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1. Introduction. Let F be any field. Denote by £F the class of all groups G such
that every irreducible FG-module has finite dimension over F and by 3 F the class of all
groups G such that every irreducible FG-module has finite dimension over its en-
domorphism ring. Clearly 3 E F £ 8 F -

The study of the classes 36F arose out of work of P. Hall and later Roseblade on
residual finiteness of certain soluble groups. Recently [2, 5, 7, 8 and 9] the soluble
•XF-groups have been almost completely described. The classes 3 F a r i s e m connection
with injective modules [3, Sections 3.2 and 12.4]. In some unpublished work [1] B.
Hartley has effectively described all locally finite Qp-groups and, coupled with Section 3 of
[7], this also describes all locally finite 3£F-groups. It seems likely that a successful assault
on soluble 3p-groups will require considerably more knowledge of soluble 'linear' groups
over division algebras than the present author has. We therefore suggest the following
intermediate class.

Let §)F be the class of all groups G such that every irreducible FG-module has finite
dimension over the centre of its endomorphism ring. By a theorem of Kaplansky [3, 5.3.4
and 5.1.6] this is the class of all groups G such that every primitive image of FG satisfies a
polynomial identity. Much of the work on 3£F goes through with suitable modifications for
?)F and the object of this note is to indicate these modifications.

It is convenient in places to use the algebra of group classes. As usual $, ®, % ?$ and
© denote respectively the classes of finite, finitely generated, abelian, polycyclic and
soluble groups and s, o, L and R the subgroup, quotient, local and residual operators. If p
is a prime, $£p is the class of all groups with a series of finite length whose factors are
cyclic or Priifer p"-groups. Throughout u will denote the characteristic of the field F (so
that u3=0). If G is a group and p a prime then O0(G) = (l> and OP(G) is the maximal
normal p-subgroup of G. Also A(G) is the subgroup of elements g of G such that for
every finite subset X of G, the FC-centre of (g, X) contains g.

THEOREM 1. Let F be any field. Then

if F is not locally finite,

if F is locally finite.

THEOREM 2. If F is a field of characteristic u 3= 0 that is not locally finite, then
is the class of all groups © with

G/Ou(G)s?lg, OU(G)<=A(G) and Ou(G)e®.

Our information about soluble £)F-groups for % locally finite is even less complete
than about soluble 3£F-groups.
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THEOREM 3. Let F be a locally finite field of characteristic u and let G be a
soluble-by-finite g)F-group. Then G has normal subgroups O u ( G ) £ B £ H s 7 V £ G satis-
fying:

(a) OU(G)<=A(G) and is OU(G) soluble;
(b) BjOu{G) is periodic abelian, GICG(B/OU(G)) is periodic, B is the maximal periodic

normal subgroup of H and has finite index in the maximal periodic normal subgroup of G;
(c) H/B is a torsion-free by finite $£[(-group;
(d) N/H is abelian with no elements of order u;
(e) GIN is finite.
By way of comparison consider the following. Let F be a locally finite field and let

G = AxH where A is abelian and H polycyclic. By [7, 2.2 and 3.1] and [9, Theorem 3]
we have that Ge£F if and only if A e £ F , and the latter implies that A has finite
torsion-free rank.

PROPOSITION. With F and G as above, Ge$)F if and only if either A has finite torsion-free
rank or H is abelian-by-finite.

Thus although Theorems 1 and 2 above are strikingly similar to their 3EF counter-
parts, it would seem that characterizations of © n S F and ©ng) F for F locally finite will
have to differ noticeably. A further difference is that if F and K are fields with F^K then
VF 2 VK (an easy result—but see below), while this is not usually true for XF and 3£K.
Indeed there is a tendency for the reverse to be true. For example 21 fl 3£F c % n SK

always, and thus © n 3 : F c © n 3 £ K whenever F is not locally finite.

2. Preliminary remarks.

2.1. £ F cg ) F <=3 F / O ranyF .

2.2. ?!l^tyF for any F.

2.3. $)F is (s, Q)-closed for any F.

The quotient closure of ?)F is trivial. Let H be a subgroup of the $F-group G and let
W be an irreducible FH-module. By Hall's lemma [7, 2.1] there is an irreducible
FG-module V containing W as an FH-submodule. Now FH/AnnFHW is an image of
FHIAnnpfjV, which is isomorphic to a subalgebra of FG/AnnFGV. By hypothesis this
satisfies a standard polynomial identity; whence FHIAnnp^W does too.

