1. he next result reveals the eigenvalues of Qk over F2
for every 2 ≤ k ∈ N.

Proposition 2.2 Let 2 ≤ k ∈ N. he eigenvalue of Q2 over F2 is 1; the eigenvalues of
Q3 over F2 are the elements of F4 ∖ {0, 1}, and if k ≥ 4, then the eigenvalues of Qk over
F2 are the elements of F4 ∖ {0} (neglecting multiplicities).

Proof he eigenvalues ofQ2 andQ3 are easily veriûed. Also, Lemma 2.1 implies that
if k ≥ 2, then

CQk+2 = (X2 − LkX + (−1)k)C−Qk = (X2
+ ℓX + 1)CQk

for some ℓ ∈ F2, so the result follows by induction, since L2 is odd, L3 is even, and
X2 + ℓX + 1 ∈ {(X + 1)2 , X2 + X + 1} for every ℓ ∈ F2. ∎

Moving to zero-divisor graphs of ûnite Boolean rings, the following proposition
expresses CA(Γ(B2n )) in terms of the characteristic polynomials of Pascal matrices.

Proposition 2.3 If 2 ≤ n ∈ N, then

CA(Γ(B2n )) = CPn ⋅
⌊n/2⌋
∏
j=1

(
n− j
∏
i= j

(X − φn−i ξ i))
(n

j)−( n
j−1)

= CPn ⋅
⌊n/2⌋
∏
j=1
C

(n
j)−( n

j−1)
(−1) jQn−2 j+2

.

Proof By [10, heorem 4.3], CA(Γ(B2n )) = CPn ⋅∏
n−1
i=1 (X − φn−i ξ i)(

n
i)−1. Hence, the

ûrst equality follows by collecting the (n
1) − 1 factors of the form∏n−1

i=1 (X − φn−i ξ i),
and then collecting the remaining ((

n
2) − 1) − ((

n
1) − 1) = (

n
2) − (

n
1) factors of the

form∏n−2
i=2 (X − φn−i ξ i), etc. he second equality holds, since
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n− j
∏
i= j

(X − φn−i ξ i
) =

n−2 j
∏
i=0

(X − φn− j−i ξ j+i
)

=
n−2 j
∏
i=0

(X − (−1) jφn−2 j−i ξ i)

=
m−2
∏
i=0

(X − (−1) jφm−2−i ξ i) = C(−1) jQm ,

where m = n − 2 j + 2. ∎

By Proposition 2.3, the spectrum of Γ(B2n) will be revealed once the eigenvalues
of Pn are determined. As this seems to be a diõcult task when working over the ûeld
of complex numbers, one may turn to the problem of ûnding the eigenvalues of Pn

overF2. In the next section, it is proved that if 3 ≤ n ∈ N and k = 2n−1, then the eigen-
values of Pk over F2 (neglecting multiplicities) are precisely the elements of F4 ∖ {0}
(heorem 3.4). But it is also shown that the adjacencymatrix of Γ(B2n) is given by Pk
(heorem 3.1), and these results are used in conjunctionwith Proposition 2.3 to prove
that a ûnite commutative ring R with with 1 ≠ 0 is a Boolean ring if and only if either
R ∈ {F2 ,F2 × F2} or the eigenvalues of Γ(R) over F2 (neglecting multiplicities) are
precisely the elements of F4 ∖ {0} (Corollary 3.5).

3 Eigenvalues of A(Γ(B2n))
To ease notation, if n ∈ N, then set [n] = {1, . . . , n} and [n]∗ = [n] ∪ {0}. Recall
Lucas’s heorem, which states that if p is prime and i , j ∈ N ∪ {0} with i = ∑n

r=0 ir pr

and j = ∑n
r=0 jr pr (ir , jr ∈ {0, . . . , p − 1}), then (

i
j) ≡ ∏

n
r=0 (

ir
jr
) (mod p) (a short

proof is given in [6, heorem 1]). In particular, (i
j) ≡ 1 (mod 2) if and only if ir = 1

whenever jr = 1.
Let supp(i) = {r ∈ N∪{0} ∣ ir ≠ 0} be the 2-adic support of i = ∑n

r=0 ir2r ∈ N∪{0}
(ir ∈ {0, 1}). By Lucas’s heorem, if k ≥ j, then (

i
k− j) ≡ 1 (mod 2) if and only if

supp(k − j) ⊆ supp(i). (he reader may prefer to adopt binary representations of
integers; e.g., if n = 3, then the integers i = 6 and k − j = 2 can be represented by 0110
and 0100, respectively, so that the congruence ( i

