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On the Oscillation of a Second Order
Strictly Sublinear Differential Equation

Ravi P. Agarwal, Cezar Avramescu, and Octavian G. Mustafa

Abstract. We establish a flexible oscillation criterion based on an averaging technique that improves

upon a result due to C. G. Philos.

1 Introduction

The averaging techniques originate from a paper Wintner [15] published in 1949

where Fite’s [5] oscillation criterion had been significantly generalized. Fite’s theorem

[5, p. 347] is the first result regarding the oscillation of a linear ordinary differential

equation without pointwise estimates on the coefficients. Several important devel-

opments in this area can be found in the surveys by Philos and Purnaras [14, §1] and

Wong [18].

An innovative paper by Kamenev [6] emphasized studies about averaging tech-

niques for an investigation of nonlinear oscillations. Such results have immense im-

plications for the study of celestial and fluid mechanics as well as biology and the

social sciences. We mention the description of several categories of applied examples

undertaken in recent monographs [1, 2].

In this respect, let us consider here the second order nonlinear ordinary differen-

tial equation

(1.1) x ′ ′ + a(t) f (x) = 0, t ≥ t0 > 0,

where several technical conditions, listed next, are assumed to hold.

• The function a : [t0, +∞) → R is continuous, while the function f : R → R is

continuous over R, is continuously differentiable over R − {0}, and has the sign

property, that is, f (x)x > 0 for any x 6= 0.
• The function f has a monotonic behavior given by f ′(x) > 0 for x 6= 0.
• In the terminology due to Wong [16], [18, pp. 419–420] and Naito [10] we sup-

pose that f is strictly sublinear. This means that there exists C > 0 such that

f ′(x)

∫ x

0+

dy

f (y)
≥ C for all x > 0
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and respectively

f ′(x)

∫ x

0−

dy

f (y)
≥ C for all x < 0.

Following [3, 12], we introduce the quantity I f ∈ (0, 1) via the formula

I f = min

{

infx>0 f ′(x)F(x)

1 + infx>0 f ′(x)F(x)
,

infx<0 f ′(x)F(x)

1 + infx<0 f ′(x)F(x)

}

,

where

F(x) =

∫ x

0+

dy

f (y)
for x > 0 and F(x) =

∫ x

0−

dy

f (y)
for x < 0.

In the sequel we take as maximal value of C the quantity I f /(1 − I f ).

A celebrated particular case and source of many substantial investigations in the

field of averaged oscillations is the Butler conjecture [4, p. 144], [7, p. 548], which

consists of deciding whether or not the Emden–Fowler equation

(1.2) x ′ ′ + tλ sin t · xγ
= 0, t ≥ t0 > 0, λ ∈ R, γ ∈ (0, 1),

is oscillatory. In two seminal papers on this subject, Kwong and Wong [7, 8] made

use of a special Belohorec type quantity, namely

(1.3)
1

T

∫ T

t

∫ s

t

[ϕ(τ )]γa(τ ) dτds, T ≥ t ≥ t0,

(let us denote its limit when T → +∞ with A(t)) and established that equation (1.2)

oscillates for λ > 1 − γ and does not oscillate for λ < −γ. Actually, Kwong and

Wong established further the oscillation of equation (1.2) for λ > −γ [8, p. 717].

The critical value λ = −γ also implies oscillation, as demonstrated independently by

Onose [11] and Kwong and Wong [8].

The case −γ < λ ≤ 1−γ, leading to oscillation, was studied in [17, p. 478] for the

class of equations (1.1) described previously by means of the divergence condition

lim sup
T→+∞

[

∫ T

t0

[max{A(s), 0}]2

s
ds

]

·
[

∫ T

t0

s
[ ϕ ′(s)

ϕ(s)

] 2

ds
]−1

= +∞.

Nonoscillation of equations (1.1) is discussed in [7, 9, 10].

By combining Onose’s technique with the Kwong–Wong methods, Philos [12, 13]

established several interesting criteria of oscillation for equations (1.1). In fact, the

result in [13, Theorem 2], which motivates the present note, reads as follows.

Theorem 1 Suppose that

(1.4) lim
T→+∞

1

T

∫ T

t0

∫ s

t0

τ I f a(τ ) dτds exists in R

https://doi.org/10.4153/CMB-2010-001-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-001-2


On the Oscillation of a Second Order Strictly Sublinear Differential Equatio 195

and define

A(t) = lim
T→+∞

1

T

∫ T

t

∫ s

t

τ I f a(τ ) dτds, t ≥ t0.