2.4. G e $ F i/ and only if G/(G n ( l + /(FG)))eg)F. In particular Ge?) F if
G/(Ou(G)nA(G))eg)F.

Here J{FG) is the Jacobson radical of FG. The first part is immediate and the second
follows since (O u (G)nA(G))- l generates a nil ideal of FG. Also immediate from the
definitions is the following.

2.5. G/(Gn( l + /(FG))) is residually an irreducible linear group (over various exten-
sion fields of F, namely the centres of the endomorphism rings of the irreducible FG-
modules).

2.6. G n ( l + J(FG))cOu(G) with equality if GetyF.
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The containment is well known and is recorded in [7, 2.5]. Suppose Geg)F. Let p be
an irreducible representation of G, finite dimensional over some extension field of F. Then
Ou(Gp), being unipotent and completely reducible [6, 9.1v and 1.8], is trivial. Thus
Ou{G)c |~| kerp, which is G n ( l + J(FG)) by 2.5.

2.7. / / H is a subgroup of the group G of finite index then He%)Fif and only if G e §)F.

If Geg)F then He$)F by 2.3. Suppose He?)F. Again by 2.3 we may assume that H
is normal in G. Let V be an irreducible FG -module, set R = FG/AnnFGV and let S be the
natural image of FH in R. By a version of Clifford's theorem [3, 7.2.16] V is a direct sum
of a finite number of irreducible FH-modules. Since H e f ) f it follows that the centre Z of
S is a direct sum of a finite number of fields and that S is finitely generated as Z-module.
Clearly G normalizes Z and H centralizes Z. Thus the finite group G/H acts on Z. By a
result from invariant theory (in fact an easy extension of a result from Galois theory) Z
can be generated as Cz(G)-module by \G/H\ elements. Since CZ(G) is central in R the
result follows.

As a companion to 2.7 we have the following.

2.8. Let F, K be fields with F=£K Then 2)F2g)K with equality if (K:F) is finite.

Let Ge§)K and suppose that V is an irreducible FG-module. Then V = FG/A for
some right ideal A. Now AKfKG so that A lies in a maximal right ideal B of KG.
dearly A = BC\FG and V embeds into the irreducible KG-module W = KG/B. Since
KG/AnnKGW satisfies a standard polynomial identity, so does FG/AnnFGW and hence
FGIAnnFGV. Therefore G e $ F .

Now let Geg)F where (K:F) is finite. Let W be an irreducible KG-module. Then W
is finitely FG-generated, so W contains a maximal FG-submodule V. Now
WAnnFG(W/V) is a KG-submodule of W in V and so is zero. Thus Annro(W/V) =
FG n AnnKGW. By hypothesis FG/AnnFG(W/V) satisfies a polynomial identity. Hence so
does KG/AnnKGW=/<C((FG + AnnKGW)/AnnKGWO, for example by [3, 5.1.3].

2.9 (B. Hartley). LgD?)F is the class of locally finite groups G with GIOU(G) abelian-
by-finite.

Hartley's theorem [1] is that GIOU(G) is abelian-by-finite if merely Gei$nQF. The
converse follows from 2.2, 2.7 and 2.4.

2.10. The wreath product G = (Z/nZ)wr Z is not in 3 F (and hence not in §)F) for n = 0,
2, 3 , . . . .

By 2.3 we may assume that n is a prime power. Then by [3, 9.2.8] the group ring FG
is primitive and not simple, but if G e 8 F then every primitive image of G is simple by the
density theorem.

2.11. J /Geg) F then G/OU(G) eLRgnR(2lg)c'« . Rg.

We may assume that OU(G) = (1). Linear groups are in LR^ [6, 4.2] and G is
residually linear by 2.5 and 2.6. Thus G E L R ^ . Let p be a finite-dimensional irreducible
representation of G over some extension field of F. Clearly G can contain no non-cyclic
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free subgroups. If u = 0 then Gp is soluble-by-finite by Tits' theorem [6, 10.17]. If u^O
Tits' theorem yields only that Gp€©Lg. But then 2.9 with 2.3 and [6, 3.8] implies that
here also Gp is soluble-by-finite. Since p is irreducible, in both cases Gp is abelian-by-
finite by Mal'cev's theorem [6, 3.5]. This proves that G e R(2lg) and clearly R(?lg) £

3. Finitely generated groups. Write T(G) for the maximal periodic normal subgroup
of a group G.

3.1. Let G be a soluble-by-finite %)F-group, where F is not locally finite. Then G/T(G)

is abelian- by -finite.

