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Consider a flow in R3 and let K be the biggest invariant subset of some compact
region of interest N ⊆ R3. The set K is often not computable, but the way the flow
crosses the boundary of N can provide indirect information about it. For example,
classical tools such as Ważewski’s principle or the Poincaré–Hopf theorem can be
used to detect whether K is non-empty or contains rest points, respectively. We
present a criterion that can establish whether K has a non-trivial homology by
looking at the subset of the boundary of N along which the flow is tangent to N. We
prove that the criterion is as sharp as possible with the information it uses as an
input. We also show that it is algorithmically checkable.

2020 Mathematics Subject Classification: 37B35; 37E99

1. Introduction

Let ϕ be a continuous flow on R3. We focus on some compact region of interest
N ⊆ R3 in phase space and want to obtain information about the largest invariant
set K it contains. Typically, K cannot be computed explicitly and indirect methods
are needed. For instance, Ważewski’s principle ([14]) can be used to analyse whether
K 6= ∅ or, in a smooth setting, the Poincaré–Hopf theorem can detect the presence
of rest points in K. The important feature of these tools is that they only require
that one knows how the trajectories of the flow cross the boundary of N and this
is usually computable. For example, if the flow is generated by a vectorfield X
through a differential equation, then X alone already provides these data without
the need to integrate the equation.

The information about K provided by these tools is limited. In this article we
obtain a criterion that still uses the same sort of data as an input and detects
whether K must have a non-trivial one-dimensional homology. Thus, for instance,
it can distinguish a situation where K is a rest point from another one where K is
a rest point together with a homoclinic orbit. Obtaining homological information
about K seems a natural problem and has already been studied in [2], [3], [5],
[11], to cite a few. The main difficulty is, of course, that the region N and its
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Figure 1. The standard model Hg for a handlebody of genus g.

maximal invariant subset K do not generally bear any direct geometric relationship
whatsoever. The aforementioned articles are more ambitious than ours because
they are valid in arbitrary dimensions or look for lower bounds on the rank of the
homology of K, rather than just showing that it is non-trivial. However, for the
setting considered in this article, our results are sharper and, in fact, we will prove
that they are the sharpest possible given the data they take as an input.

Following the literature cited above (especially [2]) we will focus on a certain
type of regions N called isolating blocks. To motivate the definition, suppose for a
moment that the flow is generated by a smooth vectorfield X and N is a smooth
manifold. At every point p ∈ ∂N the flow either enters or exits N transversally
or is tangent to ∂N . The latter happens precisely when X(p) · ν(p) = 0, where
ν is a normal vectorfield along ∂N . Perhaps after perturbing N (hence ν) very
slightly we can achieve that X and ν be transverse, and then the implicit equation
X · ν = 0 determines a finite collection of mutually disjoint simple closed curves in
∂N . We call these the tangency curves of N, or t-curves for short, and use the letter
τ to denote them generically. The manifold N is called an isolating block when all
tangencies are external, i.e., whenever the flow is tangent to ∂N at some p, a short
portion of the trajectory centred at p is disjoint from N except at the tangency
point p itself. The definition in the topological case is a straightforward adaptation
of this; it is given in § 2 together with some remarks about how restrictive the ‘no
interior tangencies’ condition is.

Before stating our results we recall one last definition. A handlebody N is a com-
pact 3-manifold homeomorphic to the standard model Hg of figure 1. The number
g ≥ 0 is called the genus of the handlebody. A handlebody of genus 0 is a 3-ball;
a handlebody of genus 1 is a solid torus. Notice that Hg is only an abstract model
and a handlebody N ⊆ R3 can be knotted.

There is a more intrinsic definition of handlebodies. Let N be a compact 3-
manifold with boundary. A 2-disk D ⊆ N is properly embedded if D ∩ ∂N = ∂D.
The disks {Di} in figure 1 are all properly embedded. Notice that if Hg is cut
along these disks, the resulting manifold is a 3-ball. This is a defining property of
handlebodies: N is a handlebody of genus g if and only if it contains a collection of
g mutually disjoint, properly embedded disks {Di} such that when N is cut along
these disks, one obtains a 3-ball. The collection {Di} is called a (complete) cut
system for N.

Our first result is the following:

Theorem 1.1 Let N be an isolating block and K its maximal (biggest) invariant
subset. Assume that ∂N is connected (i.e., that N has no ‘cavities’). Then, if the
one-dimensional cohomology of K is trivial, the following must hold:
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(a)

∂D

(b)

Figure 2. The biggest invariant subset of the solid torus in panel (a) must have a nontrivial
cohomology.

(i) N is a handlebody.
(ii) There exists a complete system of cutting disks {Di} for N such that each

curve ∂Di intersects the set of tangency curves
⋃
τ transversally at two

points.

Here cohomology means Čech cohomology. In this context it is usually preferred
over singular homology since it is better suited to compacta having a bad local struc-
ture (as may well be the case with an invariant compact set). One should think of
theorem 1.1 as a criterion to ensure that K has a non-trivial one-dimensional coho-
mology: this will be the case whenever N is not a handlebody, or it is a handlebody
but does not have a complete cut system as described in (ii).

Example 1.2. Suppose we observe one of the solid tori N depicted in figure 2 as
an isolating block. Here, and in most subsequent figures, we follow the convention
of painting transverse entry points white (or light grey) and transverse exit points
dark grey.

For a solid torus a complete cut system consists of a single meridional disk which
is unique up to isotopy, and this makes it easy to check condition (ii) in theorem
1.1. In panel (a), any meridian of ∂N , however contorted, must intersect the four
parallel tangency curves. Thus, by theorem 1.1, the maximal invariant subset of N
must have a non-trivial one-dimensional cohomology. The solid torus N in panel
(b) admits a slightly bent meridional disk D whose boundary (shown in a dotted
outline) does satisfy condition (ii) of theorem 1.1, so we cannot draw any conclusion
about the cohomology of its maximal invariant subset.

The example in panel (a) is the simplest one where the condition of theorem
1.1(ii) is not satisfied. It was already considered by Conley and Easton ([2, section
3, pp. 47ff.]). We have constructed the example in panel (b) so that both have the
same Conley index (namely S1 ∨ S2); this implies that other classical tools such as
the Poincaré–Hopf theorem cannot tell apart the two situations ([9]).

Recall that a closed curve in N is called essential if it is not contractible. One
has the following easy generalization of Example 1.2(a):

Example 1.3. Let an isolating block N be a handlebody of genus g. If the number
of essential tangency curves in N is > 2g, then K has a non-trivial cohomology.

To prove this, let {Di} be a complete cut system for N and notice that if a
tangency curve τ does not intersect any of the ∂Di, then after cutting N open
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along the Di, the curve τ would remain untouched in the boundary of resulting
3-ball. Since it is evidently contractible in that ball, it is also contractible in N.
It follows that every essential tangency curve in N must intersect at least one of
the ∂Di. Thus, if there are more than 2g of those curves in number, one of the
∂Di must intersect the system of tangency curves more than twice and the result
follows from theorem 1.1(ii).

It is interesting to observe that, at least in the smooth setting, the non-trivial
cohomology detected by theorem 1.1 is stable under small perturbations of the flow:

Remark 1.4. Let N be an isolating block for a smooth flow ϕ. Suppose that by
using the criterion provided by (the counterpositive of) theorem 1.1, we know that
the maximal invariant subset K of N has a non-trivial one-dimensional cohomology.
Then there exists δ > 0 such that for any smooth flow ϕ′ which is δ-close to ϕ over
N, the maximal invariant subset of N (with respect to ϕ′) also has a non-trivial
one-dimensional cohomology.

The condition that ϕ and ϕ′ be δ-close over N means that ‖X(p)−X ′(p)‖ < δ
for every p ∈ N , where X and X

′
are the velocity vectorfields of the flows. With N

and ϕ as above, a stability theorem of Conley and Easton ([2, theorem 1.6, p. 39])
states the following: for every ε> 0 there exists δ > 0 with the property that for
any flow ϕ′ which is δ-close to ϕ over N there exists a homeomorphism h of R3

that moves points less than ε and carries N onto an isolating block N ′ := h(N) for
ϕ′; moreover, h carries the tangency curves of N onto the tangency curves of N

′
.

