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In this work, we consider extensions of the dual risk model with proportional gains by introducing dependence
structures among gain sizes and gain interarrival times. Among others, we further consider the case where the
proportionality parameter is randomly chosen, the case where it is a uniformly random variable, as well as the case
where we may have upward as well as downward jumps. Moreover, we consider the case with causal dependence
structure, as well as the case where the dependence is based on the generalized Farlie–Gumbel–Morgenstern copula.
The ruin probability and the distribution of the time to ruin are investigated.

1. Introduction

In this work, we investigate the dual risk model with constant expense rate normalized to 1, by con-
sidering several nontrivial generalizations of the model considered in [18]. Among others, our primary
aim is to lift several independence assumptions among gain interarrival times and gain sizes, but still,
to be able to obtain explicit results (in terms of Laplace transforms) regarding some major metrics of
interest such as ruin probability and the time to ruin.

For a detailed study on the fundamentals of ruin probabilities in the conventional, permanently
inspected, Cramer–Lundberg context see [9, 36]. It is well-known that there is a duality property
among the ruin theory and the queueing theory. In particular, the Cramer–Lundberg model is dual to
the M/G/1 queueing model with the same arrival rate and with a service time distribution that equals
the claim size distribution in the Cramer–Lundberg model; see [9, 36]. Quite recently, in the semi-
nal book [36], the authors presented the main results and the most important probabilistic methods
related to the Cramer–Lundberg model and exploited connections with the related model in queueing
theory.

Its dual process has also attracted interest in the insurance risk literature. As pointed out in [12],
the dual risk model describes the surplus or equity of a company with fixed expense rate and occa-
sional income inflows of random size, called innovations or gains. These gains arise due to some
contingent events (e.g., discoveries, sales). Examples where the dual risk model applies are in phar-
maceutical, petroleum, or R&D companies. Other examples are commission-based businesses, such
as real estate agents or brokerage firms that sell mutual funds or insurance products with a front-
end load. As stated in [18, see Figure 1], an illustrative realistic example of the dual risk model
with proportional gains refers to start-ups or e-companies, where their gains strongly depend on the
amount of investments, which is often proportional to the value of the company; for example, the CD
Projekt (see https://www.cdprojekt.com/en/), one of the biggest Polish companies producing computer
games.
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1.1. Related work

The standard dual risk model (without proportional gains) has been treated in the past in [32] where it
was called as the negative claims model; see also [13]. Moreover, since the dual risk model corresponds
to the first busy period in a single-server queue with initial workload x, we further refer [25, 42]. The
ruin probability in the dual risk model under a taxation system was analyzed in [5], while in [41],
the authors studied the finite-time ruin probability under a discrete-time setup. The vast majority of
works related to the dual risk model focused on dividend barriers. The authors in [10, 12] considered
cases where gains follow an exponential distribution or a mixture of exponential distributions, and they
derived explicit formulas for the expected discounted dividend value; see also [4]. A Laplace transform
method to investigate the dual model perturbed by a diffusion was applied in [11], while the authors
in [14, 15] proved the optimality of a barrier strategy for all spectrally positive Lévy processes by
employing fluctuation theory. A general dual risk process where the rate of the costs depends on the
present amount of reserves was analyzed in [37]. In [17], the authors considered the time to ruin and
the expected discounted dividends for a special dividend policy. Recently in [33], the authors studied
a mixed dividend strategy, which is the combination of a threshold dividend and a Parisian implemen-
tation delays dividend under periodic observation. In [45], the dual risk model with Erlang distributed
gain interarrival time was analyzed, and expressions for the ruin probability and the Laplace transform
of the time of ruin for an arbitrary single gain distribution were derived. We further mention [40, 49,
50] that considered terminal costs and dividends that are paid continuously at a constant rate when
the surplus is above that barrier, and [31] for the asymptotic analysis of optimal dividends in a dual
risk model. Quite recently, the authors in [18] considered a variant of a dual risk model by adding the
proportional gain feature, that is, if the surplus process just before a gain arrival is u, then for a> 0
the capital jumps up to the level (1 + a)u + C, where C is the size of the gain. The authors dealt with
the ruin probability and the distribution of the time to ruin, that is, the first time the surplus level hits
zero. They further identified the value of discounted cumulative dividend payments and also consid-
ered a random perturbation of the basic risk process modeled by an independent Brownian motion with
drift.

1.2. Our contribution and motivation

The major contribution of this work relies on the investigation of dual risk models with a proportional
gain mechanism where in addition: (a) several assumptions of independence among gain interarrivals
and gain sizes are lifted, (b) the proportional parameter can be a random variable and/or taking specific
values according to a probabilistic rule (and not only a fixed constant as in [18]), and still, to be able to
derive explicit expressions (in terms of Laplace Transforms) for the ruin probability and the distribution
of the time to ruin (given the initial surplus level). For example, among others, we investigate the case
where the distribution of the gain size depends on the gain interarrival time, and this type of dependence
it also affects the proportional parameter. Moreover, we focus on the case where the dependence struc-
ture is based on a copula, and the case where the proportional parameter is a random variable with a
finite support. To our best knowledge, it is the first time in the related literature that the dual risk model
with proportional gains and a general dependence structure is analyzed.

Let U(t) be the surplus process with U (0) = x > 0. Our interest relies on the derivation of
the ruin probability, given that the initial surplus equals x, that is, R(x) := P(gx < ∞), where
gx = inf{t ≥ 0 : U (t) = 0|U (0) = x}, as well as, of the distribution of gx, that is, the time to ruin,
which is defined as the first time the surplus equals zero. In particular, we focus on the derivation of
g(s,U) :=

∫ ∞
x=0 e−sxE(e−Ugx 1(gx < ∞)|U (0) = x)dx, where 1(A) be the indicator function of the event

A. To investigate R(x) and g(s,U), we use a one-step analysis where the process under study is viewed
at successive gain times. The approach we follow bears similarities to the method developed in [19,
20, 22, 29, 34] to study reflected autoregressive processes. To our best knowledge, this work provides
for the first time explicit expressions for the Laplace transform of the ruin probability and the double
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Laplace transform of the distribution of the time to ruin, given that the U (0) = x > 0, in a general dual
risk model with proportional gains under a dependent setting, and thus, should be viewed as a starting
point for obtaining analytical results in more general dependent scenarios. In all models considered in
this paper, we assume constant expense rate normalized to 1.

Our motivation in this work is twofold: First, by mathematical point of view, to consider several non-
trivial generalizations of the model developed in [18], (a) by lifting independence assumptions among
gain interarrivals and gain sizes. Among others, we introduce a dependence structure based on the
Farlie–Gumbel–Morgenstern (FGM) copula that has both a mathematical and a practical interest, (b)
by allowing the proportionality parameter to depend on gain interarrivals, as well as to be a constant or
a random variable. Moreover, note that in queueing terms, the surplus process describes the workload
in an M/G/1 queue with a constant demand rate and occasional inflow that depends proportionally on
the current amount of work in the system, and where there is a dependence structure among interarrival
times and the work that brought in the system. To our best knowledge, this is the first time that such a
queueing model is investigated. Moreover, related works on queueing models with dependence structure
based on copulas are very rare. Thus, the derived results have merit both in insurance mathematics and
in queueing theory. Second, as mentioned above, by practical point of view, the concept of proportional
gains, that is, gains that are proportional to the value of the company, appears lately in the budgets of
start-ups and e-companies. By further considering dependence structures make our model even more
realistic.

The paper is organized as follows. In Section 2, we consider the dual risk model with causal depen-
dence structure that relates the gain size, the gain interarrival, and the proportional parameter, and
obtain the Laplace transform of the ruin probability as well as the Laplace transform of the ruin time
Laplace–Stieltjes transform (Laplace–Stieltjes transform). We present result where the gain size follows
exponential, Erlang, or even mixed Erlang distribution. In Section 3, we focus on the dual risk model
with proportional gains and where the gain size and the gain interarrival times are dependent based on
the (generalized) FGM copula. We also consider the case where, in addition, there is a linear dependence
among gain interarrival times and surplus level. In the latter case, we also performed some numerical
examples to illustrate the ability of the derived expressions regarding the numerical calculations of ruin
measures. Section 4 is devoted to the analysis of the dual risk model with randomly proportional gains
with upward and downward jumps. We further consider the case of dependence based on the FGM
copula among gain sizes and gain interarrivals. Finally, in Section 5, we consider the case where the
proportional parameter is uniformly distributed.

2. A dual risk model with causal dependence structure and proportional gains

In this section, we generalize the model in [18] by incorporating a causal dependence structure, namely
that the distribution of the gain size depends on the gain interarrival time. This type of dependence it
also affects the proportional parameter, which in turn affects the size of the capital jump. In [6], the
authors considered the classical ruin model with causal dependencies (motivated by the work in [23]),
where the distribution of the interclaim time depends on the actual size of the previous claim based on a
(random) threshold type policy. In the following, we consider the dual model with the additional feature
of the proportional gains.

Assume that gains arrive according to a renewal process {N (t); t ≥ 0} with independent and identi-
cally distributed (i.i.d.) interarrival times Bi := Si − Si−1 (S0 = 0), that is, the interarrival time between
jumps i − 1 and i (≥ 1). We assume that Bi are i.i.d. random variables having cumulative distribu-
tion function (c. distribution function) B(.), density b(.), and Laplace–Stieltjes transform q(.). If Bi
is larger than a threshold Ti, then, the capital jumps up to the level (1 + a0)u + C (0)

i , a0 > 0, where
C (0)

i are i.i.d. random variables that follow a hyperexponential distribution with c. distribution function
C0(x) =

∑K
k=1 qk (1 − e−`jx). Otherwise, the capital jumps up to the level (1 + a1)u + C (1)

i , a1 > 0,
where C (1)

i are i.i.d. random variables that follow a hyperexponential distribution with c. distribution
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function C1(x) =
∑L

l=1 hl (1 − e−alx). The thresholds Ti are assumed to be i.i.d. random variables with
c. distribution function T (.). Thus, for U (0) = x > 0, the surplus process U(t), t ≥ 0, satisfies:

U (t) = x − t +
N (t)∑
i=1

[(C (0)
i + a0U (S−

i ))1{Bi>Ti } + (C (1)
i + a1U (S−

i ))1{Bi≤Ti }] . (2.1)

Contrary to the case in [18] where the authors assumed exponentially distributed gain sizes (they just
mentioned in [18, Rem. 2.4] that the model can be generalized to the case of hyperexponentially dis-
tributed gain sizes), we consider in Remark 2.1 the case where the gain sizes follow a mixed Erlang
distribution, a class of the phase-type distributions that can be used to approximate any given continuous
distribution in [0,∞).

2.1. The ruin probability

We focus on deriving the Laplace transform of the ruin probability R(x) when starting in x, by distin-
guishing the two cases in which no jump up occurs before x (hence ruin occurs at time x) and in which
a jump up occurs at some time t ∈ (0, x). Then,

R(x) = 1 − B(x) +
x∫

t=0

∞∫
y=0

(
P(Ti < t)R((1 + a1) (x − t) + y)∑L

l=1 hlale−aly

+P(Ti ≥ t)R((1 + a0) (x − t) + y)∑K
k=1 qk`ke−`ky

)
dydB(t).

(2.2)

Denote the Laplace transform,

d(s) :=
∞∫

x=0

e−sxR(x)dx.