If G is countable we can repeat the proof of [7, 5.1] (except that the representations
are now over extension fields of F). A standard argument reduces the general case to the
countable case (cf. the proof of [8, Lemma 1]).

3.2. Let G be a finitely generated %)F-group. If A is a periodic abelian section of G
(and u-free if u>0) then A has finite exponent.

Suppose otherwise. By [8, Lemma 2] there is an infinite image of A of rank 1. Hence
we may assume that A has rank 1. But then there is an irreducible FA -module that is
faithful on A. Thus by Hall's lemma there is a finite-dimensional irreducible representa-
tion p of G over some extension field of F whose kernel avoids A. Tits's and Mal'cev's
theorems yield that Gp is abelian-by-finite. Also G is finitely generated and A is periodic.
Thus A, being isomorphic to a section of Gp, is finite. This contradiction completes the
proof.

3.3. Let x eC* be such that, for some prime u, x is integral over Z[l/u] but not over 1.
Let A =Z[x, x " ' ] cC . Multiplication by x is an automorphism of A; so we may let G be the
split extension (x)[A of A by (x). If F is any field of characteristic u then G is not a
%)F group.

We already know [7, 4.5] that G is not an •Xp-group. In the proof of that result we
constructed a certain irreducible FG-module V where

V = U Uh Ut =FAFA/(A; - 1)FA = FiA/Ai) and A = I Z*' £ A
•eZ /si

Let K be the kernel of the representation of G on V. Then A n K c f| Af = {0}. Thus
t

[A, K] = (l) and yet <x> acts faithfully on A. Therefore K = (l). If Ge YF then Mal'cev's
theorem yields that G = G/K has an abelian normal subgroup B of finite index m say.
Then xm acts trivially on A C\B, which is impossible since x has infinite order, A C\B is
nontrivial and A is a domain. Consequently G^ YF.

We remark in passing that the above proof contains the following.

3.4. If G and F are as in 3.3 then FG is primitive.

3.5. Proof of Theorem 1. In view of 3.1 it suffices to prove that if G e © n © g n g ) F

then G is polycyclic-by-finite. By the usual reductions (using passage to a subgroup of
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finite index, induction on derived length and the maximal condition on normal subgroups)
we may assume that G has a non-trivial abelian normal subgroup A that is either of prime
exponent or is torsion-free, and that every proper image of G is polycyclic.

Suppose A has prime exponent q. In view of 2.3 and 2.10 there is no subgroup of G
isomorphic to (Z/qZ)wrZ. Now A is finitely G-generated, G/A is polycyclic and every
proper image of Fq[X, X"1] is finite. It follows that A is finite, so that G is polycyclic in
this case as required. (I have lifted this trick from [2].)

Now assume that A is torsion-free. Trivially A D T(G) = (1), so that if F is not locally
finite then G is abelian-by-finite by 3.1 (applied twice). Suppose F is locally finite. By a
lemma of P. Hall [4, 9.53 Corollary 1] A contains a free abelian subgroup Ao such that
A/Ao is periodic with finite spectrum. If q is a prime not in the spectrum of A/Ao then
A o n A" = AJj. Now G/Aq is polycyclic. Hence A0IA^ is finite and A has a finite rank. Let
AJA0= Ou'(A/A0), so A/Ax is a u-group and AJA0 a u'-group. A ^ A Q has finite
exponent by 3.2 and A, is torsion-free. Thus Aa is free abelian of finite rank.

G, being soluble of finite rank, is nilpotent-by-abelian-by-finite [4, 3.25]. Repeating if
necessary our initial reductions we may assume that G' centralizes A. Now we choose A
of minimal rank. Thus Q<8>ZA is irreducible as QG-module and by Schur's lemma there is
a finite field extension K of Q, an embedding A: A —> K and a homomorphism /x: G —* K*
such that the G-module structure of A is induced by multiplication of AA by G[i in K.
Since A/At is a u-group we have AAsA,AZ[l/u] and so Gpt is integral over Z[l/u].