Since both conditions of theorem 1.1 are invariant under such a homeomorphism
and N failed to satisfy at least one of them by assumption (for ϕ), the same is
true of N

′
(for ϕ′). Thus, the maximal invariant subset of N

′
for ϕ′ must have a

non-trivial one-dimensional cohomology. By choosing ε sufficiently small (so that
N and N

′
are very close to each other) and perhaps reducing δ, we can ensure that

the maximal invariant subset of N and of N
′
for ϕ′ is the same, and the remark

follows.
Next we consider how sharp the criterion provided by theorem 1.1 is. To discuss

this, it is convenient to introduce a definition. Let N be a compact 3-manifold. A
colouring of N means a decomposition ∂N = P ∪Q where P and Q are compact 2-
manifolds (possibly empty) with a common boundary ∂P = ∂Q = P ∩Q. We think
of the interiors of P and Q as being painted white and grey, say. Clearly, P ∩Q is a
finite collection of disjoint simple closed curves τ , which we call the t-curves of N. Of
course, this is just a topological abstraction of the ‘entry, exit, tangency’ information
carried by the boundary of an isolating block. Given a coloured manifold (N,P,Q)
in R3, we say that a flow in R3 realizes N as an isolating block if every p lying on
a t-curve is an exterior tangency and every point in the interior of P (resp. of Q)
is a transverse entry (resp. exit) point.

Theorem 1.5 Let (N,P,Q) ⊆ R3 be a (tame) coloured manifold that satisfies
conditions (i) and (ii) in theorem 1.1. Then there exists a flow on R3 which realizes
N as an isolating block whose maximal invariant subset K is a single rest point.

This means that the criterion provided by theorem 1.1 is as sharp as the infor-
mation about the colouring of an isolating block N allows. For instance, in example
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1.2, we did not reach any conclusion about the isolating block N shown in panel (b);
now we know that there actually exists a flow in R3 which realizes N as an isolating
block for a single rest point. Notice also the following. If we start with an isolating
block N (with a connected boundary) whose maximal invariant subset K has a
trivial one-dimensional cohomology, by applying theorems 1.1 and 1.5 successively
we conclude that there exists a flow in R3 which realizes N as an isolating block
with the same colouring (i.e., with the same set of tangency curves and transverse
entry and exit sets) but whose maximal invariant subset is a single rest point. In
other words, there is no way to distinguish a maximal invariant subset K with a
trivial one-dimensional cohomology from a single rest point only using information
from the boundary of an isolating block.

Of the two conditions in theorem 1.1 it is (ii) that is difficult to check in practice
because cut systems of a handlebody N are highly non-unique (for genus g ≥ 2).
We shall call this condition the ‘geometric criterion’ for brevity. When N is a 3-
ball, it evidently satisfies the condition regardless of its colouring since complete
cut systems are empty. When N is a solid torus, one can easily show that it satisfies
the geometric criterion if and only if it contains at most two essential t-curves. For
handlebodies of genus g ≥ 2, a hands-on analysis becomes almost impossible. Our
last theorem provides an algorithm that checks whether a coloured handlebody
satisfies the geometric criterion. We need a preliminary discussion.

Let N be a handlebody with an entirely arbitrary complete cut system
{D1, . . . , Dg}. Assign to each disk Di a little arrow transverse to it to indicate
a positive crossing direction. Now, given any oriented simple closed curve s in N,
we can manufacture a word W in the letters x±1

1 , . . . , x±1
g by travelling once along

the curve and recording all encounters with the cutting disks by writing x±1
i when-

ever s crosses Di, with the exponent ±1 indicating whether the crossing takes place
in the positive direction. If the curve s is disjoint from all the disks in the cut sys-
tem, the word W is empty and we write W =1. (The reader might recognize this
as a procedure to express the free homotopy class of s in the fundamental group of
N, which is a free group on the generators {xi}.)

Given any (finite) set S of words in the letters x±1
i , there is a certain purely com-

binatorial algorithm, called Whitehead reduction, that returns another set of words
Smin in the same letters. Very roughly speaking, this process attempts to reduce
the length of the words in S by performing certain substitutions and cancellations;
the set Smin it returns has the property that the total length of its words cannot
be reduced further. We will describe this in § 5. For the moment, this rough idea
is enough to state our last theorem:

Theorem 1.6 Let N be a coloured handlebody having at least one t-curve. Orient
its t-curves as the boundary of the dark grey region (say). Choose any complete cut
system {Di} and read the t-curves as explained above to produce a set of words S
in the letters x±1

i . Perform Whitehead reduction to obtain a new set Smin. Then,
N satisfies the geometric criterion (i.e., condition (ii) of theorem 1.1) if and only
if Smin satisfies the following:

(A) For every i, the letters x±1
i either do not appear at all among the words in

Smin or both appear, exactly once each.
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D1
D2

Figure 3. A genus 2 handlebody with a complicated system of t-curves.

The advantage of the algebraic criterion (A) over the geometric criterion of theo-
rem 1.1 is that it is no longer formulated in existential terms and is algorithmically
checkable. Notice also that the assumption that N has at least one t-curve is incon-
sequential since otherwise N cannot satisfy the geometric criterion anyway (unless
it is a 3-ball). In fact, there is a good dynamical explanation for this. If N has
no t-curves, it must be painted in just one colour, say white. This means that it
will be positively invariant for any flow ϕ that realizes it, and then, its maximal
invariant subset K is an attractor with H∗(K) = H∗(N) 6= 0 (a result of Hastings
[6]) regardless of the details of the flow.

We illustrate theorem 1.6 with an example:

Example 1.7. Suppose we observe an isolating block N which is a handlebody
of genus 2 with the system of tangency curves {τ} shown (in a top view of the
handlebody) in figure 3.

We choose the standard cut system {D1, D2} represented by the dashed radial
lines. It is clear that the example does not satisfy condition (ii) of theorem 1.1
for that particular cut system; D1 and D2 intersect

⋃
τ a total of 4 and 6 times,

respectively. To apply theorem 1.6, we orient all three t-curves as indicated by the
arrows; we also let counterclockwise crossings of the Di be recorded with a +1
exponent. We start reading each curve from the thick dot lying on D1. The words
spelled by the t-curves are then S = {x1x2x1x2x2, x−1

1 x−1
2 x−1

2 , x−1
1 x−1

2 }. After
performing Whitehead reduction, we get Smin = {x1x2, x−1

1 , x−1
2 }, which satisfies

(A). Hence, condition (ii) of theorem 1.1 is verified for some cut system {D′
i},

although it is not at all obvious in the figure what that system might look like.
Dynamically, we cannot conclude anything about the cohomology of the maximal
invariant subset of N and, in fact, by theorem 1.5 there even exists a flow in R3

which realizes this pattern of tangency curves on N and has a single rest point
inside N as its maximal invariant subset (visualizing such a flow seems difficult).

The article is organized as follows: § 2 contains some preliminary definitions;
§ 3 and § 4 are devoted to proving theorems 1.1 and 1.5, respectively; theorem
1.6 is proved in § 5 after recalling some algebraic preliminaries; finally, a brief §
6 discusses ‘how likely’ it is for a coloured handlebody to satisfy the geometric
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criterion in theorem 1.1 or, dynamically, for an isolating handlebody to actually
isolate an invariant set with a trivial cohomology.

2. Preliminary definitions

2.1.

We will denote the boundary of a manifold N by ∂N and its interior by Int N .
The word ‘interior’ will almost always be used with this meaning and not as the
topological interior of a subset of some other set. A manifoldN ⊆ R3 is tame if there
exists a homeomorphism of R3 which sends N onto a polyhedral set (equivalently,
onto a smooth submanifold). Tameness is a technical condition that is, in practice,
always warranted. Saying that N is tame is equivalent to requiring that it can be
collared in R3.

Since an invariant compactum K may have bad local topological properties it
is convenient to focus on its Čech cohomology rather than its singular homology,
because the former generally captures more information. It will suffice, and actu-
ally be convenient for some proofs, to take coefficients in Z2. Thus, from now on
H∗ denotes Čech cohomology with Z2 coefficients. Notice that for a locally con-
tractible space (such as a manifold, or a polyhedron), this coincides with singular
cohomology. Details about Čech cohomology can be found in [4] or [13], but the
reader unfamiliar with it may just prefer to interpret H∗ as singular cohomology;
the proofs should still make sense (mostly).

2.2.

Let ϕ : R3 × R −→ R3 be a flow in R3. We abbreviate ϕ(p, t) by p · t. Let N ⊆ R3

be a compact 3-manifold.
We shall say that a point p ∈ ∂N is a transverse (i) entry or (ii) exit point if

there exists an ε> 0 such that either (i) p · (−ε, 0)∩N = ∅ and p · (0, ε) ⊆ Int N or
(ii) p · (−ε, 0) ⊆ Int N and p · (0, ε) ∩N = ∅. Similarly, p is an exterior tangency if
p · (−ε, 0) ∩N = ∅ = p · (0, ε) ∩N .

Definition 2.1. An isolating block N is a tame compact 3-manifold N ⊆ R3

whose boundary ∂N is the union of two compact 2-manifolds Ni and No (one may
be possibly empty) with a common boundary ∂N i = ∂No = N i ∩No and such that:

(i) every p ∈ Int N i is a transverse entry point,
(ii) every p ∈ Int No is a transverse exit point,
(iii) every p ∈ N i ∩No is an exterior tangency.