k− j) ≡ 1 (mod 2) is evident by Lucas’s
heorem.) Furthermore, if i , j ≤ 2n − 1 = k (so that supp(i), supp( j) ⊆ [n − 1]∗ =

supp(k) and supp(k− h) = [n− 1]∗ ∖ supp(h) for each h ∈ {i , j}), then the inclusion
supp(k − j) ⊆ supp(i) is equivalent to supp(k − i) ∩ supp(k − j) = ∅. Hence, in
this case, ( i

k− j) ≡ 1 (mod 2) if and only if ( j
k−i) ≡ 1 (mod 2), and it follows that Pk is

symmetric. In fact, the following result holds.

heorem 3.1 If 2 ≤ n ∈ N and k = 2n − 1, then Pk is the adjacency matrix of Γ(B2n).

Proof he present argument requires the adjacency matrix of Γ(B2n) to be well
deûned, so it is necessary to introduce an order on V(Γ(B2n)). For this, let B2n =

∏
n
r=1 F2 be endowed with the dual-colexicographic order given by x ≤ y if and only

if either x = y or x(max{r ∣ x(r) ≠ y(r)}) = 1. hen themapping B2n → [k]∗ given
by x ↦ ∑n

r=1 x(r)2r−1 is an order-reversing isomorphism of linearly ordered sets;
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i.e., ifB2n = {x0 , . . . , xk}with x0 < ⋅ ⋅ ⋅ < xk , then it is given by x i ↦ k− i (in particular,
∑

n
r=1 x i(r)2r−1 = k − i). In this case, note that V(Γ(B2n)) = {x1 , . . . , xk−1}.
Let A be the adjacency matrix of Γ(B2n) that is induced by the sequence

x1 , . . . , xk−1. If i , j ∈ [k − 1], then A(i , j) = 1 if and only if x ix j = 0, if and only if
x i(r) = 0 whenever x j(r) = 1. his holds if and only if

supp (
n

∑
r=1

x i(r)2r−1
) ∩ supp (

n

∑
r=1

x j(r)2r−1
) = ∅,

i.e., supp(k − i) ∩ supp(k − j) = ∅, if and only if ( i
k− j) ≡ 1 (mod 2). herefore,

A(i , j) = 1 if and only if Pk(i , j) = 1. ∎

Given a square {0, 1}-matrix M, let E(M) denote the multiset of eigenvalues
(counting multiplicities) of M over F2. he next corollary follows immediately by
Proposition 2.3 andheorem 3.1.

Corollary 3.2 If 2 ≤ n ∈ N and k = 2n − 1, then E(Pk) = E(Pn) ⊔ (⊔
⌊n/2⌋
j=1 ⊔

(n
j)−( n

j−1)
i=1

E(Qn−2 j+2)) .

he following lemma is the key result for determining the eigenvalues of Γ(B2n), as
itwill be applied in the next theorem to yield theminimal polynomials of thematrices
P2n−1. Henceforth, the n × n identity matrix and matrix whose entries are all 1s are
denoted by In and Jn , respectively.

Lemma 3.3 If 2 ≤ n ∈ N and k = 2n − 1, then P3
k = Jk−1 − Ik−1.

Proof Given any m ×m matrix M, recall that

M s
(i , j) = ∑

t1 , . . . ,ts−1
M(i , t1)M(t1 , t2) ⋅ ⋅ ⋅M(ts−1 , j)

for every 2 ≤ s ∈ N, where t1 , . . . , ts−1 range through [m] (it is a straightforward
induction argument). hus, for ûxed i , j ∈ [k − 1], set ρt1 ,t2 = (

i
k−t1

)(
t1

k−t2
)(

t2
k− j) so

that P3
k(i , j) = ∑t1 ,t2 ρt1 ,t2 . By Lucas’s heorem, ρt1 ,t2 ≡ 1 (mod 2) if and only if the

following three conditions are satisûed:
(i) [n − 1]∗ ∖ supp(t1) ⊆ supp(i);
(ii) [n − 1]∗ ∖ supp(t2) ⊆ supp(t1);
(iii) [n − 1]∗ ∖ supp( j) ⊆ supp(t2).
For every ∅ ≠ S ⊆ supp(i) there exists a unique t1 ∈ [k − 1] such that [n − 1]∗ ∖

supp(t1) = S, so there are 2∣supp(i)∣ − 1 integers t1 ∈ [k − 1] that satisfy (i). For every
such t1, (ii) and (iii) hold for t2 ∈ [k− 1] if and only if [n− 1]∗∖ supp(t2) ⊆ supp(t1)∩
supp( j), so there exist 2∣supp(t1)∩supp( j)∣ − 1 such integers t2. his observation shows
that