Then, (2.2) becomes,

d(s) = 1 − q(s)
s

+ I0(s) + I1(s), (2.3)

where

I0(s) :=
∞∫

x=0
e−sx

x∫
t=0

∞∫
z=(1+a0 ) (x−t)

P(Ti ≥ t)R(z)∑K
k=1 qk`ke−`k (z−(1+a0 ) (x−t) )dzdB(t)dx

=

∞∫
t=0

e−stP(Ti ≥ t)∑K
k=1 qk

∞∫
x=t

e−(x−t) [s−`k (1+a0 ) ]
∞∫

z=(1+a0 ) (x−t)
R(z)`ke−`kzdzdB(t)dx

= j0(s)
∑K

k=1 qk`k

∞∫
w=0

e−w[s−`k (1+a0 ) ]
∞∫

z=(1+a0 )w
R(z)e−`kzdzdw

= j0(s)
∑K

k=1 qk`k

∞∫
z=0

R(z)e−`kz
(

e
− z

1+a0
(s−`k (1+a0 ) )−1

`k (1+a0 )−s

)
dz

= j0(s)
∑K

k=1 qk`k
`k (1+a0 )−s [d(

s
1+a0

) − d(`k)],

where j0(s) := E(e−sB1(T ≥ B)) =
∞∫

x=0
e−sx (1 − T (x))dB(x).

https://doi.org/10.1017/S0269964824000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000214


160 I. Dimitriou

Similarly,

I1(s) := j1 (s)
∑L

l=1 hlal

al (1 + a1) − s
[d( s

1 + a1
) − d(al)],

where now j1(s) := E(e−sB1(T < B)) =
∞∫

x=0
e−sxT (x)dB(x). Note that j0(s) + j1(s) = q(s).

By setting ai (s) := s
1+ai

, ĵi (s) := ji (s)
1+ai

. ki (s) := `i
`i−s , li (s) := ai

ai−s , i = 0, 1, Eq. (2.3) becomes

d(s) = d(a0(s))H0(s) + d(a1(s))H1(s) + K (s), (2.4)

where H0(s) := ĵ0(s)
∑K

k=1 qkkk (a0(s)), H1 (s) := ĵ1(s)
∑L

l=1 hill (a1(s)),

K (s) :=
1 − q(s)

s
− ĵ0(s)

K∑
k=1

qkkk (a0(s))d(`k) − ĵ1(s)
L∑

l=1
hlll (a1 (s))d(al).

Note that ai (aj (s)) = s
(1+a0 ) (1+a1 ) = aj (ai (s)), thus the mappings ai (s) commute. Moreover, |ai (s) −

aj (u) | ≤ k |s − u|, where k := max{1/(1 + a0), 1/(1 + a1)}, so that the mappings ai (s) are contraction
mappings.

After n − 1 iterations of (2.4), we have

d(s) =
n∑

m=0
Lm,n−m (s)d(am,n−m (s)) +

n−1∑
j=0

j∑
m=0

Lm,j−m (s)K (am,j−m (s)), (2.5)

where am,j−m (s) := am
0 (a

j−m
1 (s)), with a0,0(s) = s and am

i (s) is the mth iterate of ai (s), i = 0, 1, m =

0, 1, 2, . . .. Moreover, the functions Lm,j−m (s) are computed recursively, with L0,0(s) = 1, L1,0(s) :=
H0(s), L0,1(s) := H1(s), and

Lm+1,j−m (s) = Lm,j−m (s)L1,0(am,j−m (s)) + Lm+1,j−m−1(s)L0,1(am+1,j−m−1(s)), j − m ≥ m + 1,
Lm,j−m+1(s) = Lm,j−m (s)L0,1(am,j−m (s)) + Lm−1,j−m+1(s)L1,0(am−1,j−m+1(s)), j − m ≤ m − 1.

(2.6)

By observing that k := max{1/(1 + a0), 1/(1 + a1)} < 1, it is seen following the lines in [3, Sect. 2]
that d(am,j−m (s)) = d( s

(1+a0 )m (1+a1 ) j−m ) converges geometrically fast to d(0) = 1. Moreover,

|Lm,j−m (s) | ≤
(

j
m, j − m

)
, (2.7)

and hence, the sum in the first term of the right hand side in (2.5) is bounded by one, since Lm,j−m (s)
contains ( j

m) products of H0(.), H1(.), while Hm (.), m = 0, 1, is related to the Laplace–Stieltjes transform
of a nonnegative random variable. Thus, the first term in the right hand side in (2.5) converges as n → ∞.
On the other hand, K (am,j−m (s)) for large values of j converges to a constant that is smaller than one.
Indeed, for large values of j, am,j−m (s) → 0, and K(0) converges to

b̄ − j0(0)
1 + a0

K∑
k=1

qkd(`k) −
j1(0)
1 + a1

L∑
l=1

hid(al) = b̄ − P(B ≤ T)
1 + a0

K∑
k=1

qkd(`k) −
P(B > T)

1 + a1

L∑
l=1

hld(al).
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Note that setting s= 0 in (2.4) results in

b̄ − P(B≤T )
1+a0

∑K
k=1 qkd(`k) − P(B>T )

1+a1

∑L
l=1 hld(al) = 1 − P(B≤T )

1+a0
− P(B>T )

1+a1
< 1.

Thus, |K (am,j−m (s) − K (0)) | ≤ kj |s|D, where D is the maximum value of |K ′ (s) |. Thus the jth term in
the double sum in (2.5) is bounded (having also in mind (2.7)), and thus, the double sum converges for
n → ∞. Therefore,

d(s) = lim
n→∞

n∑
m=0

Lm,n−m (s) +
∞∑
j=0

j∑
m=0

Lm,j−m (s)K (am,j−m (s)). (2.8)

We still need to obtain the values of d(`k), k = 1, . . . , K , and d(al), l = 1, . . . , L. Setting s = `k ,
k = 1, . . . , K , and s = al, l = 1, . . . , L, in (2.8), we can obtain a set of equations to derive these
unknowns.

Remark 2.1. We now consider the case where C (0)
i , C (1)

i are i.i.d. random variables that follow a
mixed Erlang distribution. More precisely, we assume that when Bi ≥ Ti, then the gain sizes C (0)

i have
c. distribution function

C0 (x) =
N0∑

n0=1
kn0 (1 − e−`0x

n0−1∑
l=0

(`0x)l

l!
), x ≥ 0,

where
∑N0

n0=1 kn0 = 1. Similarly, when Bi < Ti, then the gain sizes C (1)
i have c. distribution function

C1 (x) =
N0∑

n1=1
kn1 (1 − e−`1x

n1−1∑
l=0

(`1x)l

l!
), x ≥ 0,

with
∑N1

n1=1 kn1 = 1. In other words, we assume that the gain sizes follow with probability knm , nm =

1, . . . , Nm, m = 0, 1, an Erlang distribution of scale parameter `m and nm stages.
The class of the phase-type distributions of the above form is dense in the space of distribution

functions defined on [0,∞), and thus, for any distribution function B, there is a sequence Bn of phase-
type distributions of this class that converges weakly to B as n goes to infinity; see [47]. This class, since
it may be used to approximate any given continuous distribution on [0,∞) arbitrarily close.

The whole analysis can be repeated, although there will be some difficulties. More precisely, by
applying the same steps, (2.3) is still valid, but now,

I0(s) = j0 (s)
∑N0

n0=1 kn0`
n0
n0

∞∫
w=0

e−w[s−`n0 (1+a0 ) ]
∞∫

z=(1+a0 )w
R(z)e−`0z (z − (1 + a0)w)n0−1dzdw

= j0 (s)
∑N0

n0=1 kn0`
n0
n0

∑n0−1
l=0

(−1)n0−1−l (1+a0 )n0−1−l

l!(n0−1−l)!

∞∫
z=0

zle−`n0 zR(z)
z

1+a0∫
w=0

wn0−1−le−w[s−`n0 (1+a0 ) ]

× dwdz

= j0 (s)
∑N0

n0=1 kn0`
n0
n0

∑n0−1
l=0

(−1)n0−1−l (1+a0 )n0−1−l

l!(s−`n0 (1+a0 ) )n−l

∞∫
z=0

zle−`0zR(z)

×
[
1 − e−

z
1+a0

(s−`n0 (1+a0 ) ) ∑n0−1−l
i=0

( z
1+a0

(s−`n0 (1+a0 ) ) ) i

i!

]
dz

= j0 (s)
∑N0

n0=1 kn0 (−1)n0−1 ∑n0−1
l=0

(
`n0

s−(1+a0 )`n0

)n0−l (1+a0 )n0−1−l

l! d (l) (`n0)

−d( s
1+a0

)j0(s)
∑N0

n0=1 kn0 (1 + a0)n0−1(−1)n0
(

`n0
s−(1+a0 )`n0 )

)n0
,
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where d (l) (`n0) denotes the lth derivative of d(s) at point s = `n0 , n0 = 1, . . . , N0. Similarly,

I1(s) = j1(s)
∑N1

n1=1 kn1 (−1)n1−1 ∑n1−1
l=0

(
`n1

s−(1+a0 )`n1

)n1−l (1+a1 )n1−1−l

l! d (l) (`n1)

−d( s
1+a1

)j1(s)
∑N1

n1=1 kn1 (1 + a1)n1−1(−1)n1
(

`n1
s−(1+a1 )`n1 )

)n1
,

where d (l) (`n1) denotes the lth derivative of d(s) at point s = `n1 , n1 = 1, . . . , N1. Therefore, we come
up with the following functional equation:

d(s) = d(a0(s)) ĵ0(s)
N0∑

n0=1
kn0

(
`n0

`n0 + a0(s)

)n0

+ d(a1 (s)) ĵ1(s)
N1∑

n1=1
kn1

(
`n1

`n1 + a1(s)

)n1

+ K (s), (2.9)

where now,

K (s) := 1−q (s)
s − ĵ0(s)

∑N0
n0=1 kn0

∑n0−1
l=0

(−1) l

l!

(
`n0

`n0+a0 (s)

)n0−l
d (l) (`n0)

−ĵ1(s)
∑N1

n1=1 kn1

∑n1−1
l=0

(−1) l

l!

(
`n1

`n1+a1 (s)

)n1−l
d (l) (`n1).

The form of Eq. (2.9) is the same as the one in (2.4), so we can apply the same iterative procedure to
obtain d(s). Note, however, that we need to obtain the terms d (dk ) (`nk ), k = 0, 1, dk = 0, 1, . . . , Nk − 1,
nk = 1, 2, . . . , Nk , that is, the values of the dkth derivative of d(s) at points s = `nk , k = 0, 1. This
task can be accomplished by differentiating the equivalent of (2.8) 0, 1, . . . , Nk − 1, k = 0, 1, times with
respect to s, each time followed by a substitution of s = `nk , respectively. This procedure results in
N0 + N1 equations for these unknowns.

2.2. The time to ruin

We now turn our attention to gx = inf{t ≥ 0 : U (t) = 0|U (0) = x}, that is, the time to ruin starting at
level x. Let T (x,U) := E(e−Ugx 1(gx < ∞)|U (0) = x) the Laplace transform of the time to ruin when
the initial surplus equals x, where U > 0, and 1(.) is the indicator function. Then,

T (x,U) = e−ax (1 − B(x)) +
x∫

t=0
e−Ut

∞∫
y=0

(
P(T < t)E(eUg(1+a0 ) (x−t)+y )∑L

l=1 hlale−aly

+P(T ≥ t)E(eUg(1+a1 ) (x−t)+y )∑K
k=1 qk`ke−`ky

)
dydB(t).

Remark 2.2. Note that by taking U = 0 in the expression above, we obtain the expression for the ruin
probability R(x) given in (2.2).

Letting,

g(s,U) :=
∞∫

x=0

e−sxT (x,U)dx, (2.10)

we obtain after some algebra:

g(s,U) = g(a0 (s),U)H0(s,U) + g(a1(s),U)H1(s,U) + K̃ (s,U), (2.11)
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where,

H0(s,U) = ĵ0(s + U)∑K
k=1 qkkk (a0(s)),

H1(s,U) = ĵ1(s + U)∑L
l=1 hlll (a1(s)),

K̃ (s,U) = 1−q (s+U)
s+U − ĵ0(s + U)∑K

k=1 qkkk (a0(s))g(`k ,U) − ĵ1(s + U)∑L
l=1 hlll (a1(s))g(al,U).