Also, suppose that

(1.5) lim inf
t→+∞

A(t) > −∞.

Moreover, assume that

∫ ∞

t0

[A(t) + r(t)]2

t
dt = +∞

for every continuous real-valued function r(t) on [t0, +∞) with limt→+∞ r(t) = 0.

Then equation (1.1) is oscillatory.

A variant of the result, improving the theorem of Onose, which was designed for

equation (1.2), is detailed in [13, Theorem 1]. Here, I f = γ. The main difference

with respect to Theorem 1 is that, in the latter situation, the hypothesis (1.5) is omit-

ted.

It is therefore natural to ask whether or not condition (1.5) can be removed from

the hypotheses of Theorem 1. The main contribution here is to answer this question

affirmatively. Also, we shall operate a modification of hypothesis (1.4) making it look

more like the Kwong–Wong average (1.3).

2 Main Result

Theorem 2 Fix β ∈ (0, I f ]. Let ϕ be a positive and real-valued, twice continuously

differentiable function defined on [t0, +∞) such that

ϕ ′(t) > 0, ϕ ′ ′(t) ≤ 0 for all t large enough

and

lim
t→+∞

t
[ ϕ ′(t)

ϕ(t)

]

= w1 > 0 and lim
t→+∞

t
[ ϕ ′ ′(t)

ϕ ′(t)

]

= w2,

where w1 − w2 = 1.

Suppose that

lim
T→+∞

1

T

∫ T

t0

∫ s

t0

[ϕ(τ )]βa(τ ) dτds exists in R

and define

Aβ(t) = lim
T→+∞

1

T

∫ T

t

∫ s

t

[ϕ(τ )]βa(τ ) dτds, t ≥ t0.

Moreover, assume that

∫ ∞

t0

[Aβ(t) + r(t)]2

t
dt = +∞
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for every real-valued, continuous function r(t) which exists on [t0, +∞) and satisfies

limt→+∞ r(t) = 0. Then equation (1.1) is oscillatory.

The following lemma justifies the relationship between the numbers w1 and w2.

Lemma 1 Let ϕ be a positive, real-valued, twice continuously differentiable function

defined on [t0, +∞) such that

ϕ ′(t) > 0, ϕ ′ ′(t) ≤ 0 for all t large enough

and (w1,2 ∈ R)

lim
t→+∞

t
[ ϕ ′(t)

ϕ(t)

]

= w1 > 0 and lim
t→+∞

t
[ ϕ ′ ′(t)

ϕ ′(t)

]

= w2.

Then we have

(2.1) w1 − w2 = 1.

Proof We deduce that

w2
1 − w2w1 = lim

t→+∞

{[

t
ϕ ′(t)

ϕ(t)

] 2

−
[

t
ϕ ′ ′(t)

ϕ ′(t)

][

t
ϕ ′(t)

ϕ(t)

]}

= lim
t→+∞

t2
{[ ϕ ′(t)

ϕ(t)

] 2

−
ϕ ′ ′(t)

ϕ(t)

}

= lim
t→+∞

d
dt

[

ϕ ′(t)
ϕ(t)

]

d
dt

(

1
t

) .

Now according to the L’Hôpital rule, we have

w2
1 − w2w1 = lim

t→+∞

[

t
ϕ ′(t)

ϕ(t)

]

= w1.

Finally, since w1 > 0, we obtain (2.1).

A simple example of auxiliary function ϕ, besides the identity, is given by ϕ(t) =

t(ln t)−1, where t ≥ t0 > e2. Here, w1 = 1, w2 = 0.

Proof of Theorem 2 Suppose for the sake of contradiction that x(t) is a nonoscil-

latory solution of (1.1). This means we can without loss of generality consider the

function x to be positive-valued throughout [T0, +∞) for a certain T0 > t0.

Following [3, 13], we introduce the variables

w(t) = [ϕ(t)]βF(x(t)) and W (t) = 1 +
1

F(x(t)) f ′(x(t))
,

where t ≥ T0.
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A straightforward computation yields

w ′(t) = β
[ ϕ ′(t)

ϕ(t)

]

w(t) + [ϕ(t)]β x ′(t)

f (x(t))

w ′ ′(t) = [ϕ(t)]β x ′(t)

f (x(t))
+ β

{ ϕ ′ ′(t)

ϕ(t)
− [1 − βW (t)]

[ ϕ ′(t)

ϕ(t)

] 2}

w(t)

−
1

w(t)

[

w ′(t) − βW (t)
ϕ ′(t)

ϕ(t)
w(t)

] 2

F(x(t)) f ′(x(t))

for t ≥ T0.