∣{ρt1 ,t2 ∣ ρt1 ,t2 ≡ 1 (mod 2)}∣

=∑{2∣supp(t1)∩supp( j)∣
− 1 ∣ t1 ∈ [k − 1], [n − 1]∗ ∖ supp(t1) ⊆ supp(i)} ,
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and hence

P3
k(i , j)≡∑{2∣supp(t1)∩supp( j)∣

−1 ∣ t1 ∈ [k−1], [n−1]∗∖ supp(t1)⊆ supp(i)} (mod 2).

Suppose that i ≠ j. As P3
k(i , j) is congruent to anodd sum(namely,with 2∣supp(i)∣−1

summands) of integers of the form 2∣supp(t1)∩supp( j)∣ − 1, it is suõcient to verify that
supp(t1) ∩ supp( j) ≠ ∅ for every t1 ∈ [k − 1] that satisûes (i). Since P3

k is symmetric,
it can be assumed that supp( j) ∖ supp(i) ≠ ∅ (because if supp( j) ∖ supp(i) = ∅,
then supp(i) ∖ supp( j) ≠ ∅, and hence the argument can be applied to the entry
P3
k( j, i) instead). But supp( j) ∖ supp(i) ⊆ [n − 1]∗ ∖ supp(i) ⊆ supp(t1) by (i), so
∅ ≠ supp( j) ∖ supp(i) ⊆ supp(t1) ∩ supp( j). herefore, if i ≠ j, then P3

k(i , j) ≡ 1
(mod 2).
Assume that i = j. he conditions [n − 1]∗ ∖ supp(t1) ⊆ supp(i) and supp(t1) ∩

supp(i) = supp(t1) ∩ supp( j) = ∅ hold if and only if supp(t1) is the set-theoretic
complement (in [n − 1]∗) of supp(i), i.e., if and only if t1 = k − i. Hence, of the
2∣supp(i)∣ − 1 integers t1 ∈ [k − 1] that satisfy (i), there is exactly one such t1 with
supp(t1) ∩ supp( j) = ∅. herefore, P3

k(i , i) is congruent to an even sum (namely,
with 2∣supp(i)∣ − 2 summands) of nonzero integers of the form 2∣supp(t1)∩supp( j)∣ − 1,
and it follows that P3

k(i , i) ≡ 0 (mod 2). ∎

Let R be a ûnite Boolean ring. Since ∣R∣ = 2n for some n ∈ N, every annihilator ideal
of R has cardinality equal to a power of 2. In particular, every vertex of Γ(R) has odd
degree. Together with heorem 3.1, this observation can now be used to provide an
application of Boolean rings to determine the eigenvalues of thematrices Pk over F2.

heorem 3.4 If 2 ≤ n ∈ N and k = 2n − 1, then the following statements hold.
(i) If n = 2, then CPk = X2 + 1.
(ii) If n ≥ 3, then theminimal polynomial (over F2) of Pk is

(X3
+ 1)(X + 1) = X4

+ X3
+ X + 1.

In particular, the eigenvalue of P3 over F2 is 1, and if n ≥ 3, then the eigenvalues of
Pk over F2 are precisely the elements of F4 ∖ {0} (neglecting multiplicities).

Proof he statement in (i) is clear. For (ii), let M(X) ∈ F2[X] be theminimal poly-
nomial of Pk . Note that if n ≥ 3, then every element of F4 ∖ {0} is an eigenvalue of
Pk by (i), Corollary 3.2, and Proposition 2.2, and it follows that (X + 1)(X2 + X + 1) =
X3 + 1 divides M(X) in F2[X]. Also, every vertex of Γ(B2n) has odd degree, and thus
Jk−1Pk = Jk−1 by heorem 3.1. Hence, (P3

k + Ik−1)(Pk + Ik−1) = Jk−1(Pk − Ik−1) is the
zero matrix (where the equality holds by Lemma 3.3), and therefore M(X) divides
(X3 + 1)(X + 1) in F2[X].