After n − 1 iterations, (2.11) yields

g(s,U) =
n∑

l=0
L̃l,n−l (s, a)g(al,n−l (s),U) +

n−1∑
j=0

j∑
l=0

L̃l,j−l (s,U)K̃ (al,j−l (s),U), (2.12)

where now the functions L̃l,j−l (s,U) are computed recursively, with L̃0,0(s,U) = 1, L̃1,0(s,U) :=
H0(s,U), L̃0,1(s,U) := H1(s,U), and

L̃l+1,j−l (s,U) = L̃l,j−l (s,U)L̃1,0(al,j−l (s),U) + L̃l+1,j−l−1(s,U)L̃0,1(al+1,j−l−1(s),U), j − l ≥ l + 1,
L̃l,j−l+1(s,U) = L̃l,j−l (s,U)L̃0,1(al,j−l (s),U) + L̃l−1,j−l+1(s,U)L̃1,0(al−1,j−l+1(s),U), j − l ≤ l − 1.

For large j, K̃ (al,j−l (s),U) approaches a function of U. Following similar arguments as those in sub-
section 2.1, we ensure the convergence of the infinite sums of products, as n → ∞, in (2.12), and
obtain

g(s,U) = lim
n→∞

n∑
l=0

L̃l,n−l (s,U) +
∞∑
j=0

j∑
l=0

L̃l,j−l (s,U)K̃ (al,j−l (s),U). (2.13)

The values of g(`j), j = 1, . . . , K , g(ai), i = 1, . . . , L, can be obtained by solving a system of K +L
equations, which is derived by substituting s = `j, j = 1, . . . , K , and s = ai, i = 1, . . . , L, in (2.13).

Remark 2.3. Similar arguments can be used to cope with the case where Ck
i , k = 0, 1, are i.i.d. random

variables that follow a mixed Erlang distribution, although it would be trickier due to the presence of
additional unknown terms that corresponds to the derivatives of g(s, a) at specific points (see Remark
2.1), and further details are omitted.

3. The dual risk model with additive/proportional gains and dependencies based on FGM
copula

We now generalize the model in [18] by assuming that the gain interarrival times Bi, and the gain sizes
Ci are dependent based on the FGM copula. As indicated in [39], the FGM copula is a perturbation of
the product copula and a first order approximation to the Ali Mikhail Haq, Frank, and Placket copulas.
A dependent structure based on copulas has been considered so far in the classical risk reserve process
(e.g., [27]), but to our best knowledge there is a lack of results regarding the use of copulas even in
the standard (i.e., where a= 0) dual risk model. In this work we fill this gap, by considering copulas to
describe the dependence structure in this general dual risk model with proportional gains.

In [27], the authors considered an extension of the classical compound Poisson risk model where
the claim amounts and the claim inter-arrival times are dependent through an FGM copula. In their
work, they assumed that the interclaim arrival times are exponentially distributed. Later, in [24], the
authors generalized the work in [27], by considering an extension to the renewal or Sparre Andersen
risk process, where the claim interarrivals are Erlang distributed. Later, in [26], the authors consid-
ered an extension to the classical compound Poisson risk model in which, the dependence structure
between the claim amounts and the interclaim time is embedded via a generalized FGM (GFGM) copula.
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We also mentioned the recent work in [21], where some risk models with a semi-linear dependent
structure (no copula dependent) were discussed.

As stated in [39], “copulas are functions which ‘join’ or ‘couple’ multivariate distribution func-
tions to their one-dimensional marginal distribution functions.” In other words, a copula itself is a
multivariate distribution function whose inputs are the respective marginal cumulative probability dis-
tribution functions for the random variables of interest. A bivariate copula C is a joint distribution
function on [0, 1] × [0, 1] with standard uniform marginal distributions. Sklar’s theorem (see, e.g.,
[39]) states that any bivariate distribution function F with marginals F1 and F2 can be written as
F (x, y) = C(F1 (x), F2(y)), for some copula C. This copula is unique if F is continuous. Otherwise,
it is uniquely defined on the range of the marginals. We refer the reader to [35, 39] for further details on
copulas. Modeling the dependence structure between random variables (r.v.) using copulas has become
popular in actuarial science and financial risk management. The reader may refer to, for example, [8,
28, 38] for applications of copulas in actuarial science and financial risk management.

In this section, we generalize the model in [18], by considering a dependence structure among inter-
arrival gains, say Bi, and gain sizes Ci based on the FGM copula. We assume that Bi are i.i.d. random
variables having c. distribution function B(.), density b(.), and Laplace–Stieltjes transform q(.), and
assuming Ci to follow Erlang distribution. In particular, we assume that {(Bi, Ci), i ≥ 1} form a sequence
of i.i.d. random vectors distributed as the canonical r.v. (B, C), in which the components are dependent.
The joint density of (B, C) is denoted by fB,C (x, t), x, t ≥ 0, the c. distribution function by FB,C (x, t).
The FGM copula is used to define the joint distribution of (B, C). The FGM copula is defined by

CFGM
\ (u, v) := uv + \uv(1 − u) (1 − v),

for (u, v) ∈ [0, 1]2, and \ ∈ (−1, 1). The FGM copula allows positive and negative dependence, and it
further includes the independence copula for \ = 0. Its tractability, and simplicity, makes FGM copula
quite useful in applications to describe dependence structures.

The density associated with the above expression is cFGM
\

(u, v) := m2

mumvCFGM
\

(u, v) = 1 + \ (1 −
2u) (1 − 2v), and then, the bivariate density of (B, C) is given by

fB,C (x, t) = cFGM
\

(FB(x), FC (t))fB(x)fC (t) = fB(x)fC (t) + \h(x) (2F̄C (t) − 1),

with h(x) := fB(x) (1−2FB(x)) with Laplace transform h∗(s) =
∫ ∞
0 e−sxh(x)dx, and F̄C (t) := 1−FC (t).

In our case,

fB,C (x, t) = fB(x) `n

(n−1)! t
n−1e−`t

+\h(x)
[
2 `n

(n−1)! t
n−1e−2`t (∑n−1

i=0
(`t) i

i! ) − `n

(n−1)! t
n−1e−`t

]
.

(3.1)

Therefore,

R(x) = 1 − B(x) +
x∫

t=0

∞∫
y=0

R((1 + a) (x − t) + y)fB,C (t, y)dydt. (3.2)

Taking Laplace transform, we come up with the following expression

d(s) = 1 − q(s)
s

+ q(s)I0(s) + I1(s) − I2(s),
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where

I0(s) = q(s)
∞∫

x=t
e−s(x−t)

∞∫
z=(1+a) (x−t)

R(z)`n (z−(1+a) (x−t) )n−1

(n−1)! e−` (z−(1+a) (x−t)dzdx

=
∑n−1

l=0
(−1)n−1 (1+a)n−1−l`n−l

l!(s−` (1+a) )n−l d (l) (`) + 1
1+a

(
` (1+a)

` (1+a)−s

)n
d( s

1+a ),

I1(s) = \h∗(s)
∞∫

x=t
e−s(x−t)

∞∫
z=(1+a) (x−t)

2R(z)`n (z−(1+a) (x−t) )n−1

(n−1)! e−2` (z−(1+a) (x−t) )

×∑n−1
i=0

(` (z−(1+a) (x−t) ) ) i

i! dzdx

= 2\h∗(s)∑n−1
i=0

(
n−1+i

i

) [∑n−1+i
l=0

(−1)n+i−1

l!2l (1+a)

(
` (1+a)

s−2` (1+a)

)n+i
d (l) (2`)

+ 1
1+a

(
` (1+a)

2` (1+a)−s

)n+i
d( s

1+a )
]

,

I2(s) = \h∗(s)I0(s).

Combining the above, we come up with the following functional equation:

d(s) = J (s; \)d( s
1 + a

) + H (s; \), (3.3)

where

J (s; \) = q (s)−\h∗ (s)
1+a

(
` (1+a)

` (1+a)−s

)n
+ 2\h∗ (s)

1+a
∑n−1

i=0

(
n−1+i

i

) (
` (1+a)

2` (1+a)−s

)n+i
,

H (s; \) = 1−q (s)
s + Ĥ (s; \)

=
1−q (s)

s + (−1)n−1 (q (s)−\h∗ (s) )
1+a

∑n−1
l=0

d (l) (`)
l!

(
` (1+a)

s−` (1+a)

)n−l

+2\h∗(s)∑n−1
i=0

(
n−1+i

i

) ∑n−1+i
l=0

(−1)n+i−1

l!2l (1+a)

(
` (1+a)

s−2` (1+a)

)n+i
d (l) (2`).

(3.4)

Note that (3.3) has the same form as in [18, Eq. (2.5)], so we can apply similar arguments to solve it.
Iterating (3.3) N − 1 times results in

d(s) =
N−1∑
k=0

k−1∏
j=0

J ( s
(1 + a)j ; \)H ( s

(1 + a)k ; \) + d( s
(1 + a)N )

N−1∏
j=0

J ( s
(1 + a)j ; \),

with an empty product being equal to 1. Observe that for large k, J ( s
(1+a)k ; \) approaches

q (0)−\h∗ (0)
1+a + 2\h∗ (0)

1+a
∑n−1

i=0

(
n−1+i

i

)
( 1

2 )
n+i =

q (0)−\h∗ (0)
1+a + \h∗ (0)

1+a ( 1
2 + 1

2 )
n−1 =

q (0)
1+a < 1,

while H ( s
(1+a)k ) approaches a constant (as k → ∞). Thus,

d(s) =
∞∑

k=0

k−1∏
j=0

J ( s
(1 + a)j ; \)H ( s

(1 + a)k ; \). (3.5)

The terms d (l) (`), l = 0, 1, . . . , n − 1, d (l) (2`), l = 0, 1, . . . , 2n − 2, are obtained as follows: First, we
simply differentiating l times (3.5) with respect to s, and setting s = `, and s = 2`, respectively. Then,
a system of 2n + 1 equations is derived with unknown the terms d (l) (`), l = 0, 1, . . . , n − 1, d (l) (2`),
l = 0, 1, . . . , 2n − 2.
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Remark 3.1. Setting \ = 0, that is, by assuming independence among the gain interarrival and the
gain size, and letting n= 1, that is, by considering exponentially distributed gain sizes, we recover the
functional equation (2.5) in [18].

Then, we summarize the above in the following main result:

Theorem 3.2. The Laplace transform of the ruin probability d(s) is given in (4.9), where the terms
d (l) (`), l = 0, 1, . . . , n − 1, d (l) (2`), l = 0, 1, . . . , 2n − 2, are obtained as the solution of a system of
3n − 1 equations that is derived by differentiating l times (4.9) with respect to s, and setting s = `, and
s = 2`, respectively.

Remark 3.3. Note that both J (s; \) and H (s, \) have a singularity at s = `(1+a), and s = 2`(1+a), and
thus, one expects that the expression d(s) in (3.5) has a singularity at s = `(1+a)j+1, and s = 2`(1+a)j+1,
j = 0, 1, . . .. However, such a singularity is removable (as in the independent case that was treated in
[18, Remark 2.2]).