The superscripts in Ni and No stand for ‘in’ and ‘out’ and suggest where the
flow is heading. As mentioned previously, each component of N i ∩ No is called a
tangency curve, or a t-curve for short. Notice that the maximal invariant subset K
of N is contained in its interior because there are no interior tangencies to ∂N .

Remark 2.2. We make a brief comment about how restrictive the definition of an
isolating block is. Suppose K is a compact invariant set for a continuous flow in a
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3-manifold without boundary. Assume that K is isolated in the sense of Conley, i.e.,
it has a compact neighbourhood N 1 such that K is the largest invariant subset of
N 1. Then, N 1 contains an isolating block N for K (proved in [12] by blending ideas
from [2] and [5]), and so from a theoretical point of view every isolated invariant
compact set in R3 can be analysed with the results in this article. Under favourable
circumstances, it is even possible to compute an isolating block N explicitly (see
[1]).

For any p ∈ N , we define its exit time as

to(p) := sup {t ∈ [0,+∞) : p · [0, t] ⊆ N}.

Notice that to(p) = +∞ precisely when the forward orbit of p is entirely contained
in N ; otherwise to(p) < +∞ is the time it takes the forward orbit of p to leave N.
Because the trajectories cannot slide along ∂N in an isolating block, one can easily
show that p · (0, to(p)) ⊆ Int N , and when 0 < to(p) < +∞, the point p · to(p) is a
transverse exit point. In particular, points close to p will have a similar exit time;
it then follows that to : N −→ [0,+∞] is a continuous map.

2.3.

We adapt the usual notion of ‘cutting a manifold along a disk’ to coloured manifolds
as follows. Let (N,P,Q) be a coloured 3-manifold with t-curves {τ}. A cutting disk
for N means a disk D ⊆ N such that:

(i) D has a (topological) regular neighbourhood in N, i.e., a neighbourhood U
such that (U,U∩∂N) ∼= (D, ∂D)×[−2, 2] via a homeomorphism that carries
x ∈ D ⊆ U to (x, 0) ∈ D × {0}.

(ii) condition (i) implies that D ∩ ∂N = ∂D (i.e., D is properly embedded in
N ); we further require that ∂D intersects

⋃
τ exactly twice, transversally.

We will often abuse notation and write D × [−2, 2] instead of U. Condition (i)
is needed to avoid wild disks, which are known to exist in 3 dimensions. It is auto-
matically satisfied when working in the piecewise linear or smooth category letting
U be a regular or tubular neighbourhood of D, respectively. In (ii), ‘transversally’
should be understood in the obvious topological sense: if p is a point of intersection
of ∂D and some t-curve τ , a short arc of ∂D centred at p should have one of its
halves on the grey side of τ and the other on its white side. By reparameterizing U,
we can (and will) assume that for each t ∈ [−2, 2], the boundary of the slice D×{t}
of U intersects

⋃
τ in the same way as the boundary of D (i.e., it intersects the

same t-curves, and transversally). The picture conveyed by this definition is that
of figure 4(a).

Cutting N along D means removing from N the set D× (−1, 1) to obtain a new
3-manifold N

′
. One has

∂N ′ = ∂N \ (∂D)× [−1, 1] ∪D × {±1}

so most of the points of the boundary of N
′
inherit a colouring from N ; only points

in the interior of the two ‘cutting disks’ D × {±1} remain uncoloured. We shall
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N

D

U ∼= D × [−2, 2]

(a)

N

D− D+

(b)

Figure 4. Cutting a coloured manifold N along the disk D.

denote these disks by D± for brevity and often represent them in drawings filled
with diagonal lines. See figure 4(b).

We will usually start with N being a tame subset of R3 (or some other ambient
3-manifold). Removing only D×(−1, 1) instead of D×(−2, 2) from N ensures that
N

′
is still tame in R3.

3. Proof of theorem 1.1

The basic structure of the proof goes as follows. Let N ⊆ R3 be an isolating
block with a connected boundary. Consider the inclusion induced homomorphism
H1(N) −→ H1(K). We will show how to use (certain) elements in the kernel of
this map to construct cutting disks D for N that are transverse to

⋃
τ . Cutting N

along these disks produces an N
′
such that H1(N ′) −→ H1(K) is injective (i.e., all

elements in its kernel have been removed). Thus, if K has a trivial one-dimensional
cohomology, so does this N

′
. Theorem 1.1 then follows easily.

This technique was already used in [12] to establish a certain ‘handle decom-
position theorem’ of isolating blocks. For the purposes of that article, we could
assume that K had finitely many connected components. Since here the basic tenet
is that K is completely unknown, this assumption has to be removed and makes
the analysis slightly more delicate.

3.1.

First we explain how the cutting disks will be constructed. Denote by n+ the subset
of points in Ni whose forward trajectory never exits N, or equivalently to(p) = +∞.
Let γ be an arc properly embedded in Ni; this means that γ ∩ ∂N i = ∂γ. Assume
that γ does not intersect n+, so that each p ∈ γ exits N in a finite time to(p). Then,
the set

D :=
⋃
p∈γ

p · [0, to(p)]
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10 J. J. Sánchez-Gabites

obtained by following each point in γ until it first exits N is a 2-disk properly
embedded in N. We say that D is generated from γ by the flow. Notice that ∂D
consists of the two arcs γ and {p · to(p) : p ∈ γ} which intersect exactly at their
end points. It is therefore a simple closed curve that intersects

⋃
τ exactly twice

(at the end points of γ) and transversally.
To cut N along D we proceed as follows. Pick a thin strip E ⊆ N i along γ,

still disjoint from n+. This E is a rectangle that intersects ∂N i exactly along
its short sides and whose long sides run parallel to γ. Formally, (E,E ∩ ∂N i) ∼=
(γ, ∂γ) × [−2, 2], where γ corresponds to γ × {0}. We then use the flow again to
generate

U :=
⋃
p∈E

p · [0, to(p)],

which is a thickening of D inside N, as described in § 2.3, and cut N along D
to obtain the manifold N

′
. The cutting disks D± ⊆ ∂N ′ correspond to the disks

generated by the long sides of the rectangle E. Notice that N
′
contains K in its

interior, and its entry and exit time maps are continuous, since they are restrictions
of those of N. However, N

′
is not an isolating block because the flow slides along

the cutting disks D± contained in its boundary. Every other point in ∂N ′ retains
the nature (i.e., exterior tangency, transverse entry or exit point) it had prior to
the cutting.

3.2.

Let D ⊆ N be a disk generated from an arc as described previously. This can be
used to define a cohomology class wD ∈ H1(N), which acts on a homology class
[c] ∈ H1(N) by taking a representative 1-chain c transverse to D and counting
(modulo 2) the number of intersections of the 1-cycle c and D. Formally, the 2-
cycle D represents a homology class [D] ∈ H2(N, ∂N) and wD is its image under
the Lefschetz duality isomorphism H2(N, ∂N) ∼= H1(N). It is clear that if O is a
neighbourhood of K small enough that it is disjoint from D, then wD restricts to
zero in H1(O); thus, each wD belongs to the kernel of the inclusion induced map
H1(N) −→ H1(K). The following lemma provides a converse:

Lemma 3.1. Assume H2(N,K) = 0. Let γ run over all arcs properly embedded in
N i − n+ and let D run over all the disks generated from these arcs by the flow.
Then, {wD} generates the kernel of H1(N) −→ H1(K).

We will prove the lemma in § 3.3. Let us admit it and continue our argument.
Focus on any one wD that is non-zero. Perform the cut-along D procedure

described previously to obtain a new N
′
. Observe that the cohomology of (N,N ′)

is (by excision) that of U relative to the cutting two disks D±, i.e., that of
(D × [−1, 1], D × {±1}). This cohomology is zero in degree 6=1, and in degree
1 it is Z2, generated by the class ŵD ∈ H1(N,N ′) which counts intersections with
the disk D. We then have a commutative diagram
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where the row comes from the long exact sequence of the pair (N,N ′) and the unla-
beled arrows are induced by the inclusions. Since α is surjective, the commutativity
of the triangle involving H1(K) shows that the kernel of H1(N ′) −→ H1(K) is the
image under α of the kernel of H1(N) −→ H1(K). Notice that β(ŵD) = wD

because both cohomology classes count intersections with D, and since wD is
non-zero by assumption, it follows that

dimker(H1(N ′) −→ H1(K)) = dimker(H1(N) −→ H1(K))− 1.

For later reference observe also that looking at the rest of the exact sequence for
the pair (N,N ′) and, using that β is injective, we have that the inclusion N ′ ⊆ N
induces isomorphisms in H 2 and H 0.