Suppose G/u, is integral over Z. Then Z[Gju.] is finitely generated as Z-module and
consequently so is A,AZ[GJLA]. Thus (Af) is a finitely generated (abelian) group. Since
A, ^(1) the group GI(Af) is polycyclic and therefore so is G. We are left with the case
where G contains an element g such that g/u. is not integral over Z. Necessarily gjx has
infinite order. Let a e A \ ( l ) . Then (g, a)e$)F by 2.3 and yet

<g, a) = (g)<a<R>) = <g^)[aAZ[g^, g-V] =

This contradicts 3.3 and completes the proof of Theorem 1.

4. Soluble groups.

4.1. Let F be a field {with charF=u>0 as always) and G = (x)[A be the split
extension of its abelian normal subgroup A of finite torsion-free rank by the infinite cyclic
group (x). Suppose that A \(1) contains no elements of order u, and that if F is locally finite
then A is periodic. If Geg)F then C(x)(A)^(l).

This generalizes [8, Lemma 4 and 9, Lemma 1] and the proof of 4.1 is similar to
these. Consider the proof of Lemma 4 of [8]. In the second and third paragraphs of that
proof we construct certain direct sums of finitely many irreducible representations of G. In
the context of 4.1 they are no longer finite dimensional over F but are finite-dimensional
over suitable extension fields of F. The results of [6] still apply and the construction of X
goes through as in [8].

In paragraphs 4, 5 and 6 of the proof we constructed an extension field K of F, an
irreducible /CG-module V and a maximal FG-submodule W of V. Recall that we were
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seeking a contradiction. Let a be the representation of G on V and T of G on VIW. Since
C e D F the group GT is an irreducible linear group over some extension of F. By [8,
Lemma 3] there is a normal subgroup L of G of finite index and containing A . ker T such
that LT is abelian. Now V((kerr)-1) is a /CG-submodule of V in W and therefore is
zero. Thus ker(j = kerT. Let m = (G:L). Then [xm, Ajsker cr, which implies (see the
construction of V) that a<i> = ax"'<i> for every aeA. This is false by construction.

4.2. Let G be a $)F-group with OU(G) = (1). Then G has a normal subgroup K with
G/K u-free-abelian by finite and T(K) abelian and of finite index in T(G).

By Hartley's theorem (2.9) and [3, 12.1.2] there exists an abelian characteristic
subgroup T of T(G) of finite index. Let Q be a maximal u-subgroup of T(G). Since
OU(G) = (1) the subgroup T is a u'-group and Q is finite. By 2.11 there exists /C, normal
in G with G/K{ abelian-by-finite and Q r\K{ = (1). Also by 2.11 there exists K2 normal in
G with G/K2 abelian-by-finite, T^K2 and (r(G)nK2)/T= OU(G/T). Set K0=K,nK2.
Clearly G/Ko is abelian-by-finite, and T(K0) = Kof~lT(G) = K0C\T by elementary Sylow
theory. If X is any irreducible linear group over an extension field of F then OU(X) = (I).
Thus the proof of 2.11 shows that we can choose Ko with Ou{G/K0) = (l). Finally set
K = TK0.

4.3. Let G be a soluble-by-finite §)F-growp where F is not locally finite. Then G/OU(G)
is abelian-by-finite.

This can be proved along the lines of the proof of [8, Theorem 2]. However we
indicate a better approach using ideas from both [5] and [8].

By [8, Lemma 1] we may assume that G is countable. Also we may assume that
OU(G) = (1). Choose K as in 4.2. Also G/T(G) is abelian-by-finite by 3.1. Hence G has a
normal subgroup H of finite index with H'cJCriT(G). Thus H' is periodic abelian. Also
OU(H) = <1>.

Let Xi, x2,.. . be a transversal of H' to H. Suppose we have constructed rx,..., rf _, > 0
such that Aj = {x]<:j<i)H' is abelian. Since A, is normal in H we have OU(A,) = (1) and
4.1 yields the existence of r; >0 such that [Ah jc-

i] = (l) (if |x,|<°° set r; = |x,|). Then
A + i ==A0c!'i) is abelian. By induction we construct an abelian normal subgroup
A = U A; containing H' with H/A periodic.

Let aeA. We claim that [a, H] has finite exponent e(a) say. For, if not, by [8,
Lemma 2] there is an infinite-rank-1 image of [a, H]; [a, H] is contained in H' and is
periodic. By Hall's lemma there is an irreducible representation p of H over some
extension of F such that [a, H]p is infinite. But (Hp: CHp(Ap)) is finite, e.g. by [8, Lemma
3], so [a,H]p = {a~iaH)p is finitely generated, abelian and periodic. This contradiction
confirms the existence of finite e(a).