3.1. The time to ruin

Working on the same spirit as in subsection 2.2, we focus on g(s,U) defined in (2.10), and we obtain

g(s,U) = 1 − q(s + U)
s + U

+ q(s + U)P0(s,U, \) + P1(s,U; \) − P2(s,U; \),

where now,

P0(s,U, \) = 1
1+a

{∑n−1
i=0

(−1)n−1

i! ( ` (1+a)
s−` (1+a) )

n−ig (i) (`,U) + ( ` (1+a)
s−` (1+a) )

ng( s
1+a ,U)

}
,

P1(s,U, \) = 2\h∗(s + U)∑n−1
i=0

(
n−1+i

i

) [∑n−1+i
l=0

(−1)n+i−1

l!2l (1+a)

(
` (1+a)

s−2` (1+a)

)n+i
g (l) (2`,U)

+ 1
1+a

(
` (1+a)

2` (1+a)−s

)n+i
g( s

1+a ,U)
]

,

P2(s,U; \) = \h∗(s + U)P0(s,U; \).

Substituting back, we finally obtain

g(s,U) = g( s
1 + a

,U)J̃ (s,U; \) + H̃ (s,U; \), (3.6)

where

J̃ (s,U; \) = q (s+U)−\h∗ (s+U)
1+a

(
` (1+a)

` (1+a)−s

)n
+ 2\h∗ (s+U)

1+a
∑n−1

i=0

(
n−1+i

i

) (
` (1+a)

2` (1+a)−s

)n+i
,

H̃ (s,U; \) = 1−q (s+U)
s+U + (−1)n−1 (q (s+U)−\h∗ (s+U) )

1+a
∑n−1

l=0
g (l) (`,U)

l!

(
` (1+a)

s−` (1+a)

)n−l

+2\h∗(s + U)∑n−1
i=0

(
n−1+i

i

) ∑n−1+i
l=0

(−1)n+i−1

l!2l (1+a)

(
` (1+a)

s−2` (1+a)

)n+i
g (l) (2`,U).

Remark 3.4. Consider the case where when the ith jump upward occur (while the surplus just before
is u), the jump size is au +Ci with probability p, and Di with probability q := 1− p. However, there is a
dependence based on FGM copula. In particular, we assume that Ci (resp. Di) is Erlang distributed with
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parameters n, ` (resp. m, a). The joint bivariate pdf of (B, C) is given by (3.1) (where \ ≡ \1), while
the one of (B, D) by

fB,D(x, t) = fB(x) an

(m−1)! t
m−1e−at

+\2h(x)
[
2 an

(m−1)! t
m−1e−2at (∑m−1

i=0
(at) i

i! ) − an

(m−1)! t
m−1e−at

]
,

(3.7)

with \2 ∈ (−1, 1). Then,

R(x) = 1 − B(x) + p
x∫

t=0

∞∫
y=0

R((1 + a) (x − t) + y)fB,C (t, y)dydt,

+q
x∫

t=0

∞∫
y=0

R(x − t + y)fB,D(t, y)dydt.
(3.8)

By taking p= 1, we get the previous model, while for a= 0, we get the classical dual risk model with
dependence based on the FGM copula. Using similar calculations as those that leads to (3.3), we obtain
after heavy but straightforward calculations

d(s) [1 − qJ̃ (s; \2)] =
1 − q(s)

s
+ pJ (s; \1)d(

s
1 + a

) + pĤ (s; \1) + qH̃ (s; \2), (3.9)

where J (s; \1), Ĥ (s, \1) as given in (3.4) for \ = \1, and

J̃ (s; \2) = (q(s) − \2h∗(s)) ( a
a−s )

m + 2\2h∗(s)∑m−1
i=0

(
m−1+i

i

)
( a

2a−s )
m+i,

H̃ (s; \2) = (q(s) − \2h∗(s)) (−1)m−1 ∑m−1
i=0 ( a

s−a )
m−i d (i) (a)

i!
+2\2h∗(s)∑m−1

i=0

(
m−1+i

i

) ∑m−1+i
l=0 ( a

s−2a )
m+i−l (−1)m+i−l

l!2l d (l) (2a).
(3.10)

After simple algebraic arguments, (3.9) is rewritten as

d(s) = J1(s; \1, \2)d(
s

1 + a
) + H1(s; \1, \2), (3.11)

where

J1(s; \1, \2) = pJ (s;\1 )
1−qJ̃ (s;\2 )

,

H1(s; \1, \2) =
1−q (s)

s +pĤ (s;\1 )+qH̃ (s;\2 )
1−qJ̃ (s;\2 )

.

To proceed, we need to investigate the number of zeroes of 1−qJ̃ (s; \2) in the right-half complex plane.

Proposition 3.5. For \2 ≠ 0, the equation qJ̃ (s; \2) = 1 has exactly 3m − 1 roots, say s1, s2, . . . , s3m−1
in the right-half complex plane, that is, Re(sj) > 0, j = 1, 2, . . . , 3m − 1.

Proof. The proof is based on Rouché’s theorem [48]. Since qJ̃ (s; \2) = 1 can be rewritten as

q
[
amq(s) (2a − s)2m−1 + \amh∗(s)

(
2
∑m−1

i=0

(
m+i−1

i

)
ai (a − s)m (2a − s)m−i−1 − (2a − s)2m−1

)]
= (a − s)m (2a − s)2m−1,

(3.12)

it suffices to show that (3.12) has exactly 3m−1 roots with positive real parts. Let r > 0 be a sufficiently
large number, and denote by Cr the contour containing the imaginary axis running from ir to −ir and a
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semicircle with radius r running clockwise from ir to −ir, that is, Cr = {s ∈ C : |s| = r, Re(s) ≥ 0, r >

0 fixed}. Denote by C the limiting contour, by letting r → ∞. We distinguish two cases according to as
Re(s) > 0 or Re(s) = 0.

For s, such that Re(s) > 0, we have that |2a − s| → ∞, and |a − s| → ∞ as r → ∞. Thus,

|qJ̃ (s; \2) | ≤ q
[
|q(s) | am

|a−s |m + |\2 | |h∗(s) | (2
∑m−1

i=0

(
m+i−1

i

)
) am+i

|2a−s |m+i + am

|a−s |m )
]
→ 0,

on C, that is, as r → ∞, and thus, |qJ̃ (s; \2) | < 1, on C.
Denote by d(s) := 2

∑m−1
i=0

(
m+i−1

i

)
) ( a

2a−s )
m+i − ( a

a−s )
m. Note that,

d(0) = 2
m−1∑
i=0

(
m + i − 1

i

)
) ( 1

2
)m+i − 1 = 2( 1

2
)m

m−1∑
i=0

(
m + i − 1

i

)
) ( 1

2
)i − 1 = 2( 1

2
)m2m−1 − 1 = 0.

For s such that Re(s) = 0,

|qJ̃ (s; \2) | ≤ q
[
|q(s) | am

|a−s |m + |\2 | |h∗(s) | (2
∑m−1

i=0

(
m+i−1

i

)
) am+i

|2a−s |m+i + am

|a−s |m )
]

≤ q
[

am

|a−s |m + |\2 | |d(s) |
]
≤ q(1 + |\2 | |d(0) |) = q < 1.

Thus, in each case, we proved that |qJ̃ (s; \2) | < 1, or equivalently,

|q
[
amq(s) (2a − s)2m−1 + \amh∗(s)

(
2
∑m−1

i=0

(
m+i−1

i

)
ai (a − s)m (2a − s)m−i−1 − (2a − s)2m−1

)]
|

< | (a − s)m (2a − s)2m−1 |,

thus by Rouché’s theorem [48], it follows that (3.12) has the same number of roots with (a − s)m (2a −
s)2m−1 = 0 inside Cr. Since the latter equation has exactly 3m−1 positive roots inside Cr (with r → ∞),
we deduce that (3.12), or equivalently 1− qJ̃ (s; \2) = 0 has exactly 3m− 1 roots, say s1, . . . , s3m−1 with
positive real parts. �

Iterating (3.11) N − 1 times yields

d(s) =
N−1∑
k=0

k−1∏
j=0

J1(
s

(1 + a)j ; \1, \2)H1(
s

(1 + a)k ; \1, \2) + d( s
(1 + a)N )

N−1∏
j=0

J ( s
(1 + a)j ; \1, \2).

Using similar arguments as above, we conclude that

d(s) =
∞∑

k=0

k−1∏
j=0

J1(
s

(1 + a)j ; \1, \2)H1(
s

(1 + a)k ; \1, \2). (3.13)

We still need to obtain d (l) (`), l = 0, 1, . . . , n − 1, d (l) (2`) l = 0, 1, . . . , 2n − 2, and d (d) (a),
d = 0, 1, . . . , m − 1, d (d) (2a), d = 0, 1, . . . , 2m − 2. Differentiating l times (l = 0, 1, . . . , n − 1) (3.13)
and substituting s = `, we obtain n equations. Similarly, by differentiating l times (l = 0, 1, . . . , 2n − 2)
(3.13) and substituting s = 2`, we have other 2n − 1. We still need other 3m − 1 equations. To this

https://doi.org/10.1017/S0269964824000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000214


Probability in the Engineering and Informational Sciences 169

end, we invoke Rouché’s theorem [48] and proposition 3.5, where we showed that 1− pJ̃ (s; \2) = 0 has
exactly 3m− 1 roots with positive real parts. Setting s = sj, j = 1, . . . , 3m− 1 in (3.9) yields (since d(s)
is analytic in the right half s-plane, d(sj), j = 1, . . . , 3m − 1 is finite)

1 − q(sj)
sj

+ pJ (sj; \1)d(
sj

1 + a
) + pĤ (sj; \1) + qH̃ (sj; \2) = 0, j = 1, . . . , 3m − 1. (3.14)

Definitely (3.14) provide 3m − 1 equations, but they also introduce the additional unknowns d( sj
1+a ),

j = 1, . . . , 3m − 1. However, this problem is overcome by substituting s = sj
1+a in (3.13), so that another

equation is derived (for each j = 1, . . . , 3m−1) where d( sj
1+a ) is given in terms of the unknowns d (l) (`),

d (l) (2`), d (d) (a), d (d) (2a).

3.2. An extension to the GFGM copula

We now assume that the gain interarrivals and the gain sizes are dependent based on a GFGM copula,
which belongs to a family of copulas introduced by [46], and defined by

C(u, v) = uv + \p(u)g(v),

where p(.) and g(.) are non-zero real functions with support [0, 1]. For other extensions of the classical
FGM copula see, for example, [30]. Our motivation on the extensions of FGM is to improve the range of
dependence association (as measured by either Kendall’s g or Spearman’s d) between the components of
(B, C). In this work, we assume the case where p(u) := uk (1−u)b, g(v) := vc (1−v)d , with k, b, c, d ≥ 1.
The density associated with the GFGM is given by c(u, v) = 1 + \p′ (u)g′ (v). Thus, the joint density of
the random vectors (Bi, Ci) is given by

fB,C (x, t) = c(FB(x), FC (t))fB(x)fC (t) = fB(x)fC (t) + \p′ (FB(x))g′ (FC (t))fB(x)fC (t).

Therefore,

R(x) = 1 − B(x) +
x∫

t=0

∞∫
y=0

R((1 + a) (x − t) + y)fB,C (t, y)dydt. (3.15)

Assuming that Ci are i.i.d. random variables that follow exp(`) (the analysis is still applicable if we
consider hyperexponential or Erlang distribution, but to keep the model as simple we can for the shake
of readability we assume exponential distribution for the gain sizes), and applying Laplace transforms
we come up with the following functional equation:

d(s) = 1−q (s)
s + q(s) `

` (1+a)−s (d(
s

1+a ) − d(`))

+\
∞∫

x=0
e−sx

x∫
t=0

∞∫
y=0

R((1 + a) (x − t) + y)p′ (FB(t))g′ (1 − e−`y)fB(t)`e−`ydydtdx,

where the functions g and h are defined above. In order to rewrite the third term in the RHS of the
above equation, let us define the r.v. Z with density given by gZ (t) = fB(t) − fB(t)p′ (FB(t)), and the
corresponding Laplace transform g∗Z (s). Let also define the function kC (y) = g′ (1− e−`y)`e−`y. Thus,

d(s) = 1−q (s)
s + q(s) `

` (1+a)−s (d(
s

1+a ) − d(`))

+\
∞∫

x=0
e−sx

x∫
t=0

∞∫
y=0

R((1 + a) (x − t) + y)kC (y) [fB(t) − gZ (t)]dydtdx. (3.16)
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By the definition of the function g, simple computations imply that

kC (y) = g′ (1 − e−`y)`e−`y = `(1 − e−`y)c−1 [(c + d)e−` (d+1)y − de−`dy]
= `

∑c−1
i=0

(
c−1

i

)
(−1)i [(c + d)e−` (d+c−i)y − de−` (c−1−i+d)y] .