A slight elaboration on this procedure yields the following:

Proposition 3.2. Assume H2(N,K) = 0. Then, there exists a finite family of
disjoint, properly embedded arcs {γi} in Ni such that N cut along the disks {Di}
generated by these arcs produces an N

′
with H1(N ′) −→ H1(K) injective.

Proof. Assume for the sake of argument that the kernel of H1(N) −→ H1(K)
has dimension 2. Then, there exist two arcs γ1, γ2 properly embedded in Ni which
generate disks D1, D2 such that {wD1

, wD2
} generate that kernel.

Case 1. If the γi are disjoint, so are the disks Di, and then a straightforward
variation on the procedure described previously shows that cutting N along the
{Di} simultaneously produces an N

′
with the required property.

Case 2. Suppose, then, that the arcs γi are not disjoint. By perturbing them
slightly (which does not change the cohomology classes wDi

) we may assume that
the arcs intersect transversally at some points in the interior of Ni. For instance,
imagine that they intersect at a single point as in figure 5(a). We modify γ2 by
breaking it at the intersection point and adding arcs parallel to γ1 to connect the
two portions of γ2 to the boundary of Ni obtaining two properly embedded arcs γ′2
and γ′′2 . See figure 5(b). Clearly, γ2 is homologous to γ′2 + γ′′2 . (If there are more
intersection points, we do this for each of them and obtain more summands, but the
argument is the same.) The three arcs {γ1, γ′2, γ′′2 } are now disjoint and generate
classes wD1

, wD′
2
, wD′′

2
, which satisfy wD2

= wD′
2
+ wD′′

2
. It follows that either

{wD1
, wD′

2
} or {wD1

, wD′
2
} (or perhaps both) generate the kernel of H1(N) −→

H1(K); since they are generated by disjoint arcs, we fall back onto case 1. �

We can now prove theorem 1.1 in § 1, which we restate here as follows:

Theorem Let N ⊆ R3 be an isolating block with a connected boundary. Assume its
maximal invariant subset K has H1(K) = 0. Then, N is a handlebody, and it has
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∂N i

γ1
γ2

(a)

∂N i

γ2

γ2

(b)

Figure 5. Case 2 in the proof of proposition 3.1: removing intersections of arcs γi.

a complete system of cutting disks {Di} such that each ∂Di intersects the system
of tangency curves exactly twice, and transversally.

Proof. Since N ⊆ R3, saying that it has a connected boundary is equivalent to
saying that H2(N) = 0 (write S3 = N ∪ S3 \N and look at the Mayer–Vietoris
sequence of this decomposition) and in turn H2(N) = 0 by the universal coeffi-
cient theorem. The long exact sequence in Čech cohomology for the pair (N,K )
and the assumption H1(K) = 0 then imply H2(N,K) = 0. Proposition 3.2 yields
a system of cutting disks {Di} such that N cut along these {Di} produces an N

′

with H1(N ′) −→ H1(K) injective. Since H1(K) = 0 by assumption, this forces
H1(N ′) = 0. We observed just before proposition 3.2 that N ′ ⊆ N induces isomor-
phisms in H 2 and H 0, so, in particular, we still have H2(N ′) = H2(N) = 0 and
H0(N ′) = H0(N) = Z2. It follows easily from Lefschetz duality that ∂N ′ has the
homology of a 2-sphere, and so it is a 2-sphere. Since ∂N ′ is polyhedral, it follows
from the polyhedral Schönflies theorem of Alexander ([10, Theorem 12, p. 122])
that N

′
is a 3-ball. Thus, N is a handlebody and {Di} is a complete system of

cutting disks for N satisfying the required conditions. �

3.3.

We now prove lemma 3.1. This requires some preliminary work. We denote by N+

the set of points in N whose forward semitrajectory is entirely contained in N. This
is compact, contains K, and intersects ∂N along n+. Also, we denote by ti(p) the
analogue of to in backward time: the infimum of all t ≤ 0 such that p · [t, 0] ⊆ N .

(i) All the inclusions

(N,K) ⊆ (N,N+) ⊇ (N i ∪N+, N+) ⊇ (N i, n+)

induce isomorphisms in Čech cohomology. The last one is just the strong excision
property of Čech cohomology, while the other two make use of the flow to construct
appropriate ‘infinite time’ deformation retractions. For example, consider the map
H : (N,N+)× [0,+∞) −→ (N,N+) given by (p, t) 7−→ p ·max{−t, ti(p)}. Fixing p
and allowing t to go from 0 to +∞, the point H(p, t) just follows the trajectory of
p backwards until it first hits Ni (if it ever does) and remains stationary thereafter.
The setsH(N×[k,+∞)) for k = 0, 1, 2, . . . form a nested sequence of compacta, and
the inclusion of each of them in the previous one is a homotopy equivalence, with
H|N×[k,k+1] providing a homotopy inverse. The first member of the sequence (k =0)
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is (N,N+), and the limit of the sequence (the intersection of the whole sequence)
is (N i ∪N+, N+). Thus, the inclusion (N i ∪N+, N+) ⊆ (N,N+) induces isomor-
phisms in Čech cohomology by its continuity property ([4, theorem 3.1, p. 261]).
A similar argument applies to the inclusion K ⊆ N+, and then, the five lemma
ensures that (N,K) ⊆ (N,N+) also induces isomorphisms in Čech cohomology.

(ii) Let P ⊆ N i be a compact 2-manifold, which is a neighbourhood of n+.

Then Hk(N i, P ) ∼= Hk(N i \ P , ∂P ) ∼= H2−k(N i \ P , ∂N i), where we have used

excision and Lefschetz duality (in the manifold N i \ P ), respectively. The geometric
interpretation of this isomorphism (in dimension k =1, for example) is as follows.

Let zγ ∈ H1(N i, P ) correspond to γ ∈ H1(N i \ P , ∂N i). Then zγ acts on any
α ∈ H1(N

i, P ) by returning its intersection number with γ (modulo 2). That is, if
c and a are transverse polygonal 1-chains representing γ and α, then zγ(α) is the
number of intersection points of c and a modulo 2. This description characterizes
zγ completely (by the universal coefficients theorem). Passing to the limit as P gets
smaller and using the continuity property of Čech cohomology and the compact
supports property of homology yield an isomorphism Hk(N i, n+) ∼= H2−k(N

i −
n+, ∂N i). The geometric interpretation of this isomorphism is essentially the same
as above.

Lemma 3.3. Assume H2(N,K) = 0. Let γ run over all arcs properly embedded in
N i − n+. Then, the zγ generate H1(N i, n+).

Proof. Consider the homology group H1(N
i−n+, ∂N i). Assuming everything to be

triangulated, any homology class has a representative c, which is a (finite) sum of
simplices whose algebraic boundary ∂c lies in ∂N i. Since we are taking coefficients
in Z2, the chain c can be identified with its underlying set, and it is then very easy
to prove (using ∂c = 0) that the simplices in c can be grouped into a structure∑
ci+

∑
aj , where each ci is a simple closed curve and each aj is an arc whose end

points lie in ∂N i.
SinceH2(N,K) = 0, from (ii) above, we haveH0(N

i−n+, ∂N i) = H2(N,K) = 0
and so each component of N i − n+ intersects ∂N i. Then each summand ci is
homologous to a properly embedded arc; it suffices to join ci to ∂N

i with a thin
ribbon intersecting ci and Ni along its short sides and add the boundary of the
ribbon to ci (perhaps one needs to push ci slightly into the interior of Ni first).
Thus, we have shown that H1(N

i−n+, ∂N i) is generated by (the homology classes
defined by) properly embedded arcs γ, and so by (ii) above,H1(N i, n+) is generated
by the zγ . �

Recall from (i) that the inclusion induced map j∗ : H1(N,N+) −→ (N i, n+) is
an isomorphism. It follows from the previous lemma that {(j∗)−1(zγ)} is a gen-
erating system for H1(N,N+). These cohomology classes have a simple geometric
interpretation. We discussed in § 3.1 how every arc γ gives rise via the flow to a
disk D in N. There is a cohomology class zD that counts intersections (modulo 2)
with the disk D ; evidently the restriction of this to Ni counts intersections with
D ∩ N i = γ; in other words, it is zγ . Thus, (j

∗)−1(zγ) = zD. Finally, since the
inclusion (N,K) ⊆ (N,N+) also induces isomorphisms in Čech cohomology, we
have
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Lemma 3.4. Assume H2(N,K) = 0. Let γ run over all arcs properly embedded in
N i − n+ and let D run over all the disks generated from these arcs by the flow.
Then, {zD} generates H1(N,K).