Further, we replace x ′ ′(t) with −a(t) f (x(t)) and integrate the expression of w ′ ′(t)

twice over [t, T]. These lead to

−
w(T)

T
+

w(t)

T
+

(

1 −
t

T

)

w ′(t) =

1

T

∫ T

t

∫ s

t

[ϕ(τ )]βa(τ ) dτds

+
1

T

∫ T

t

H1(s)ds +
1

T

∫ T

t

H2(s) ds,

where

H1(s) = β

∫ s

t

{

[1 − βW (τ )]
[ ϕ ′(τ )

ϕ(τ )

] 2

−
ϕ ′ ′(τ )

ϕ(τ )

}

w(τ ) dτ ,

H2(s) =

∫ s

t

1

w(τ )

[

w ′(τ ) − βW (τ )
ϕ ′(τ )

ϕ(τ )
w(τ )

] 2

F(x(τ )) f ′(x(τ )) dτ

for all s ≥ t ≥ T0.

Since the integrals H1,2(s) have limits in [0, +∞] for s → +∞ as their inte-

grands are functions with nonnegative values throughout [t, +∞), we conclude, via

the L’Hôpital rule, that the averages of H1,2 over [t, T] have the same limits when

T → +∞. This yields that (a) the integrals

(2.2)

∫ ∞

t0

{

[1 − βW (t)]
[ ϕ ′(t)

ϕ(t)

] 2

−
ϕ ′ ′(t)

ϕ(t)

}

w(t) dt

and

(2.3)

∫ ∞

t0

1

w(t)

[

w ′(t) − βW (t)
ϕ ′(t)

ϕ(t)
w(t)

] 2

F(x(t)) f ′(x(t)) dt

are convergent, (b) limT→+∞
w(T)

T
exists and is finite (which means, actually, that

w(t)
t

≤ k for all t ≥ T0 and a certain number k > 0) and (c) the next integral

representation holds true

(2.4) w ′(t) = lim
T→+∞

w(T)

T
+ Aβ(t) + g(t),
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where

g(t) = β

∫ ∞

t

{

[1 − βW (s)]
[ ϕ ′(s)

ϕ(s)

] 2

−
ϕ ′ ′(s)

ϕ(s)

}

w(s) ds

+

∫ ∞

t

1

w(s)

[

w ′(s) − βW (s)
ϕ ′(s)

ϕ(s)
w(s)

] 2

F(x(s)) f ′(x(s)) ds

for all t ≥ T0.

Further, we define

r(t) =

{

limT→+∞
w(T)

T
+ g(t) − w(t)

[

ϕ ′(t)
ϕ(t)

− ϕ ′ ′(t)
ϕ ′(t)

]

t ≥ T0,

r(T0) t0 ≤ t ≤ T0.

It is easy to see that r(t) is a continuous function that exists throughout [t0, +∞) and

satisfies limt→+∞ r(t) = 0.

Allow us to establish an essential fact at this point. We claim that the following

integral is convergent:

∫ ∞

T0

[

1 − βW (s) −
ϕ ′ ′(s)ϕ(s)

[ϕ ′(s)]2

] 2[ ϕ ′(s)

ϕ(s)

] 2

w(s) ds.

Denoting it by I(T0), we deduce that

I(T0) ≤

∫ ∞

T0

2[1 − βW (s)]
{

[1 − βW (s)]
[ ϕ ′(s)

ϕ(s)

] 2

−
ϕ ′ ′(s)

ϕ(s)

}

w(s) ds

+

∫ ∞

T0

[ ϕ ′ ′(s)

ϕ ′(s)

] 2

w(s) ds.

Also, since we have 0 ≤ 1 − β
I f
≤ 1 − βW (t) ≤ 1 and

[ ϕ ′ ′(t)

ϕ ′(t)

] 2

=

−ϕ ′ ′(t)

ϕ(t)
·

{

−t
[ ϕ ′ ′(t)

ϕ ′(t)

]

·
1

t
[

ϕ ′(t)
ϕ(t)

]

}

≤ c ·
−ϕ ′ ′(t)

ϕ(t)

for all t ≥ T0, where the number c > −w2

w1
is taken large enough, we conclude that

I(T0) is finite (recall the convergence of (2.2)). The claim is thus established.