Then, the triple integral in the RHS of (3.16) can be rewritten as follows:

I (s) = \ (q(s) − g∗Z (s))
∞∫

t=x
e−s(x−t)

∞∫
z=(1+a) (x−t)

R(z)kC (z − (1 + a) (x − t))dzdx

= \ (q(s) − g∗Z (s))`
∑c−1

i=0

(
c−1

i

)
(−1)i

{
(c + d)

∞∫
w=0

e−w(s−` (1+a) (c+d−i) )

×
∞∫

z=(1+a)w
R(z)e−` (c+d−i)zdzdw

−d
∞∫

w=0
e−w(s−` (1+a) (c+d−i−1) )

∞∫
z=(1+a)w

R(z)e−` (c+d−i−1)zdzdw

}
= \ (q(s) − g∗Z (s))`

∑c−1
i=0

(
c−1

i

)
(−1)i

{
(c + d)

∞∫
z=0

R(z)e−` (c+d−i)z 1−e−
z

1+a (s−` (1+a) (c+d−i) )

s−` (1+a) (c+d−i) dz

−d
∞∫

z=0
R(z)e−` (c+d−i−1)z 1−e−

z
1+a (s−` (1+a) (c+d−i−1) )

s−` (1+a) (c+d−i−1) dz

}
= \ (q(s) − g∗Z (s))`

∑c−1
i=0

(
c−1

i

)
(−1)i

{
c+d

s−` (1+a) (c+d−i) (d(`(s + d − i)) − d( s
1+a ))

− d
s−` (1+a) (c+d−i−1) (d(`(s + d − i − 1)) − d( s

1+a ))
}
.

Hence, (3.16) is now rewritten as

d(s) = J (s; \)d( s
1 + a

) + H (s; \), (3.17)

where now,

J (s; \) := `q (s)
` (1+a)−s + \ (q(s) − g∗Z (s))`

∑c−1
i=0

(
c−1

i

)
(−1)i

[
c+d

` (1+a) (c+d−i)−s −
d

` (1+a) (c+d−i−1)−s

]
,

H (s; \) := 1−q (s)
s + Ĥ (s; \)

=
1−q (s)

s − `q (s)d(`)
` (1+a)−s

+\ (q(s) − g∗Z (s))`
∑c−1

i=0

(
c−1

i

)
(−1)i

{
(c+d)d(` (c+d−i) )
s−` (1+a) (c+d−i) − dd(` (c+d−i−1) )

s−` (1+a) (c+d−i−1)

}
.

(3.18)

Note that (3.17) has exactly the same form with (3.3), although the functions J (s; \), H (s; \) are different
both because the marginals are now exponentially distributed (when deriving (3.3) we assumed they are
Erlang distributed), and especially because we now used the GFGM copula (instead of the standard FGM
copula).

Iterating (3.3) N − 1 times results in

d(s) =
N−1∑
k=0

k−1∏
j=0

J ( s
(1 + a)j ; \)H ( s

(1 + a)k ; \) + d( s
(1 + a)N )

N−1∏
j=0

J ( s
(1 + a)j ; \),
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with an empty product being equal to 1. Observe that for large k, J ( s
(1+a)k ; \) approaches

q (0)
1+a + \ (q(0) − g∗Z (0))

∑c−1
i=0

(
c−1

i

)
(−1)i

[
c+d

(1+a) (c+d−i) −
d

(1+a) (c+d−i−1)

]
=

q (0)
1+a = 1

1+a < 1,

and H ( s
(1+a)k ; \) approaches a constant. Thus,

d(s) =
∞∑

k=0

k−1∏
j=0

J ( s
(1 + a)j ; \)H ( s

(1 + a)k ; \). (3.19)

The values of d(`), d(`(c + d − i)), i = 0, . . . , c, can be derived by substituting s = `, s = `(c + d − i),
i = 0, . . . , c, in (3.19), and solving a system of c+ 2 equations.

Remark 3.6. It would be interesting to consider the case where with probability p the ith jump has
size au + Ci (when U (T−

i ) = u), and with probability q := 1 − p, has size Di ∼ exp(a), where now
the components of (Bi, Ci) are dependent through the GFGM with parameters (\1, k1, b1, c1, d1), and
the components of (Bi, Di) are dependent through the GFGM with parameters (\2, k2, b2, c2, d2), where
\1 ≠ \2, , k1 ≠ k2, b1 ≠ b2, c1 ≠ c2, d1 ≠ d2. Then,

d(s) = 1−q (s)
s + p

{
q(s) `

` (1+a)−s (d(
s

1+a ) − d(`))

+\1

∞∫
x=0

e−sx
x∫

t=0

∞∫
y=0

R((1 + a) (x − t) + y)kC (y) [fB(t) − gZ (t)]dydtdx

}
+q

{
q(s) a

a−s (d(s) − d(a))

+\2

∞∫
x=0

e−sx
x∫

t=0

∞∫
y=0

R(x − t + y)kD(y) [fB(t) − g̃Z (t)]dydtdx

}
,

(3.20)

where g̃Z (t) = fB(t) − fB(t)p′∗(FB(t)), with p∗(u) := uk2 (1 − u)b2 . Simple but tedious computations
yield

d(s) = J1(s; \1, \2)d(
s

1 + a
) + H1(s; \1, \2), (3.21)

where

J1(s; \1, \2) := pJ (s;\1 )
1−qG (s;\2 ) ,

G(s; \2) := aq (s)
a−s + \2(q(s) − g̃∗Z (s))a

∑c2−1
i=0

(
c2−1

i

)
(−1)i

[
c2+d2

a (c2+d2−i)−s −
d

a (c2+d2−i−1)−s

]
,

H1(s; \1, \2) :=
1−q (s)

s +pĤ (s;\1 )+qH̃ (s;\2 )
1−qG (s;\2 ) ,

H̃ (s; \2) := aq (s)d(a)
a−s

+\2(q(s) − g̃∗Z (s))a
∑c2−1

i=0

(
c2−1

i

)
(−1)i

{
(c2+d2 )d(a (c2+d2−i) )

s−a (c2+d2−i) − dd(a (c2+d2−i−1) )
s−a (c2+d2−i−1)

}
,

and J (s; \1), Ĥ (s; \1) as given in (3.18), where \1 ≡ \, and c ≡ c1, d ≡ d1, k ≡ k1, b ≡ b1.
By letting ai := a(d2 + i − 1), i = 1, . . . , c2 + 1, G(s; \2) is now rewritten as
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G(s; \2) :=
aq (s) ∏c2+1

i=1 (ai−s)+\2 (q (s)−g̃∗Z (s) )a (a−s) ∑c2−1
j=0

(
c2−1

j

)
(−1) j

(
c(ac+1−j−s)−ac+1

) ∏
l≠,c−j,c+1−j (al−s)

(a−s) ∏c2+1
i=1 (ai−s)

.

Note that (3.21) has the same form as the one in (3.17), and its solution will have the form of (3.19),
that is,

d(s) =
∞∑

k=0

k−1∏
j=0

J1(
s

(1 + a)j ; \1, \2)H1(
s

(1 + a)k ; \1, \2). (3.22)

However, we still have to obtain c1+c2+4 unknown terms, namely, d(`), d(`(d1+i−1)), i = 1, . . . , c1+1,
and d(a), d(a(d2+j−1)), j = 1, . . . , c2+1. Clearly, c1+2 equations can be derived by simply substituting
s = `, and s = `(d1 + i − 1), i = 1, . . . , c1 + 1 in (3.22). In order to construct other c2 + 2, we need to
show that the equation 1− qJ2(s; \2) = 0 has exactly c2 + 2 roots, say s1, . . . , sc+2, such that Re(sk) > 0,
k = 1, . . . , c2+2. This task can be accomplished by using Rouché’s theorem [48] as we did in Proposition
3.5. However, by substituting s = sk in

d(s) [1 − qG(s; \2)] =
1 − q(s)

s
+ p(J (s; \1)d(

s
1 + a

) + Ĥ (s; \1)) + qH̃ (s; \2), (3.23)

another unknown is introduced, that is, d( sk
1+a ). However, this unknown can be expressed in terms of

d(`), d(`(d1 + i − 1)), i = 1, . . . , c1 + 1, and d(a), d(a(d2 + j − 1)), j = 1, . . . , c2 + 1, through (3.22).

Proposition 3.7. For \2 ≠ 0, the equation qG(s; \2) = 1 has exactly c2 + 2 roots, say s1, s2, . . . , sc2+2
in the right-half complex plane, that is, Re(sj) > 0, j = 1, 2, . . . , c2 + 2.

Proof. The proof is based on Rouché’s theorem [48] on a contour Cr, consisting of the imaginary axis
running from −ir to ir and a semi-circle with radius r running clockwise from ir to −ir. Let r → ∞ and
denote by C the limiting contour. It suffices to show that the equation

(a − s)∏c2+1
i=1 (ai − s) = qa

{
q(s)∏c2+1

i=1 (ai − s)

+\2 (q(s) − g̃∗Z (s)) (a − s)∑c2−1
j=0

(
c2−1

j

)
(−1)j

(
c(ac+1−j − s) − ac+1

) ∏
l≠,c−j,c+1−j (al − s)

}
,

(3.24)

has exactly c2 + 2 roots with positive real parts. Equivalently, we need to show that |qG(s; \2) | < 1 on
C. Note that a

a−s and

d(s) :=
a
∑c2−1

j=0

(
c2−1

j

)
(−1)j

(
c(ac+1−j − s) − ac+1

) ∏
l≠,c−j,c+1−j (al − s)∏c2+1

i=1 (ai − s)
,

are ratios of polynomials with a strictly higher degree at the denominator. Thus, |qG(s; \2) | → 0 on C
(except from Re(s) = 0). For Re(s) = 0,

|qG(s; \2) | ≤ q
(
|q(s) a

a−s | + |\2 | |q(s) − g̃Z (s) | |d(s) |
)

≤ q
(
| a
a−s | + |\2 | |d(s) |

)
≤ q(1 + \2 |d(0) |) = q < 1,
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since simple computations imply that d(0) = 0. Therefore, Rouché’s theorem implies that (3.24) or
equivalently qG(s; \2) = 1 has exactly c2 + 2 roots, say sj, j = 1, . . . , c2 + 2 such that Re(sj) > 0. �

3.3. The dual risk model with proportional gains and a linear dependence among gain interarrival
times and surplus level

Following the notion of this section, we consider the case where gain interarrivals and gain sizes are
dependent based on an FGM copula. On top of that, we further assume that when the surplus level
is x the next gain interarrival time is cx, c ∈ (0, 1). Therefore, we assume that the gain interarrival
times are linearly dependent on the surplus level. For convenience, we assume that the gain interar-
rivals are exponentially distributed with rate _ and gain sizes are exponentially distributed with rate `.
Then,

R(x) = e−_(1−c)x +
x∫

t=cx

∞∫
y=0

R((1 + a) (x − t) + y)fB,C (t − cx, y)dydt, (3.25)

where

fB,C (t, y) = _`e−_t`e−`y + \ (2_e−2_t − _e−_t) (2`e−2`y − `e−`y), t, y ≥ 0, \ ∈ [−1, 1] .