Let Q be a maximal torsion-free subgroup of A and set B = (ae(a):aeQ). Now aeA
stabilizes the series H^[a, H]2( l ) since A 2[a, H] is abelian. Thus ae(a) centralizes H
and in particular B is normal in H. Also H/B is periodic, so by 2.9 again H/B has a
normal subgroup N/B of finite index such that N'B/B is a u -group. But iV'cff' is a
u'-group, so that N ' g B n H ' = (l) since B c Q is torsion-free. The proof of 4.3 is
complete.
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4.4. Proof of Theorem 2. Let G e © g n $ F . Then G/Ou(G)e2lg by 4.3, OU(G)Q
A(G) by 2.6 and [7, 2.9], and OU(G) is clearly soluble.

Conversely suppose G is a group with G/OU(G)e9lg and Ou(G)sA(G). Then
GIOu(G)e^F by 2.2 and 2.7, so that Geg)F by 2.4. If also OU{G) is soluble then

4.5. Proof o/ Theorem 3. By 2.6 and [7, 2.9] we have Ou(G)sA(G) and OU(G)
clearly is soluble. From now on assume that OU(G) = (1). By 4.2 there exist normal
subgroups B^Hi^Nx of G with (G:Ni) finite, NJHi abelian and u-free, B = T(H,) an
abelian u'-group and ( T ( G ) : B ) finite. G/CO{B) is periodic by 4.1. Since G e @ ^ w© may
choose N] to be soluble.

Let X be a free abelian section of NJB of infinite rank. There exists a purely
transcendental extension K of F for which there is a homomorphism of FX onto K that is
one-to-one on X. Hence by Hall's lemma there is an irreducible representation p of G/B
over some extension of F such that ker p avoids X. Also Gp is abelian-by-finite with
Ou(Gp) = (l). Apply this to a free abelian subgroup of maximal rank in each factor with
infinite torsion-free rank of the derived series of NJB. It follows that G contains normal
subgroups N2c.Ni and H2cHxC\N2 with (G:N2) finite, N2IH2 abelian and u-free,
B QH2 and H2/B is poly-(abelian with finite torsion-free rank). By a theorem of Mal'cev
[4, 9.34 and 9.39.3] and the finiteness of (T (G) :B) , the section H2IB is torsion-free by
finite, and soluble of finite rank.

Now let X be a periodic abelian u'-section of H2/B of rank 1. Then X can be
embedded into the multiplicative group of the algebraic closure of F so that by Hall's
lemma applied to the extension of F generated by this image of X there exists an
irreducible representation p of G over some extension of F such that ker p avoids X.
Again Gp is abelian-by-finite with Ou(Gp) = (l)- Hence we can find normal subgroups
N £ M2 and H £ H2 n N with (G: N) finite, N/H abelian and u-free, B c H and H/B e $&,.
The proof is complete.

4.6. Proof of Proposition. Let Ge§)F and suppose that A has a free abelian subgroup
X of infinite rank. If x is an indeterminate there is a homomorphism of X onto F(x)*,
which can be extended to a homomorphism <£ of A into F(x)* by injectivity, the bar here
denoting the algebraic closure. Then K = F[A<f)] is a field that is not locally finite. Let V
be any irreducible KH-module. Then <j> extends to a homomorphism of FG onto KH and
V becomes an irreducible FG-module with EndFGV = EndKHV. Since Ge£)F these
endomorphism rings are finite dimensional over their centres and we have H € $ n ^ K .
Thus H is abelian-by-finite by Theorem 1.

Conversely if H is abelian-by-finite, so is G, and G e§)F by 2.2 and 2.7. Now suppose
that A has finite torsion-free rank. Let p be an irreducible representation of FG and set
J = (FA)p. As in the proof of [9, Theorem 3], the ring J is a field. If X is a free abelian
subgroup of A of maximal rank, then J is integral over {FX)p, so that the latter too is a
field. But X is finitely generated and thus (FX)p is a finite extension of F by the
Nullstellensatz. Consequently J is locally finite. Now (FG)p is a homomorphic image of
JH and by Roseblade's theorem [3, 12.3.7] JHe£F. Therefore (FG)p is finite dimen-
sional over its central subfield J and we have Ge%)F as required.
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