Denote by wD the image of zD under the inclusion induced homomorphism
H1(N,K) −→ H1(N). Again, wD just counts intersections with D. By the pre-
vious lemma and the exactness of the cohomology sequence for the pair (N,K ), the
set {wD} generates the kernel of the inclusion induced homomorphism H1(N) −→
H1(K). This proves lemma 3.1.

4. Proof of theorem 1.5

Very roughly, the proof of theorem 1.5 from § 1 can be described as follows. First
one shows that for any coloured 3-ball B, there is a vectorfield on (a small neigh-
bourhood of) the ball which generates a flow that realizes B as an isolating block
whose maximal invariant subset is a single rest point. To prove theorem 1.5 one
starts with the coloured handlebody N, cuts it along the disks {Di} to obtain a
3-ball B = N \

⋃
Di × (−1, 1), finds a vectorfield as just described on B, and

then extends it to the 1-handles Di × [−1, 1] in such a way that no new invariant
structure is introduced.

The idea is simple enough and the constructions are not difficult to visualize,
but the formalization is slightly cumbersome. We will discuss a simpler case first
(proposition 4.1) to introduce the basic elements of the construction and then
elaborate on it in proposition 4.2. In these two results N will be any tame coloured
manifold in R3, not necessarily a handlebody, since the proof is the same.

We would like to use the convenient language of vectorfields to define the flow.
In order to do this we use the following trick. Recall that any 3-manifold has a
differentiable structure. We are given the coloured manifold N as a subset of R3, but
by regarding it as an abstract 3-manifold we may assume that it is differentiable.
We will enlarge it by attaching a collar ∂N × [0, 1] onto its boundary to obtain
M = N ∪ ∂N × [0, 1] and define a flow ϕ on M which realizes N as an isolating
block. The advantage is that on M we can use the language of differential topology
to define the flow relatively easily. Returning from this abstract flow to R3 is simple.
Denote by N emb (for ‘embedded’) the 3-manifold N thought of as a subset of
R3. It is here that the assumption that N emb be tame will come into play: it
ensures that N emb has a collar in R3, and so it can be slightly enlarged to Memb =
Nemb∪∂Nemb× [0, 1]. The (identity) homeomorphism N −→ Nemb can be trivially
extended to a homeomorphism M −→ Memb, and then the flow ϕ defined on M
can be copied to a flow defined on M emb which realizes N emb as an isolating block.
The flow can then be extended to all of R3 in whatever way.

4.1.

Let N be a compact 3-manifold. A spine of N is a compact set K ⊆ Int N such
that N \K is homeomorphic to ∂N × (−1, 0], where ∂N 3 x 7−→ (x, 0) under the
homeomorphism. For example, a point in the interior of a 3-ball is a spine.
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A

Figure 6. The coloured annulus A with a radial flow.

Proposition 4.1. Let (N,P,Q) be a tame coloured manifold in R3 and K a spine
for N. There exists a flow ϕ in R3 which realizes N as an isolating block whose
maximal invariant subset is K.

Proof. Figure 6(a) shows the annulus A := {u ∈ R2 : 1 ≤ ‖u‖ ≤ 3} coloured in a
certain way. On A we consider the tangent vectorfield u 7−→ (‖u‖ − 1)(3 − ‖u‖)u.
The flow it generates has both boundary components consisting of fixed points and
otherwise its trajectories evolve radially from the white component of the boundary
towards the grey one.

Step 1 Consider ∂N as a surface in the abstract. We may assume that it is

differentiable and so are its subsets P and Q. We define a tangent vectorfield W 0

on ∂N . For each tangency curve τ let Aτ be a thin annulus along τ . Each Aτ is
diffeomorphic to the model A of figure 6(a) via a colour preserving diffeomorphism.
We define W 0 on each annulus Aτ by using any such diffeomorphism to copy the
radial vectorfield on A. We will also use the expressions ‘radial segment’ or ‘radial
direction’ on Aτ with the obvious meaning.

Deleting the interiors of the annuli Aτ from P and Q we obtain slightly shrinked
copies of P and Q that we shall denote by sP and sQ. Define W 0 to be zero on sP
and sQ. The flow on ∂N generated by W 0 has every point in sP and sQ stationary
and flows radially across the annuli Aτ , from sP towards sQ.

Finally, define a smooth map θ : ∂N −→ [−1, 1] such that

(i) θ|sP ≡ +1, θ|sQ ≡ −1 and θ|τ ≡ 0 for each t-curve τ ;
(ii) θ is strictly decreasing along each of the radial segments that fibre the annuli

Aτ .

For example, θ|Aτ could be (a suitably rescaled version of) the radius function
of the annulus Aτ .
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r = −1

r = 0

r = 1

AτsP sQ

Figure 7. The flow on a cross section of ∂N × [−1, 1].

Step 2 Consider the abstract Cartesian product ∂N × [−1, 1]. We denote its

points by (x, r) and identify its tangent space at a point (x, r) with Tx(∂N) ⊕ R.
Thus, a tangent vector V = (W,U) at a point (x, r) consists of two components: a
vector W tangent to ∂N at x and a real number U.

Define a tangent vectorfield V = (W,U) on ∂N × [−1, 1] by

W(x,r) =W0(x) and U(x,r) = (r2 − 1) θ(x).

For r = ±1 we have V = (W0, 0) and so V is actually tangent to the boundary
∂N ×{±1} of ∂N × [−1, 1]. Thus, we can integrate V to obtain a complete flow ψ
on ∂N × [−1, 1].

If we take a cross section of ∂N × [−1, 1] along one of the radial fibres of an
annulus Aτ and extending a little into sP and sQ we observe the phase portrait
shown in figure 7. The grey half of the picture is Q× [−1, 1] and the white half is
P × [−1, 1]. Horizontal and vertical movement are controlled by the components W
and U of V, respectively.

We justify briefly the drawing of the phase portrait. On the top and bottom lines
r = ±1 we have V = (W0, 0) so ψ behaves there as explained in Step 1. Trajectories
in sP × [−1, 1] and sQ × [−1, 1] move vertically because θ=0 there. Trajectories
in (Int Aτ )× (−1, 1) have the U-shape suggested by the diagram for the following
reason. Let t 7−→ (x(t), r(t)) be one such trajectory and observe that x (t) is an
integral curve (in ∂N) for W 0 because W only depends on x. Thus, x (t) must
travel from the white boundary component of an annulus Aτ towards the other.
While it does so, θ(x(t)) is positive until x (t) hits τ , where θ vanishes, and becomes
negative thereafter. Since ṙ(t) is proportional to θ(x(t)) through a negative factor,
it follows that r(t) strictly decreases, reaching a minimum as x (t) crosses τ , and
then strictly increases again. This justifies the U-shape of the trajectory. Notice
also that for t→ ±∞ we must have r(t) → 1.
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Consider ∂N × (−1, 0] ⊆ ∂N × [−1, 1]. It follows from the previous paragraph
that its maximal invariant subset is empty. Notice that along its boundary ∂N×{0}
the flow ψ behaves in the manner required for an isolating block: at points (x, 0)
with x ∈ Int P we have U(x,0) = −θ(x) < 0 so that ψ crosses ∂N×{0} transversally
into ∂N × (−1, 0], with the opposite happening when p ∈ Int Q. For points x in⋃
τ × {0} the flow ψ is externally tangent to ∂N × {0}.
Step 3 Still considering N as an abstract 3-manifold, enlarge it to a manifold

M by attaching a collar ∂N × [0, 1] to its boundary via the map (x, 0) 7−→ x.
Since K is a spine of N, there exists a homeomorphism ∂N × (−1, 0] ∼= N \ K;
this can be extended to the collar in an obvious manner yielding a homeomorphism
∂N × (−1, 1] ∼= M \K. Actually, since any 3-manifold has a unique differentiable
structure, there is a diffeomorphism ∂N × (−1, 1] ∼=M \K. We may thus identify
these two manifolds and think of V as a vectorfield inM \K. Define a vectorfield Ṽ
on all of M by picking a continuous function µ :M −→ [0, 1] such that K = µ−1(0)
and setting Ṽ = 0 over K and Ṽ = (µ/(µ + ‖V ‖))V outside K. This vectorfield
generates a flow ϕ on M which is stationary on K and has the same phase portrait
of figure 7 onM \K. Thus N is an isolating block in the phase space M, with entry
and exit sets P and Q respectively, and maximal invariant subset K. We finally
return to the embedded N ⊆ R3 as explained at the beginning of this section. �

4.2.

Suppose (N,P,Q) is a (tame) coloured manifold in R3 and {Di} is a system of
cutting disks for N. Let N

′
be the result of cutting N along the {Di} and let

K ′ ⊆ Int N ′ be a spine of N
′
.

Proposition 4.2. There exists a flow ϕ in R3 which realizes N as an isolating
block whose maximal invariant subset is K

′
.