Remark 3.8. Note that for \ = 0, that is, the independent case, and a= 0, our model reduces to the model
in [21, Sect. 3].

Taking Laplace transforms, setting x − t = w and c̄ := 1 − c, we obtain after some algebra:

d(s) = 1
s+_c̄ + _`

∞∫
x=0

e−sx
c̄x∫

w=0

∞∫
y=0

R(w(1 + a) + y)
[
(1 + \)e−_(c̄x−w)e−`y + 4\e−2_(c̄x−w)e−2`y

−2\e−2_(c̄x−w)e−`y − 2\e−_(c̄x−w)e−2`y] dydwdx
= 1

s+_c̄ + _`[(1 + \)I1 (s) + 4\I2(s) − 2\ (I3(s) + I4(s))],

where

I1(s) =
∞∫

x=0
e−sx

c̄x∫
w=0

∞∫
y=0

R(w(1 + a) + y)e−_(c̄x−w)e−`ydydwdx

=

∞∫
x=0

e−sx
c̄x∫

w=0

∞∫
z=w(1+a)

R(z)e−_(c̄x−w)`e−` (z−w(1+a) )dydwdx

=

∞∫
w=0

ew(_+` (1+a) )
∞∫

x=w/c̄
e−x (s+_c̄)

∞∫
z=w(1+a)

R(z)e−`zdzdxdw

= 1
s+_c̄

∞∫
w=0

e−w( s
c̄ −` (1+a) )

∞∫
z=w(1+a)

R(z)e−`zdzdw

= c̄
(s+_c̄) (s−c̄` (1+a) ) (d(`) − d( s

c̄(1+a) )).
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Similarly,

I2(s) =
∞∫

x=0
e−sx

c̄x∫
w=0

∞∫
y=0

R(w(1 + a) + y)e−2_(c̄x−w)e−2`ydydwdx

=

∞∫
x=0

e−sx
c̄x∫

w=0

∞∫
z=w(1+a)

R(z)e−2_(c̄x−w)`e−2` (z−w(1+a) )dydwdx

=

∞∫
w=0

ew(2_+2` (1+a) )
∞∫

x=w/c̄
e−x (s+2_c̄)

∞∫
z=w(1+a)

R(z)e−2`zdzdxdw

= 1
s+2_c̄

∞∫
w=0

e−w( s
c̄ −2` (1+a) )

∞∫
z=w(1+a)

R(z)e−2`zdzdw

= c̄
(s+2_c̄) (s−c̄2` (1+a) ) (d(2`) − d( s

c̄(1+a) )).

I3(s) =
∞∫

x=0
e−sx

c̄x∫
w=0

∞∫
y=0

R(w(1 + a) + y)e−2_(c̄x−w)e−`ydydwdx

= c̄
(s+2_c̄) (s−c̄` (1+a) ) (d(`) − d( s

c̄(1+a) )).

I4(s) =
∞∫

x=0
e−sx

c̄x∫
w=0

∞∫
y=0

R(w(1 + a) + y)e−_(c̄x−w)e−2`ydydwdx

= c̄
(s+_c̄) (s−c̄2` (1+a) ) (d(2`) − d( s

c̄(1+a) )).

To conclude, the Laplace transform of the ruin probability starting at surplus level x satisfies the
following functional equation:

d(s) = J (s; \)d(Z (s)) + H (s; \), (3.26)

where now, Z (s) := s
c̄(1+a) , and,

J (s; \) = _`c̄[ (s+2_c̄) (2`c̄(1+a)−s)−\s2 ]
(s+2_c̄) (2`c̄(1+a)−s) (s+_c̄) (`c̄(1+a)−s) ,

H (s; \) = 1
s+_c̄

(
1 − _`c̄

[
s(1−\ )+2_c̄

(s+2_c̄) (`c̄(1+a)−s) d(`) +
2\s

(s+2_c̄) (2`c̄(1+a)−s) d(2`)
] )

.

Note that (3.26) has the same form as the one in [18, Eq. (2.1)]. Iteration of (3.26) results in the following
theorem.

Theorem 3.9. The Laplace transform of the ruin probability d(s) is given by

d(s) =
∞∑

k=0

k−1∏
j=0

J (Z (j) (s); \)H (Z (k) (s); \), (3.27)

where Z (j) (s) := Z (Z (j−1) (s)) = s
(c̄(1+a) ) j , with Z (0) (s) = s. The unknowns d(`), d(2`) (that appear

with a prefactor in all H (Z (k) (s); \)) are derived by the system of equations that is constructed by
substituting s = `, s = 2` in (3.27).

3.4. Numerical example

In the following, we cope with the derivation of some numerical results based on the theoretical findings
in Theorem 3.9. In particular, we provide values of the ruin probabilities as functions of the surplus level
and investigate the impact of the parameters. All numbers are generated by using the software package
Mathematica (Note that no actual time unit is specified here).
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Table 1. The effect of proportionality parameter a on ruin probabilities R(x) when _ = 1, ` = 4, c= 0.1,
\ = 0.7.
x a= 3 (maximum k = 11, 10) a= 6 (maximum k = 8, 7) a= 9 (maximum k = 7, 6)

1 0.61626 0.4722 0.4523
3 0.09456 0.07862 0.07437
5 0.0156 0.013 0.01228
7 0.00257 0.002145 0.00203
9 0.000425 0.000354 0.000335
11 0.000076 0.000058 0.000055

Figure 1. Instances of d(s) when we truncate the infinite sum in (3.27) at k= 2 and k= 30 (when _ = 1,
` = 4, \ = 0.7, a= 3).

Numerical results shown that we need a (relatively) small finite number of terms (depending on the
values of the parameters) in order to obtain the values of d(`), d(2`) in the expression (3.27) (d(`),
d(2`) are unknowns in H (s; \) and are derived as stated in Theorem 3.9), as well as to derive the Laplace
transform d(s). In doing that, we truncate the infinite sum at a specific value of k, such that the absolute
difference of two consecutive terms to be smaller than 10−7, that is, if u1(k) :=

∏k−1
j=0 J (Z (j) (`); \),

u2(k) :=
∏k−1

j=0 J (Z (j) (2`); \), find k such that |um (k) − um (k + 1) | ≤ 10−7, m = 1, 2. We observed that
as we increase a the number of terms needed in the summation in (3.27) decrease very fast (see also
Table 1). The ruin probabilities R(x) are obtained by using Euler algorithm described in [2, pp. 7–8] to
numerically invert d(s), that is, R(x) = L−1(d(s)). To obtain d(s), we need even fewer non-negligible
terms in the infinite sum (3.27). In Figure 1, we can see two instances of d(s) when we truncate the
infinite sum in (40) at k = 2, and k = 30 (when _ = 1, ` = 4, \ = 0.7, a= 3). It is obvious that the two
instances of d(s) are almost identical. In the numerical examples, we derive below we truncate the
infinite sum in (3.27) at k = 30.

In Table 1, we observe the effect of the proportionality parameter a on the ruin probabilities R(x)
for given values of the initial surplus x. We observe that as we increase a, R(x) decreases as expected
since the surplus level also increases. Note that by increasing a, the number of non-negligible terms
in the infinite sum in (3.27) are decreasing. For example, when a= 3, u1(11) = 5.76757 ∗ 10−8,

https://doi.org/10.1017/S0269964824000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000214


176 I. Dimitriou

Figure 2. The effect of c on the ruin probabilities for _ = 3, ` = 4, \ = 0.7, a= 6.

with |u1(11) − u1(12) | = 4.16547 ∗ 10−8, u2(10) = 7.85483 ∗ 10−8, with |u2(10) − u2(11) | =

5.67299 ∗ 10−8, thus, um (k) ≈ 0 for k ≥ 11, m = 1, 2. When a= 9, u1(7) = 2.68044 ∗ 10−8 with
|u1(7) − u1(8) | = 2.38262 ∗ 10−8, and u2(6) = 1.04183 ∗ 10−7, |u2 (6) − u2(7) | = 9.26076 ∗ 10−8, thus
in that case, um (k) ≈ 0 for k ≥ 7, m = 1, 2. So, the more we increase a, the less non-negligible terms
we need. Moreover, when we start with large initial surplus, R(x) decreases, and that decrease becomes
more apparent as a increases.

Figure 2 shows the way the ruin probabilities R(x) are affected when we increase c, for varying values
of the initial surplus level. In particular, we can see that as c increases, that is, when the gain interarrival
increases proportionally to the surplus level x, the ruin probability also increases as expected, since
the time until the next gain interarrival also increases. Moreover, that increase becomes more apparent
when the surplus level is closer to zero.

In Figure 3, we observe the effect of the dependence parameter \ on d(s). As we can see from
Figure 3, the dependence parameter \ has a clear impact on the values of d(s). In particular, the higher
the dependence parameter the higher the value of d(s) is. Equivalently, when the dependence relation
is positive, the probability of having an important gain increases as the time elapsed since the last gain
increases. As a result, the ruin probability will be lower.

To conclude, despite the fact that the explicit expressions of the Laplace transforms are given in terms
of infinite sums of products, we can easily derive numerical results due to the fact that numerically, we
need only few terms (a finite number) in these sums, thus, making our results fully numerically tractable.

The next step is to focus on the Laplace–Stieltjes transform of the ruin time gx, that is, T (s, x):

T (s, x) = e−sxe−_(1−c)x +
x∫

t=cx
e−st

∞∫
y=0

T (s, (1 + a) (x − t) + y)fB,C (t − cx, y)dydt

= e−x (s+_c̄) +
c̄x∫

w=0
e−s(x−w)

∞∫
y=0

T (s, (1 + a)w + y)fB,C (c̄x − w, y)dydw.
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Figure 3. The effect of \ on d(s) for _ = 8, ` = 4, c= 0.1, a= 6.

Let g(s, V) the Laplace transform of the ruin time Laplace–Stieltjes transform T (s, x). Then,

g(s, V) = 1
s+_c̄+V +

∞∫
x=0

e−sV
c̄x∫

w=0
e−s(x−w)

∞∫
z=(1+a)w

R(z)fB,C (c̄x − w, z − w(1 + a))dzdwdx.

By repeating similar steps as above, we obtain after some algebra the following functional equation:

g(s, V) = J̃ (s, V; \)g(s,k(s, V)) + H̃ (s, V; \), (3.28)

where now, k(s, V) := r (s,V)
1+a =

V+cs
c̄(1+a) , and,

J̃ (s, V; \) = _`[ (s+2_c̄+V) (2` (1+a)−r (s,V) )−\ (s+V)r (s,V) ]
(s+2_c̄+V) (2` (1+a)−r (s,V) ) (s+_c̄+V) (` (1+a)−r (s,V) ) ,

H̃ (s, V; \) = 1
s+_c̄+V

(
1 − _`

[
(s+V) (1−\ )+2_c̄

(s+2_c̄+V) (` (1+a)−r (s,V) ) g(s, `) +
2\ (s+V)

(s+2_c̄+V) (2` (1+a)−r (s,V) ) g(s, 2`)
] )

.

Writing k (j) (s, V) := k(k (j−1) (s, V)) with k (0) (s, V) := V, we have,

k (j) (s, V) = V

(c̄(1 + a))j +
j∑

i=1

cs
(c̄(1 + a))i , j = 1, 2, . . . .