Since X3 + 1 divides M(X), and M(X) divides (X3 + 1)(X + 1), the result follows
since P3

k + Ik−1 = Jk−1 (a nonzeromatrix) by Lemma 3.3. he “in particular” statement
follows immediately by (i) and (ii). ∎

A ûnite simple graph Γ has a perfect matching if and only if there exists a per-
mutation σ ∈ S∣V(Γ)∣ with σ = σ−1 such that ∏∣V(Γ)∣

i=1 A(Γ)(i , σ(i)) ≠ 0. By noting
that A(Γ)(i , σ(i)) = A(Γ)(σ(i), i) = A(Γ)(σ(i), σ−1(σ(i))), it follows that every
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permutation σ ∈ S∣V(Γ)∣ satisûes ∏∣V(Γ)∣
i=1 A(Γ)(i , σ(i)) = ∏

∣V(Γ)∣
i=1 A(Γ)(i , σ−1(i)).

Hence, if Γ has no perfect matching, then det(A(Γ)) is a sum whose nonzero sum-
mands exist in pairs. In particular, if Γ has no perfect matching, then det(A(Γ)) ≡ 0
(mod 2) (cf. [5,heorem 1.3]).

Let R be a commutative ring with identity such that V(Γ(R)) ≠ ∅, and if x , y ∈

V(Γ(R)) have precisely the same adjacency relations, then x = y. By [9, Lemma 3.3],
either R is a Boolean ring, Γ(R) is a complete graph, or Γ(R) does not have any
perfect matchings. Indeed, if R is not a Boolean ring, then Z(R) is an ideal with
r2 = 0 for every r ∈ Z(R) ([11, heorem 2.5]), and hence either Γ(R) is complete or
Z(R) has even cardinality (e.g., if x and y are nonadjacent vertices, then the equali-
ties 2xy = (x + y)2 = 0 show that {0, xy} is a subgroup of Z(R)). In the latter case,
∣V(Γ(R))∣= ∣Z(R)∣−1 is odd, and therefore Γ(R)doesnothave anyperfectmatchings.

hemain result is now readily proved.

Corollary 3.5 If R is a ûnite commutative ring with 1 ≠ 0, then R is a Boolean ring
if and only if either R ∈ {F2 ,F2 × F2} or the eigenvalues in F2 of Γ(R) (neglecting
multiplicities) are precisely the elements of F4 ∖ {0}.

Proof he “only if ” portion holds by heorems 3.1 and 3.4. To prove the converse,
note that if there exist distinct x , y ∈ V(Γ(R)) that have the same adjacency rela-
tions, then det(A(Γ(R)) = 0 (e.g., the rows of A(Γ(R)) corresponding to x and y are
identical). Moreover, det(A(Γ(R)) ≡ 0 (mod 2) if Γ(R) has no perfect matching (in
particular, this is the case if Γ(R) is a complete graph of odd order). hus, in either
case, it follows that 0 is an eigenvalue of Γ(R) over F2. Furthermore, as noted in the
introduction, if Γ(R) is a complete graph of even order, then 1 is the only eigenvalue
of Γ(R) over F2. herefore, by [9, Lemma 3.3], the hypotheses of the “if ” statement
imply that R is a Boolean ring. ∎

Let R be a ûnite commutative ring with 1 ≠ 0 and V(Γ(R)) ≠ ∅. he proof of
Corollary 3.5 yields a characterization of zero-divisor graphs whose only eigenvalue
over F2 is 1. Indeed, it shows that either 0 is an eigenvalue of Γ(R) over F2, Γ(R)
is a complete graph of even order, or R is Boolean, and it follows that 1 is the only
eigenvalue of Γ(R) over F2 if and only if Γ(R) is a complete graph of even order. By
[1, heorem 2.8], this holds if and only if either R ≅ F2 × F2, or Z(R) is a nonzero
ideal of odd cardinality such that Z(R)2 = {0}. hese observations are recorded in
the next corollary.

Corollary 3.6 he following statements are equivalent for a ûnite commutative ring
R with 1 ≠ 0.
(i) 1 is the only eigenvalue of Γ(R) over F2 (neglecting multiplicities).
(ii) Γ(R) is a complete graph of even order.
(iii) Z(R) is a nonzero ideal of odd cardinality such that Z(R)2 = {0}.

he investigation is closed with the following partial characterization of eigenval-
ues over F2 of zero-divisor graphs of ûnite commutative rings, which holds by Corol-
lary 3.5 and the discussion prior to Corollary 3.6.
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Corollary 3.7 If R is a ûnite commutative ring with 1 ≠ 0, then at least one of the
following statements holds:
(i) R is a ûeld;
(ii) 0 is an eigenvalue of Γ(R) over F2;
(iii) 1 is the only eigenvalue of Γ(R) over F2 (neglecting multiplicities);
(iv) the eigenvalues of Γ(R) over F2 (neglecting multiplicities) are precisely the ele-

ments of F4 ∖ {0}.
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