Now, by eventually enlarging T0, we ask that the double inequality holds true

3w1

2s
≥

ϕ ′(s)

ϕ(s)
≥

w1

2s
, s ≥ T0.
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We obtain that

∫ t

T0

1

w(s)

[

w ′(s) − βW (s)
ϕ ′(s)

ϕ(s)
w(s)

] 2

F(x(s)) f ′(x(s)) ds

≥
2I f

3kw1(1 − I f )

∫ t

T0

ϕ ′(s)

ϕ(s)

[

w ′(s) − βW (s)
ϕ ′(s)

ϕ(s)
w(s)

] 2

ds

=

2I f

3kw1(1 − I f )

∫ t

T0

ϕ ′(s)

ϕ(s)

{

[Aβ(s) + r(s)]

+
{[

1 − βW (s)
] ϕ ′(s)

ϕ(s)
−

ϕ ′ ′(s)

ϕ ′(s)

}

w(s)
} 2

ds

≥
2I f

3kw1(1 − I f )

∫ t

T0

ϕ ′(s)

ϕ(s)
[Aβ(s) + r(s)]2ds +

4I f

3kw1(1 − I f )

×

∫ t

T0

[Aβ(s) + r(s)]
{[

1 − βW (s)
][ ϕ ′(s)

ϕ(s)

] 2

−
ϕ ′ ′(s)

ϕ(s)

}

w(s)ds

≥
I f

3k(1 − I f )

∫ t

T0

[Aβ(s) + r(s)]2

s
ds +

4I f

3kw1(1 − I f )

×

∫ t

T0

[Aβ(s) + r(s)]
{

[1 − βW (s)]
[ ϕ ′(s)

ϕ(s)

] 2

−
ϕ ′ ′(s)

ϕ(s)

}

w(s) ds,

where t ≥ T0.

Further, we must show that the integral

∫ t

T0

[Aβ(s) + r(s)]
{

[1 − βW (s)]
[ ϕ ′(s)

ϕ(s)

] 2

−
ϕ ′ ′(s)

ϕ(s)

}

w(s) ds

is bounded from below for all t ≥ T0. This is an essential feature of [13, pp. 113–114],

established by making use of restriction (1.5).

In order to avoid hypothesis (1.5), we apply the Cauchy–Schwarz inequality in

integral form, namely

∫ t

T0

|Aβ(s) + r(s)|
{

[1 − βW (s)]
[ ϕ ′(s)

ϕ(s)

] 2

−
ϕ ′ ′(s)

ϕ(s)

}

w(s) ds

=

∫ t

T0

|Aβ(s) + r(s)|
ϕ ′(s)

ϕ(s)

√

w(s)

×
[

1 − βW (s) −
ϕ ′ ′(s)ϕ(s)

[ϕ ′(s)]2

] ϕ ′(s)

ϕ(s)

√

w(s)ds

≤
{

∫ t

T0

[Aβ(s) + r(s)]2
[ ϕ ′(s)

ϕ(s)

] 2

w(s)ds
} 1/2√

I(T0)
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≤
3

2
w1

√

I(T0) ·
{

∫ t

T0

[Aβ(s) + r(s)]2

s
·

w(s)

s
ds

} 1/2

≤
3

2
w1

√

k · I(T0)
{

∫ t

T0

[Aβ(s) + r(s)]2

s
ds

} 1/2

≤
3

4
w1

√

k · I(T0) ·
{

1 +

∫ t

T0

[Aβ(s) + r(s)]2

s
ds

}

.

Finally, we have obtained that

∫ t

T0

1

w(s)

[

w ′(s) − βW (s)
ϕ ′(s)

ϕ(s)
w(s)

] 2

F(x(s)) f ′(x(s)) ds

≥ Q ·

∫ t

T0

[Aβ(s) + r(s)]2

s
ds − P, t ≥ T0,

where

Q =

I f

3k(1 − I f )

[

1 − 3
√

k · I(T0)
]

and P =

I f

1 − I f

√

I(T0)

k
.

Since I(T0) is finite, it is obvious that we can consider T0 large enough so that

Q > 0. Then, by passing to the limit as t → +∞ in the latter inequality, we are in

contradiction with the convergence of (2.3).

The proof is complete.

Example 1 Assume that ϕ is a function which satisfies the hypotheses of Lemma 1.

Then for any λ ∈ [0, 1] and β ∈ (0, I f ] the strictly sublinear ordinary differential

equation

(2.5) x ′ ′ +
tλ

[ϕ(t)]β
sin t · f (x) = 0, t ≥ t0 > 0,

satisfies the hypotheses of Theorem 2 (thus being oscillatory) whereas, for certain val-

ues of λ and β in the above-mentioned range, some of the hypotheses of Theorem 1

are not fulfilled.