Iterating (3.28), we obtain the following result.
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Theorem 3.10. The Laplace transform of the ruin time Laplace–Stieltjes transform T (s, x) is given by

g(s, V) =
∞∑

k=0

k−1∏
j=0

J̃ (k (j) (s, V); \)H̃ (k (k) (s, V); \). (3.29)

The unknowns g(s, `), g(s, 2`) (that appear with a prefactor in all H̃ (k (k) (s, V; \)) are derived by the
system of equations that is constructed by substituting s = `, s = 2` in (3.29).

Note that the sums of products in (3.27) and (3.29) converge since both J (., .), H (., .) (resp. J̃ (., .),
H̃ (., .)) decrease geometrically fast.

Remark 3.11. Note that for c= 0, a= 0, we cope with the standard (no proportional gains) dual risk
model with exp(`) initial capital, and for which there is a dependence among gain interarrivals and gain
sizes based on the FGM copula. In queueing terms, we are dealing with an M/M/1 queue and studying
the busy period starting from an empty system with an exp(`) upward jump, in which the interarrival
times and work that enters the system are dependent based on the FGM copula. Note that `g(s, `) =∫ ∞
0 T (s, x)`e−`xdx should be equal to the to the Laplace–Stieltjes transform of an M/M/1 queue with

initial service time to be exp(`), and for which we consider the dependence structure mentioned above.
In particular, for c = a = 0, (3.28) is rewritten as:

g(s, V) (1 − Ĵ (s, V; \)) = Ĥ (s, V; \), (3.30)

where

Ĵ (s, V; \) = _`
(s+2_+V) (2`−V)−\ (s+V)V

(s+_+V) (s+2_+V) (`−V) (2`−V) ,

Ĥ (s, V; \) = 1
s+_+V

(
1 − _`

[
(s+V) (1−\ )+2_
(s+2_+V) (`−V) g(s, `) +

2\ (s+V)
(s+2_+V) (2`−V) g(s, 2`)

] )
.

It is readily seen that for \ = 0, (3.30) reduces to the one in [21, Eq. (29)]. Moreover, taking V = `, and
V = 2`, (3.30) gives an identity. We now investigate the roots of the equation 1 − Ĵ (s, V; \) = 0.

Proposition 3.12. For Re(s) > 0, \ ≠ 0, the equation 1 − Ĵ (s, V; \) = 0 has exactly two roots, say
u1(s), u2(s) with Re(ui (s)) > 0, i = 1, 2.

Proof. Following Rouché’s theorem [48], we consider a contour Cr, consisting of the imaginary axis
running from −ir to ir and a semi-circle with radius r running clockwise from ir to −ir. Let r → ∞ and
denote by C the limiting contour. Note that 1 − Ĵ (s, V; \) = 0 is rewritten as

_`[(s + 2_ + V) (2` − V) − \ (s + V)V] = (s + _ + V) (s + 2_ + V) (` − V) (2` − V). (3.31)

So it suffices to show that (3.31) has exactly two roots in the right-half complex plane. It is readily seen
that |̂J (s, V; \) | → 0 on C (excluding Re(V) = 0), since it is the sum of ratios of polynomials with a
strictly higher degree at the denominator. For Re(V) = 0,

|̂J (s, V; \) | = _` | (s+2_+V) (2`−V)−\ (s+V)V
(s+_+V) (s+2_+V) (`−V) (2`−V) | ≤ _` | 1

(s+_+V) (`−V) | + _` |\ | (s+V)V
(s+_+V) (s+2_+V) (`−V) (2`−V) |

≤ | s
s+_ | < 1.

Thus in any case |̂J (s, V; \) | < 1 or equivalently

_` | (s + 2_ + V) (2` − V) − \ (s + V)V | < | (s + _ + V) (s + 2_ + V) (` − V) (2` − V) |,
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and thus by Rouché’s theorem, it follows that (3.31) has the same number of roots as (s + _ + V) (s +
2_ + V) (` − V) (2` − V) = 0 inside Cr. Since the latter equation has exactly two positive roots inside
Cr, we deduce that (3.31) or equivalently 1 − Ĵ (s, V; \) = 0 has exactly two roots, say u1(s), u2(s) with
positive real parts. Finally, we complete the proof by letting r → ∞. �

Substituting in (3.30) V = u1(s), and V = u2(s) we construct a system of two equations with
unknowns g(s, `), g(s, 2`). By solving this system, we are able to compute `g(s, `) in terms of the
u1(s), u2 (s). Note that by setting \ = 0 (i.e., the standard M/M/1 queue) `g(s, `) coincides with the
expression in [21, Eq. (29)].

4. A dual risk model with upward and downward jumps and randomly proportional gains

We now focused on the case of two-sided jumps, that is, the upward and downward jumps can be
interpreted as company random gains and random losses respectively. Thus, our model is suitable for
insurance companies with business in both property and casualty insurance and life annuities. More pre-
cisely, we assume that with probability p gains Ci, and with probability q losses −Di (i = 1, 2, . . .) that
arrive according to a renewal process with general interarrival times. Let, Cis and Dis are exponentially
distributed (we also consider the case where they follow Erlang distribution).

On top of that, we add the randomly proportional gain feature. More precisely, if the surplus process
just before the ith arrival is at level u, then, the capital jumps to:{

(1 + al)u + Ci, with probability p × kl, l = 1, . . . , K ,
[(1 + Vh)u − Di]+ , with probability q × mh, h = 1, . . . , L,

(4.1)

where p + q = 1, and
∑L

l=1 = 1,
∑M

h=1 mh = 1. Thus, with probability p (resp. q), we have an upward
(resp. downward) jump of size Ci (resp. −Di), with an additional inflow proportional to u, and equal to
alu (resp. Vhu) with probability kl, l = 1, . . . , K (resp. mh, h = 1, . . . , L). So the type of the jump affects
also the values of proportionality coefficient. Note that for p= 1, k1 = 1, our model reduces to the one

in [18]. Then, having in mind that [(1 + Vh)u−Di]+ =

{
(1 + Vh)u − Di, (1 + Vh)u ≥ Di,
0, (1 + Vh)u < Di,

we have,

R(x) = 1 − B(x) + p
∑K

l=1 kl

x∫
t=0

∞∫
y=0

R((1 + al) (x − t) + y)`e−`ydydB(t)

+ q
∑K

h=1 mh

x∫
t=0

{
(1+Vh ) (x−t)∫

y=0
R((1 + Vh) (x − t) − y)ae−aydy +

∞∫
y=(1+Vh ) (x−t)

ae−aydy

}
× dB(t).

(4.2)

Applying Laplace transforms, we come up with the following functional equation,

d(s) = 1 − q(s)
s

+
K∑

l=1
plIl (s) +

L∑
h=1

qĥIh(s), (4.3)

where pl = p × kl, l = 1, . . . , K , and qh = q × mh, h = 1, . . . , L. After lengthy, but straightforward
computations,

Il (s) = q (s)`
s−` (1+al ) (d(`) − d( s

1+al
)), l = 1, . . . , K ,

Îh(s) = q (s)a
s+a (1+Vh ) (d(

s
1+Vh

) + 1
a
), h = 1, . . . , L.

(4.4)
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Substituting (4.4) in (4.3) we come up with the following functional equation:

d(s) = q(s)
K+L∑
l=1

glfl (fl (s))d(Zl (s)) + L(s), (4.5)

where

gl =

{ pl
1+al

, l = 1, . . . , K ,
ql−K

1+Vl−K
, l = K + 1, . . . , K + L,

fl (s) =
{

`

`+s , l = 1, . . . , K ,
a
a+s , l = K + 1, . . . , K + L,

Zl (s) =
{

al (s) = s
1+al

, l = 1, . . . , K ,
âl−K (s) = s

1+Vl−K
, l = K + 1, . . . , K + L,

fl (s) =
{

−al (s), l = 1, . . . , K ,
âl−K (s), l = K + 1, . . . , K + L,

and

L(s) = 1 − q(s)
s

+ q(s)
K+L∑
l=1

ĝlfl (fl (s)),

with ĝl =

{
−gld(`), l = 1, . . . , K ,
gl
a

, l = K + 1, . . . , K + L.
Our aim now is to solve (4.5). Note that the form of (4.5) is similar to [3, Eq. (2)], and thus, a similar

approach can be employed to solve it. After N − 1 iterations,

d(s) = ∑N−1
k=0

∑
i1+...+iK+L=k gi1

1 . . . giK+L
K+LGi1,...,iK+L (s)L(Zi1,...,iK+L (s))

+∑
i1+...+iK+L=k gi1

1 . . . giK+L
K+LGi1,...,iK+L (s)d(Zi1,...,iK+L (s)),

where Zi1,...,iK+L (s) := Z
i1
1 (Z i2

2 (. . . (Z iK+L
K+L (s)) . . .)), and Zm

k (s) is the mth iterate of Zk (s), and the functions
Gi1,...,iK+L (s) are recursively obtained as follows:

Gi1,...,iK+L (s) =
K+L∑
k=1

Gi1,...,ik−1,...,iK+L (s)L0,...,1,...,0(Zi1,...,ik−1,...,iK+L (s)),

with G0,...,0(s) = 1, G0,...,1,...,0(s) = L0,...,1,...,0(s) = q(s)fl (fl (s)), where 1 is in the lth position and
l = 1, . . . , K + L, and Gi1,...,iK+L (s) = 0 if one of the indices equals −1. Then, letting N → ∞,

d(s) = ∑∞
k=0

∑
i1+···+iK+L=k gi1

1 · · · giK+L
K+LGi1,...,iK+L (s)L(Zi1,...,iK+L (s))

+ limN→∞
∑

i1+···+iK+L=N gi1
1 · · · giK+L

K+LGi1,...,iK+L (s),
(4.6)

since d(Zi1,...,iK+L (s)) → d(0) = 1 since Zl (s), l = 1, . . . , K + L are commutative contraction mappings
on the closed positive half plane. It is readily seen that Gi1,...,iK+L (s) can be written as a finite sum
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of products. As the number of iterations increases, each of these products vanish. Moreover, as the
number of iterations increases L(Zi1,...,iK+L (s)) approaches some constant. Thus,

d(s) = ∑∞
k=0

∑
i1+···+iK+L=k gi1

1 · · · giK+L
K+LGi1,...,iK+L (s)L(Zi1,...,iK+L (s)). (4.7)

We still need to derive d(`). This can be achieved by substituting s = ` in (4.7).

Remark 4.1. Consider the simpler case where K = 1 = L, and a1 = V1 ≡ a, so that{
(1 + a)u + Ci, with probability p,
[(1 + a)u − Di]+ , with probability q.

(4.8)

Then, (4.5) reduces to

d(s) = q(s) [p `

`(1 + a) − s
+q

a

a(1 + a) + s
]d( s

1 + a
)+1 − q(s)

s
+q(s) [ q

a(1 + a) + s
− p`
`(1 + a) − s

d(`)] .
(4.9)

Note that for q= 0 (so that p= 1) we recover the model in [18]. Equation (4.9) has the same form as in
[18, Eq. (2.5)], where now

J (s) = p `

` (1+a)−s + q a
a (1+a)+s ,

H (s) = 1−q (s)
s + q(s) [ q

a (1+a)+s −
p`

` (1+a)−s d(`)],

and its solution is as given in [18, Eq. (2.7)], with J (.), H (.), as given above.
In case where a1 ≡ a ≠ V1 ≡ V, that is, when (4.8) is given by{

(1 + a)u + Ci, with probability p,
[(1 + V)u − Di]+ , with probability q,

(4.10)

and we now have to solve

d(s) = q(s)J0(s)d(
s

1 + a
) + q(s)J1(s)d(

s
1 + V

) + H1(s), (4.11)

where

J0(s) = p `

` (1+a)−s ,
J1(s) = q a

a (1+V)+s ,
H1(s) = 1−q (s)

s + q(s) [ q
a (1+V)+s −

p`
` (1+a)−s d(`)] .