Notice the difference with proposition 4.1: here the maximal invariant subset of
N is not a spine K of N itself, but a spine K

′
of the simpler manifold N

′
.

Proof of proposition 4.2. For notational simplicity we prove the proposition when
there is just one cutting disk D. The proof is a modification of the argument of
proposition 4.1.

Let N
′
be the result of cutting N along the disk D. As described previously,

∂N ′ is coloured almost completely save for the two lined cutting disks D±. For
the purpose of comparison with proposition 4.1 extend the colouring of ∂N ′ to the
disks D± in the obvious manner shown in figure 8, painting one half of each disk
black and the other white. Now N

′
is a coloured manifold whose t-curves we denote

generically by τ ′. Notice that each of the disjoint disks D± intersects
⋃
τ ′ along a

diameter. For later reference we label by t− and t+ the points shown in figure 8.
The point t− is any one of the two points in ∂D− where the colouring changes;
once this is chosen, t+ is the point in ∂D+ which sits ‘in front’ of t−, i.e., which is
joined to t− by a portion of a t-curve in D × [−1, 1].

Step 1 We first define a tangent vectorfield W 0 on ∂N ′. Again, for each tan-

gency curve τ ′ of ∂N ′ we let Aτ ′ be a thin annulus along τ ′. We use the same
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N

D− D+

t− t+

Figure 8. Two reference points in the cutting disks of N’.

construction as in Step 1 of proposition 4.1 with the following modification. In the
boundary of N

′
, somewhere along

⋃
τ ′, there are the two cutting disks D±. We

choose the annuli Aτ ′ in such a way that the disks D± are contained in these annuli.
Also, when choosing the diffeomorphisms Aτ ′

∼= A to copy the radial vectorfield in
A to a vectorfield W 0 in the annuli Aτ ′ we take the following precaution. Suppose
that (say) D+ is contained in Aτ ′ . We then choose the diffeomorphism Aτ ′

∼= A in
such a way that D+ ⊆ Aτ ′ corresponds to the lined disk D ⊆ A in figure 9(a). We
define D′

+ to be the preimage of D
′
under the diffeomorphism Aτ ′

∼= A. Finally,
we extend W 0 by zero outside the annuli Aτ ′ .

For later reference we observe the following. Consider the phase portrait of figure
9(b) and denote by D1 ⊆ D2 the two concentric disks depicted there. Every point
in ∂D2 is a rest point, and otherwise trajectories flow in a parallel fashion. The
point t ∈ ∂D1 is one of the two points where a trajectory is tangent to D1. Now
imagine one modifies the radial flow in A in panel (a) of the figure by stopping
it outside the interior of D

′
. Every point in the boundary of D

′
becomes a rest

point, and trajectories inside D
′
still flow radially as in the drawing. This modified

flow on D
′
is conjugate to the model shown in figure 9(b) via a colour preserving

homeomorphism (D′, D) ∼= (D2,D1). In particular, the two points in ∂D where the
modified radial flow in D

′
is tangent to D must go to the corresponding tangency

points in ∂D1, and one can choose which one goes to t.
The map θ is defined exactly as before.

Step 2 Now we define a tangent vectorfield V = (W,U) on ∂N ′ × [−1, 1] using

W 0 in a manner similar to the previous proposition, but with some modifications
so that we can later on extend the dynamics to all of N. Let α : ∂N ′ −→ [0, 1] be a
smooth map which is strictly positive exactly on the interior of the disks D′

±. Set

W(x,r) = ((1 + r)α(x) + 1− r) ·W0(x) and U(x,r) = (r2 − 1) θ(x).

As before, V generates a complete flow ψ on ∂N ′×[−1, 1]. We observe the following:

(i) For r =1 we have V = (2αW0, 0). Every point outside the interior of the
disks D′

± × {1} is an equilibrium for ψ′, and on the interior of the disks
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A

D D

(a)

t

D2

D1

(b)

Figure 9. The position of the cutting disks within the annulus A.

themselves the orbits evolve in the usual radial fashion. Thus, as discussed
before, ψ|D′

±×{1} is conjugate via a colour preserving homeomorphism to

the model of figure 9(b).
(ii) In the region −1 ≤ r < 1 the phase portrait of ψ is qualitatively the same

as that of figure 7. The reason is the following. Suppose t 7−→ (x(t), r(t))
is an integral curve of V passing through a point (x0, r0) with x 0 in the
interior of some annulus Aτ ′ and r0 < 1. Since the subset r =1 is invariant
we must have r(t) < 1 for all t and, in particular, the numerical factor that
multiplies W0(x) in the definition of W(x,r) is strictly positive for all t. Now,
the derivative of t 7−→ θ(x(t)) is given by said numerical factor times the
derivative of θ in the direction W0(x(t)). The latter is strictly negative by
definition of θ, and so θ(x(t)) is strictly decreasing. Thus, again x (t) evolves
monotonically across the annulus Aτ ′ , from the white boundary towards
the grey boundary. Accordingly r(t) strictly decreases until θ=0 and then
strictly increases again.

Figure 10(a) shows again a cross section of the flow along a radial segment of an
annulus Aτ ′ that intersects the disk D

′
+ (say). Notice how points with r =1 outside

D′
+ are now equilibria, while inside D′

+ we still have the same radial flow as before.

Step 3 As in Step 3 of proposition 4.1, enlarge N
′
to a manifoldM

′
by attaching

a collar onto its boundary, identify ∂N ′ × (−1, 1] ∼= M ′ \ K ′, and think of V as
a vectorfield on M ′ \ K ′. Multiply it by an appropriate function µ to extend it
continuously by zero to K

′
and use this to generate a new flow ϕM ′ in M

′
. This

flow has N
′
as an isolating neighbourhood for K

′
, and its entry and exit pattern

into N
′
accord to the colouring of ∂N ′ described at the beginning of the proof.
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D+

(a) (b)

Figure 10. The flow in a cross section of ∂N × [−1, 1].

Moreover, ϕM ′ sweeps across the disks D′
± × {1} ⊆ ∂M ′, as in figure 9(b). The

goal now is to attach back to N
′
the 1-handle we removed when cutting along the

disk D while extending the flow ϕM ′ appropriately. This we do as follows.
Consider again the phase portrait of figure 9(b). Define H := D2 × [−1, 1] and

endow it with the flow ϕH, which repeats figure 9(b) on each slice D2 × {t}. One
should think of H as a 1-handle with pasting disks D2 × {±1}, which we are going
to attach onto M

′
along the disks D′

± × {1} ⊆ ∂N ′ × {1} ⊆ ∂M ′. This we do by
choosing pasting homeomorphisms D2×{±1} ∼= D′

±×{1} which: (a) conjugate ϕH

and ϕM ′ , (b) are colour preserving, (c) send D1 × {±1} onto D± × {1}, and (d)
send (t±, 1) to (t,±1). These homeomorphisms exist by the discussion at the end
of Step 1. The resulting space M :=M ′ ∪H is a 3-manifold (with corners, but we
do not need to worry about differentiability any more), and the flows on M

′
and

H match up on the pasting disks, so there is a well-defined flow ϕ on M.
Consider the solid tube D1 × [−1, 1] ⊆ H and lengthen it slightly to the solid

tube

T := D+ × [0, 1] ∪ D1 × [−1, 1] ∪D− × [0, 1] ⊆M.

The bases of this tube are the disks D± × {0}, which lie on ∂N ′. Figure 10(b)
shows a cross section view of this. The lined region is D+ × [0, 1], whereas the
dotted region extending upwards is (a portion of) D1 × [−1, 1]; the other end of
the tube T looks similar. It is clear from this that the whole tube T is coloured by
the flow ψ as shown in figure 11; one should think of the flow as running vertically
from the bottom up in the figure.

It should be clear from the construction so far that N ′ ∪ T ⊆ M := M ′ ∪H is
an isolating block for K

′
having D1 × {0} as a cutting disk. Notice that there are

two arcs of tangency points running along the lateral face of T. Recall that at the
beginning of the proof we distinguished two points t± in ∂D± as well as a point
t ∈ ∂D1, and required that when pasting H onto M

′
the points (t+, 1) and (t,−1)

matched, and similarly at the other end of H. This ensures that the two points

https://doi.org/10.1017/prm.2024.101 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.101


A criterion to detect a non-trivial homology of an invariant set of a flow in R3 21

T

D+ × [0, 1] D− × [0, 1]

a

D1 × [−1, 1]

t t t−t+

Figure 11. A coloured solid tube T to be pasted onto N’.