To prove this assertion, we first take δ ∈ [0, 1] and perform the next computation

∫ s

t

τ δ

[ϕ(τ )]β
sin τ dτ = U (s) −U (t), s ≥ t ≥ t0,

where

U (s) =

1

[ϕ(s)]β
(δsδ−1 sin s − sδ cos s) −

β

[ϕ(s)]1+β
sδϕ ′(s) sin s −

∫ s

t

V (τ ) dτ
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and

V (τ ) =

δ(δ − 1)

[ϕ(τ )]β
τ δ−2 sin τ − 2

δβ

[ϕ(τ )]1+β
τ δ−1ϕ ′(τ ) sin τ

−
β

[ϕ(τ )]1+β
τ δϕ ′ ′(τ ) sin τ +

β(1 + β)

[ϕ(τ )]2+β
τ δ[ϕ ′(τ )]2 sin τ .

Further, we notice that V ∈ L1((t0, +∞), R). The claim is established by showing

that each of the terms from the sum V is integrable, e.g.,

∫ s

t

∣

∣

∣

τ δ−1

[ϕ(τ )]1+β
ϕ ′(τ ) sin τ

∣

∣

∣
dτ ≤

∫ s

t

τ δ

[ϕ(τ )]β

[

τ
ϕ ′(τ )

ϕ(τ )

] dτ

τ 2

≤ sup
s≥t0

[

s
ϕ ′(s)

ϕ(s)

]

·

∫ +∞

t

dτ

τ 2−[δ−β(w1−ε)]

for all t ≥ T1 ≥ t0, where T1 is chosen large enough in order to have

ϕ(T1)(t/T1)w1−ε ≤ ϕ(t) ≤ ϕ(T1)(t/T1)w1+ε

throughout [T1, +∞) for a certain ε ∈ (0, w1). Since w2 ≤ 0, we have w1 ∈ (0, 1]

which means that δ − β(w1 − ε) ∈ (0, 1).

Finally, we obtain that

lim
T→+∞

1

T

∫ T

t

∫ s

t

τ δ

[ϕ(τ )]β
sin τ dτds = −U (t) −

∫ +∞

t

V (τ ) dτ

=

tδ

[ϕ(t)]β
cos t + o(1) when t → +∞.

In order to see that (1.5) does not always hold, assume that λ ∈ (0, 1 − I f ],

β ∈ (0,
I f

w1+ε ] and take δ = λ + I f . These assumptions imply that δ − β(w1 + ε) >

0. Thus, we obtain tδ

[ϕ(t)]β ≥ (Tw1+ε
1 /ϕ(T1))β · tδ−β(w1+ε) for all t ≥ T1 and so

lim inft→+∞ A(t) = −∞.

To prove that the functional coefficient a(t) =
tλ

[ϕ(t)]β sin t of equation (2.5) sat-

isfies the hypotheses of Theorem 2, we follow verbatim the computations from [12,

p. 120] and [13, pp. 109-110] and conclude that Aβ(t) = tλ cos t + o(1) when t →
+∞.

Further, we have that

∫ ∞

t0

[Aβ(t) + r(t)]2

t
dt ≥

+∞
∑

n=N

∫ 2nπ+ π
4

2nπ− π
4

[tλ cos t + o(1)]2

t
dt

≥

+∞
∑

n=N

∫ 2nπ+ π
4

2nπ− π
4

(

cos t − 1

2
√

2

) 2

t
dt ≥

1

8

+∞
∑

n=N

∫ 2nπ+ π
4

2nπ− π
4

dt

t

≥
1

2

∫ +∞

2Nπ− π
4

dt

t
= +∞
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for a certain integer N ≥ max{ 1
2π

[

t0 + π
4

]

, 1} large enough.

In the particular case of ϕ being the identity and β = I f , we regain that equation

(1.2), where λ ∈ [−I f , 1 − I f ], is oscillatory.

We shall close the present note with a comment regarding the function Aβ . It has

been established in [10, Lemma 2.1] that Aβ is continuously differentiable, A ′
β(t) =

−[ϕ(t)]βa(t) throughout [t0, +∞) and also

(2.6) lim
t→+∞

1

t

∫ t

t0

Aβ(s) ds = 0.

Though at first glance a restriction, condition (2.6) occurs naturally in our com-

putations. To see this, let us assume again that equation (1.1) has an eventually pos-

itive solution and thus, as in the preceding proof, we arrive at (2.4). By integrating

this formula over [T0, t], then dividing by t , and passing to the limit as t → +∞, we

obtain (2.6).
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