The form of (4.11) is the same as the one in (2.4), and thus, its solution can be derived similarly.
Clearly, the dual risk model with proportional gains and two-sided jumps (i.e., either an upward or a

downward jump) can be analyzed similarly, when we consider the FGM copula to describe the depen-
dence among the gain interarrival time and the corresponding size. Indeed, consider the simpler case
where Ci ∼ exp(`), Di ∼ exp(a) (the analysis is still applicable when we consider hyperexponential,
or Erlang distributions), but there is a dependence with the “gain” interarrival time based on the FGM
copula, that is, the joint density function of the random vectors (Bi, Ci), (Bi, Di) is as follows:

fB,C (t, y) = fB(t)`e−`y + \1h(t) (2`e−2`y − `e−`y), \1 ∈ [−1, 1],
fB,D(t, y) = fB(t)ae−ay + \2h(t) (2ae−2ay − ae−ay), \2 ∈ [−1, 1],
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where h(t) = fB(t) (1 − 2FB(t)); see also Section 3. Note that asking \1 = 0 and/or \2 = 0, we come up
with the independent case.

Then, we have

R(x) = 1 − B(x) + p
x∫

t=0

∞∫
y=0

R((1 + a) (x − t) + y)fB,C (t, y)dydt

+q
x∫

t=0

(1+V) (x−t)∫
y=0

R((1 + V)(x − t) − y)fB,D(t, y)dydt + q
∞∫

y=(1+V) (x−t)
fB,C (t, y)dydt.

(4.12)

Taking Laplace transforms, we come up with the functional equation

d(s) = pJ1(s; \1)d(
s

1 + a
) + qJ2(s; \2)d(

s
1 + V

) + H (s; \1, \2), (4.13)

where now,

J1 (s; \1) := `
q (s)−\1h∗ (s)
` (1+a)−s + 2`\1h∗ (s)

2` (1+a)−s ,
J2 (s; \2) := a

q (s)−\2h∗ (s)
a (1+V)+s + 2a\2h∗ (s)

2a (1+V)+s ,
H (s; \1, \2) := 1−q (s)

s + q[ q (s)−\2h∗ (s)
a (1+V)+s + \2h∗ (s)

2a (1+V)+s ] − p[`d(`) q (s)−\1h∗ (s)
` (1+a)−s + d(2`) 2`\1h∗ (s)

2` (1+a)−s ] .

Note that (4.12) has the same form as the one in (2.4), so we can apply the same method to solve it.
After n − 1 (n ≥ 1) iterations, we have

d(s) =
n∑

k=0

∑
i1+i2=k

pi1qi2Li1,i2 (s)H (fi1,i2 (s); \1, \2) +
∑

i1+i2=n
pi1qi2Li1,i2 (s)d(fi1,i2 (s)),

where Li1,i2 (s) are recursively derived as in (2.6), and fi1,i2 (s) = ai1 (bi2 (s)) = bi2 (ai1 (s)) = s
(1+a) i1 (1+V) i2

with ai (s) = s
(1+a) i , bj (s) = s

(1+V) j . Note that ai (s), bj (s) are commutative contraction mappings on the
right half plane, and the methodology presented in [3, Sect. 2] applies. In particular,

d(s) =
∞∑

k=0

∑
i1+i2=k

pi1qi2Li1,i2 (s)H (fi1,i2 (s); \1, \2) + lim
n→∞

∑
i1+i2=n

pi1qi2Li1,i2 (s). (4.14)

We still need to obtain d(`), d(2`). This can be done by solving a system of two equations that are
constructed by setting s = `, and s = 2` in (4.14).

5. The dual risk model with uniformly proportional gains

Consider now the case where the proportional parameter is a random variable, that is, the surplus process
U(t) with U (0) = x > 0 evolves as

U (t) = x − t +
N (t)∑
i=1

(Ci + ViU (S−
i )), t ≥ 0,

where V1, V2, . . . are i.i.d. uniformly distributed random variables on [a, b], 0 < a < b. Moreover, N(t)
denotes the number of gains that arrive in (0, t], with Si+1 − Si are i.i.d. gain interarrival times having c.
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distribution function B(.), density b(.), and Laplace–Stieltjes transform q(.). By assuming the Cis are
i.i.d. exponentially distributed random variables with rate `, the ruin probability R(x) when starting in
x satisfies the following equation:

R(x) = 1 − B(x) +
b∫

v=a

x∫
t=0

∞∫
y=0

R((1 + v) (x − t) + y)`e−`ydB(t) dv
b−a . (5.1)

Applying Laplace transform in (5.1) yields

d(s) = 1 − q(s)
s

+ I∗(s),

where

I∗(s) = q (s)
b−a

b∫
v=a

∞∫
x=t

e−(x−t) (s−` (1+v) )
∞∫

z=(1+v) (x−t)
`e−`zR(z)dzdxdv

=
q (s)
b−a

b∫
v=a

∞∫
z=0

`e−`zR(z) e−
z

1+v (s−` (1+v) )−1
` (1+v)−s dzdv

=
q (s)
b−a

b∫
v=a

`

` (1+v)−s (d(
s

1+v ) − d(`))dv

=
q (s)
b−a

b∫
v=a

`

` (1+v)−s d(
s

1+v )dv − q (s)
b−a d(`) ln( (1+b)`−s

(1+a)`−s ).

Thus, we come up with the following functional equation:

d(s) =
b∫

a

k(s, v1)d(
s

1 + v1
)dv1 + L(s), (5.2)

where

k(s, v) := q (s)
b−a

`

` (1+v)−s ,
L(s) := 1−q (s)

s − q (s)
b−a d(`) ln( (1+b)`−s

(1+a)`−s ).

Iterating n times yields

d(s) =
∫
· · ·

∫
[a,b]n+1

∏n+1
j=1 k( s∏j−1

i=1 (1+vi )
, vj)d( s∏n+1

m=1 (1+vm )
)dv1 · · · dvn+1

+L(s) + ∑n
j=1

∫
· · ·

∫
[a,b]j

∏j
i=1 k( s∏i−1

m=1 (1+vm )
, vi)L( s∏j

m=1 (1+vm )
)dv1 · · · dvj,

(5.3)

with the convention that an empty product equals one. In the following, we will let n tend to ∞ to obtain
an expression for d(s). Thus, we need to estimate the limit of the first term on the RHS of (5.3), as
well as to verify the convergence of the summation in the third term. The critical task to cope with this
problem is the evaluation of

|
∫

· · ·
∫

[a,b]n+1

n+1∏
j=1

k( s∏j−1
i=1 (1 + vi)

, vj)dv1 · · · dvn+1 |.
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Note that k(s, v) = 1
(1+v) (b−a) q(s)A(−

s
1+v ) = 1

(1+v) (b−a) E(e−sB+ s
1+v A), where A(s) := E(e−sA), A ∼

exp(`), E(e−sB) = q(s). Thus,

|
∫
· · ·

∫
[a,b]n+1

∏n+1
j=1

1
(1+vj ) (b−a) q(

s∏j−1
i=1 (1+vi )

)A(− s
1+vj

)dv1 · · · dvn+1 |

≤ |
∫
· · ·

∫
[a,b]n+1

∏n+1
j=1

1
1+vj

dv1 · · · dvn+1 | = |
∫

[a,b]

1
1+v1

dv1 · · ·
∫

[a,b]

1
1+vn+1

dvn+1 | = (ln( b+1
a+1 ))

n+1.

Having in mind that |d(s) | ≤ 1, the magnitude of the first term on the right-hand of (5.3) is no more
than (ln( b+1

a+1 ))
n+1, which tends to 0 as n → ∞, provided that ln( b+1

a+1 ) < 1, or equivalently b+1
a+1 < e.

Therefore,

d(s) = L(s) + ∑∞
j=1

∫
· · ·

∫
[a,b]j

∏j
i=1 k( s∏i−1

m=1 (1+vm )
, vi)L( s∏j

m=1 (1+vm )
)dv1 · · · dvj . (5.4)

Finally, d(`) can be derived by substituting s = ` in (5.4), and solving the derived equation. More
precisely,

d(`) = ∑∞
j=0

∫
· · ·

∫
[a,b]j

∏j
i=1 k( `∏i−1

m=1 (1+vm )
, vi)

×
[

1−q ( `∏j
m=1 (1+vm )

)
`∏j

m=1 (1+vm )
− q( `∏j

m=1 (1+vm )
) d(`)b−a ln

(
(1+b)`− `∏j

m=1 (1+vm )

(1+a)`− `∏j
m=1 (1+vm )

)]
dv1 · · · dvj .

Hence,

d(`) =

∑∞
j=0

∫
· · ·

∫
[a,b]j

∏j
i=1 k( `∏i−1

m=1 (1+vm )
, vi)

1−q ( `∏j
m=1 (1+vm )

)
`∏j

m=1 (1+vm )
dv1 · · · dvj

1 + 1
b−a

∑∞
j=0

∫
· · ·

∫
[a,b]j

∏j
i=1 k( `∏i−1

m=1 (1+vm )
, vi)q( `∏j

m=1 (1+vm )
) ln

(
(1+b) ∏j

m=1 (1+vm )−1
(1+a)∏j

m=1 (1+vm )−1

)
dv1 · · · dvj

.

Remark 5.1. Clearly, the approach we followed in this section can be used to incorporate dependencies
among the gain interarrivals and the gain sizes, as well as the case where gain sizes follow Erlang, or
mixed Erlang distribution.

6. Conclusion and future work

In this work, we cope with several nontrivial generalizations of the dual risk model with proportional
gains, for which several independent assumptions among the gain interarrivals and the gain sizes were
lifted, but still, we are able to derive explicit expressions for the ruin probability and the time to ruin
(in terms of Laplace transforms). Among others, we considered causal dependencies as well as depen-
dencies that are based on the FGM copula. On top of that we also consider cases where the gain size
is no longer exponentially distributed, but Erlang or mixed Erlang, which result in additional interest-
ing observations. Moreover, it is well-known that the mixed Erlang distribution belongs to a class of
the phase-type distributions, which is dense in the space of distribution functions defined on [0,∞).
Moreover, we cope with the case where the proportional parameter is a uniformly distributed random
variable.

Note that the results we obtained so far, that is, the Laplace transform of the ruin probability, and the
double Laplace transform of the time to ruin, given the initial surplus to be equal to x, seems to be valid
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even in the case where the gain sizes are heavy-tailed, although in such a case it is not an easy task to
write the Laplace transform of the gain size in terms of elementary functions (as in the case of light-
tailed gain sizes). For example, in case of a Pareto (or US-Pareto) gain size (with shape parameter greater
than 1), the Laplace transform of its density is written in terms of an incomplete Gamma function; see
[7, 43, 44] for related work on the classical ruin problem. See also in [16] for an alternative approach to
cope with heavy-tailed distributions on problems related to the classical ruin theory, based on infinite-
dimensional phase-type distributions. However, in [1] a related class of random variables, called Pareto
mixture of exponentials, which are defined as products of Pareto and exponential random variables, lead
to explicit Laplace–Stieltjes transforms (when the shape parameter of the Pareto mixing distribution is
greater than 1). This result would be useful for numerical experiments.

In the future, we plan to investigate several open tasks:

(1) To identify the value of the discounted cumulative dividend payments in the presence of dependence
among gain interarrivals and gain sizes.

(2) To cope with the problem where the jumps up from the level u have a more general form.
(3) To consider more sophisticated copulas that describe the dependence structure, but still, to be able

to derive explicit results for the values of interest. Finally, it would be interesting to consider a
semi-Markovian dual risk model.

(4) Other opportunities for future study refer to multidimensional surplus processes, although are
anticipated to be highly challenging.
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