(t±, 0) ∈ ∂N ′ cobound one of the tangency arcs along T, namely,

a = {t+} × [0, 1]︸ ︷︷ ︸
⊆D+×[0,1]

∪{t} × [−1, 1]︸ ︷︷ ︸
⊆D1×[−1,1]

∪{t−} × [0, 1]︸ ︷︷ ︸
⊆D−×[0,1]

.

See figure 11.

Step 4 Finally, we return back to the original problem in R3. As usual, we

denote by Nemb ⊆ R3 the original manifold N embedded in R3. We have a colour
preserving homeomorphism h : N ′ −→ N ′

emb (essentially, the identity) and want
to extend this to a colour preserving homeomorphism h : N ′ ∪ T −→ Nemb. Since
Nemb = N ′

emb ∪ Demb × [−1, 1], where Demb is the disk along which we cut N
to begin with, we only need to extend h to a colour preserving homeomorphism
from T to Demb × [−1, 1]. Both T (figure 11) and Demb × [−1, 1] (figure 4.(a)) are
solid cylinders that look alike, including their colouring, so the existence of such an
extension of h seems plausible (there is a slight subtlety, though). To prove it, we
will use repeatedly the fact that a homeomorphism between the boundaries of two
balls can be extended to a homeomorphism between the two balls (by coning from
the centre).

Let us focus first on the two arcs of tangency points running along the boundary
of T. One is a; denote the other by b. There are also two arcs of t-curve on the
lateral face of Demb × [−1, 1] ⊆ Nemb. One of them, say aemb, has t± as its end
points by definition (back at the beginning of the proof). Denote the other by bemb.
Now, h is already defined on the lined disks D±×{0} ⊆ ∂T , and so in particular it
is defined on the end points (t±, 0) of the arc a, which it carries precisely onto the
end points of aemb. Thus, it can be extended to carry the whole arc a onto aemb,
and similarly for b and bemb. This is the subtlety we mentioned earlier: had we
not been careful, h might have interchanged the end points of a and b, rendering a
colour preserving extension impossible.

Now focus on the grey half of the lateral face of ∂T . It is a 2-ball bounded by
a, b, and half of each of ∂D± × {0}. The homeomorphism h is already defined on
all of them, and so we can extend it to a homeomorphism of the whole grey region
onto the corresponding region of the lateral face of Demb × [−1, 1]. The same goes
for the white half. We now have h extended to the whole boundary of the 3-ball
T onto the boundary of Demb × [−1, 1] and finally it can be extended to all of
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T. By construction this extended homeomorphism h : N ′ ∪ T −→ Nemb is colour
preserving. The proof then finishes in the usual way, by observing thatM =M ′∪H
is N with a collar attached and using this to extend h to a homeomorphism of M
onto a collar of N emb and copy the flow into R3. �

4.3.

The proof of theorem 1.5 is now straightforward. We recall its statement:

Theorem 4.3 Let (N,P,Q) ⊆ R3 be a tame coloured handlebody. Assume it has a
complete system of cutting disks {Di} such that each ∂Di intersects

⋃
τ transver-

sally at two points. Then, there exists a flow ϕ on R3 which realizes N as an isolating
block whose maximal invariant subset is a single point.

Proof. The manifold N
′
that results by cutting N along the {Di} is a 3-ball,

which evidently has a spine K
′
consisting of a single point. It follows directly

from proposition 4.2 that there is a flow ϕ in R3 which realizes N as an isolating
block for the rest point K

′
. �

5. Proof of theorem 1.6

The fundamental group of a handlebody N is free in some generators {xi}. When
the handlebody is coloured every t-curve defines an element of this group (up to
conjugacy since no basepoint is fixed), i.e., a word in the letters x±1

i in the manner
described in § 1. The geometric condition of theorem 1.1(ii) can be reformulated in
terms of these words, and the powerful machinery of free groups applied to obtain
theorem 1.6. However, to keep the discussion as simple as possible, we will hide
these algebraic foundations of our discussion and adopt a very pedestrian approach
instead, formulating everything in terms of purely syntactical manipulations of
words.

5.1.

Let {x1, x−1
1 , . . . , xg, x

−1
g } be a collection of letters, where each xi and x

−1
i should

be thought of as inverses of each other. A word W means a (finite) sequence of
letters. Its inverse W−1 is the same sequence written backwards and with each
letter replaced with its inverse. There is an empty word, denoted by 1, with no
letters. A word is cyclically reduced if it has no consecutive pairs of the form xix

−1
i

or x−1
i xi and the same condition holds for its last and first letters (hence the word

‘cyclically’). By successively cancelling pairs of letters of this sort until no further
cancellation is possible, every word W gives rise to a cyclically reduced word which
is unique save for cyclic permutations (i.e., moving the last symbol of the word to
the beginning of the word). The algebraic length (or simply ‘length’) of a word is
the number of letters in its cyclically reduced form.

Suppose W is a word in the letters x±1
i . By substituting each appearance of

xi in W with some other word Vi, and those of x−1
i with V −1

i , one performs a
substitution. We consider substitutions τ of the following two types:
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(1) τ permutes the letters x±1
i among themselves.

(2) For some fixed letter a ∈ {x±1
i }, called the multiplier, τ leaves a±1

unchanged and replaces every other xi with one of these four possibilities: xi
itself, xia, a

−1xi, or a
−1xia. In other words, each xi may or may not acquire

an a on the right and may or may not acquire an a−1 on the left.

These are called Whitehead substitutions. Clearly they are all reversible, with the
inverse being another Whitehead substitution. Also, there are only finitely many
of these substitutions. For the sake of brevity let us write S ∼ S′ to denote that
S

′
arises from S by performing finitely many Whitehead substitutions sequentially,

possibly accompanied by (cyclic) reductions. ∼ is an equivalence relation.
The algebraic length of a finite set of words is the sum of the algebraic lengths

of its members. Fix some finite set of words S. We shall say that a set Smin ∼ S is
a minimal form of S if it achieves the minimum algebraic length among all S′ ∼ S.
There may exist several minimal forms of S, of course all with the same algebraic
length. A celebrated theorem of Whitehead ([16]; for a more condensed proof, see
[8, proposition 4.20, p. 35]) states the following:

(i) If S′ ∼ S is not minimal, there exists a Whitehead substitution which
reduces its algebraic length.

(ii) Given any two minimal forms of S, there exists a sequence of Whitehead
substitutions that carries one onto the other while keeping the algebraic
length the same at each step.

Notice, in particular, that (i) gives a procedure to find a minimal form of S. One
starts with S and applies a Whitehead substitution to all the words in S, cyclically
reducing the resulting words and obtaining a new set S

′
. If the algebraic length

of S
′
is not smaller than that of S, one tries again with a different Whitehead

substitution. Since there are only finitely many of these, after some time one either
finds a substitution τ which reduces the length of S or finds that none does. In the
latter case, S is already minimal. In the former case, one throws S away and starts
again with τ(S). Evidently, this process finishes after a finite number of steps (no
more than the algebraic length of S ) and returns a minimal set Smin ∼ S. We will
call this algorithm ‘Whitehead reduction’. See example 5.5 for an illustration.

5.2.

Given a set of words S in the letters x±1
i , we are interested in the following algebraic

condition:
(A) For every i, the letters x±1

i either do not appear at all among the words in
S or both appear, exactly once each.

Observe that if S satisfies condition (A) then, after cyclically reducing its words,
it still satisfies the condition (since any reduction involves cancelling a pair x±1

i ).
Now we examine the effect of a Whitehead substitution:

Lemma 5.1. Suppose S satisfies (A). Let τ be a Whitehead substitution such that
the length of τ(S) is not bigger than the length of S. Then, after cyclic reduction,
τ(S) also satisfies (A).
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Proof. We can take S to be cyclically reduced. Otherwise, we replace it with its
cyclic reduction, which still satisfies (A).

If τ is just a permutation of the variables the result is obvious, so suppose τ
is a substitution with multiplier a. In passing from S to τ(S), no new letters x±1

i

different from a±1 are inserted, so for those letters condition (A) is satisfied in
τ(S) because it was already satisfied in S. Thus, to prove the lemma, we only need
to show that (after cyclic reduction) a and a−1 do not appear in τ(S), or appear
exactly once each.

When one acts with τ on a word W one obtains a new word τ(W ) which is in
principle longer than W since several instances of a and a−1 will generally have
been inserted. This might lead to the appearance of portions ...aa−1... and ...a−1a...
that can be cancelled out. It can be shown that if the original wordW was cyclically
reduced, only these cancellations involving the multiplier a are possible in τ(W )
([8, Proof of proposition 4.16, p. 31]). Thus, the change in length from S to τ(S)
equals the change in the number of appearances of a and a−1 in S to τ(S) (after
cyclic reduction). In turn, this equals

2(#appearances of ain τ(S)−#appearances of ain S)

because a and a−1 appear both the same number of times in S and also in τ(S).
Indeed, this property is true in S for every letter by condition (A) and is then
preserved upon applying τ , since whenever a letter xi acquires an a on its right
(say), x−1

i acquires an a−1 on its left, balancing the count of a versus a−1 in τ(S)
again.

Since, by assumption, the length of τ(S) is not bigger than that of S, it follows
from the formula above that the number of appearances of a (hence also of a−1)
in τ(S) is not bigger than its number of appearances in S, which is at most 1 by
condition (A). This finishes the proof. �

Lemma 5.2. Let S be a finite set of words. Then, the following are equivalent:

(a) There exists S′ ∼ S that satisfies (A).
(b) Every minimal form of S satisfies (A).

In particular, either every minimal form of S satisfies (A) or none does.

Proof. Evidently (b) ⇒ (a), since minimal forms always exist. To prove the con-
verse, assume S′ ∼ S satisfies (A) and Smin is any minimal form of S. By parts
(i) and (ii) of Whitehead’s theorem, we can go from S

′
to Smin by first applying a

sequence of Whitehead substitutions τ that decrease the length at each step (until
we arrive at some minimal form of S ) and then another sequence of Whitehead
substitutions τ that keeps the length constant at each step and arrives at Smin. We
know from lemma 5.1 that all these τ preserve condition (A). Thus, Smin satisfies
(A) because S

′
did. �

In fact, it can be shown that a set S satisfying (A) is already very close to being
minimal.
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5.3.

We finally return to the problem at hand, namely, recognizing when a coloured
handlebody has a complete cut system that satisfies condition (ii) in theorem 1.1.
First, we explain the geometric interpretation of the preceding discussion.

Let N be a handlebody with a cut system {D1, . . . , Dg}. Cut N open along this
system to obtain a 3-ball. Fix as a basepoint ∗ the centre of the ball and consider 2g
straight segments joining it with the centre of each of the disks D±

i on the boundary
of the ball. If we now glue together each pair D+

i , D
−
i , we recover the handlebody N

together with a collection of g closed curves b1, . . . , bg based at ∗ such that each of
them pierces exactly one Di, and just once. Their homotopy classes {[b1], . . . , [bg]}
form a basis for the free group π1(N, ∗).

Suppose s is an oriented closed curve in ∂N and assign to it a word V (x1, . . . , xg)
as described in § 1. Choose any path α that joins the basepoint ∗ to any point in s
and consider the concatenation α∗s∗α−1 which is a loop based at ∗. The expression
of [α ∗ s ∗α−1] in the basis {bi} is then conjugate to the element V ([b1], . . . , [bg]) ∈
π1(N, ∗). This word depends on the choice of α; however, its conjugacy class does
not and so as a cyclically reduced word V depends only on s. This is how cyclic
words arise in our context.

Whitehead substitutions also have a geometric interpretation. Given a complete
cut system {D1, . . . , Dg} for a handlebody, there is a geometric manipulation that
generates a new system {D1, . . . , D

′
i, . . . , Dg} by replacing one of the disks Di with

a new disk D′
i constructed as a band sum of the old Di and some other Dj. If

an oriented curve s in ∂N spelled the word V with respect to the cut system
{Di}, the word V

′
that it spells with respect to {D′

i} is obtained by a substitution
with the general structure xj → xjxi (with minor variations such as xjx

−1
i and

xixj , depending on the orientations assigned to the disks and how the band sum
is performed). Observe that this is a Whitehead substitution. Now, it is a theorem
that any two complete cut systems of N can be related to each other by a sequence
of these manipulations, and so the following lemma holds:

Lemma 5.3. Suppose N is a coloured handlebody of genus g and {Di} and {D′
i}

are two cut systems for N. Let S and S
′
be the sets of words obtained by reading

the t-curves with respect to these two cut systems. Then S ∼ S′.

The above argument illuminates the geometric reason for the lemma but omits
many details. Here is an alternative, algebraic proof:

Proof of lemma 5.3. The two cut systems give rise to bases {[bi]} and {[b′i]} of π1(N)
as explained before. Each [bi] can be expressed as Ui([b

′
1], . . . , [b

′
g]), where the word

Ui(x1, . . . , xg) records the intersections of bi with the {D′
i}. Let V (x1, . . . , xg) be

one of the words in S, i.e., the word read off from one of the t-curves τ in N with
respect to the cut system {D1, . . . , Dg}. Then, [τ ] = V ([b1], . . . , [bg]) in π1(N) and

[τ ] = V (U1([b
′
1], . . . , [b

′
g]), . . . , Ug([b

′
1], . . . , [b

′
g]))

so the word V (U1(x1, . . . , xg), . . . , Ug(x1, . . . , xg)) expresses [τ ] in the basis {bi}.
Since such an expression is unique, the set of words S

′
and the set of words

{V (U1, . . . , Ug) : V ∈ S} must coincide after cyclic reduction.
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Since both {[bi]} and {[b′i]} are a basis for π1(N), there exists an automorphism
that carries the first onto the second (by the definition of a free group there exist
endomorphisms of π1(N) that carry {[bi]} onto {[b′i]} and vice versa; their composi-
tion in both orders is the identity again by the definition of a free group). Whitehead
substitutions encompass the so-called Nielsen substitutions, and the latter already
suffice to generate all automorphisms of a free group ([8, proposition 4.1, p. 23]).
Thus, there exists a sequence of Whitehead substitutions that carries {U1, . . . , Ug}
to {x1, . . . , xg}. If we apply this sequence of Whitehead substitutions on the set
{V (U1, . . . , Ug) : V ∈ S}, we evidently get (after cyclic reduction) the set S back.
Thus,

S′ = {V (U1, . . . , Ug) : V ∈ S} ∼ S

as claimed. �

We can now prove theorem 1.5, which we recall here as follows:

Theorem 5.4 Let N be a coloured handlebody with a non-empty collection of t-
curves. Let {D1, . . . , Dg} be any cut system for N and let S be the collection of
words in the letters x±1

i obtained by reading the t-curves, oriented as the boundary
of the grey region. Denote by Smin any minimal form of S. Then, the following are
equivalent:

(a) N satisfies the geometric criterion with respect to some complete cut system
{D′

i}.
(b) Smin satisfies (A).

Example 5.5. Figure 3 showed a handlebody N whose t-curves spell the words
S = {x1x2x1x2x2, x−1

2 x−1
2 x−1

1 , x−1
1 x−1

2 } with respect to the cut system {D1, D2}.
We apply Whitehead reduction as follows. The substitution x1 7→ x1x

−1
2 , x2 7→ x2

(i.e., multiplier a = x−1
2 ) produces the set S′ = {x1x1x2, x−1

1 x−1
2 , x−1

1 }, which has
a smaller algebraic length than S (6 versus 10). We now substitute x1 7→ x1, x2 7→
x−1
1 x2 (multiplier a = x1) and get S′′ = {x1x2, x−1

1 , x−1
2 }. It is easy to see that no

substitution can reduce its length any more, so this is a minimal set Smin equivalent
to S.

Proof of theorem 5.4. (a) ⇒ (b) We have that each ∂D′
i intersects

⋃
τ exactly

twice and transversally. Thus, as we travel once along ∂D′
i, we run into

⋃
τ exactly

twice, crossing from the white region to the grey one (say) and then back to the
white one. Therefore, xi and x

−1
i appear exactly once each among the unreduced

words read off by the t-curves. (They appear with opposite exponents due to the
orientation of the t-curves as the boundary of the grey region.) Hence the set S

′
of

words read by the t-curves with respect to {D′
i} satisfies condition (A). We have

S′ ∼ S by lemma 5.3, and then by lemma 5.2, the set Smin also satisfies (A).
(b) ⇒ (a) Consider all complete cut systems for N, which intersect

⋃
τ transver-

sally. Since these intersections consist of finitely many points, there exists one such
system {D′

i}, which minimizes the cardinality of (
⋃
∂D′

i) ∩ (
⋃
τ). Let S

′
be the

set of words read out by the t-curves with respect to this system. By a theorem
of Zieschang ([17, Theorem 1, p. 128], but see also [15, p. 318] or [7] for simpler
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D1

a

(a) (b)

D1

(c)

Figure 12. Ensuring that a cutting disk intersects the system of t-curves.

proofs), all words in S
′
are cyclically reduced and S

′
is a minimal form of S. Since,

by assumption, there is a minimal form of S, which satisfies (A), so does S
′
by

lemma 5.2. This directly implies that each of the curves ∂D′
i either intersects

⋃
τ

exactly twice (if x±1
i appears in S

′
) or does not intersect it at all (if it does not).

Notice that we are using here that the words read off by the t-curves in {D′
i} are

already cyclically reduced, and so they accurately record all intersections with
⋃
D′

i.
(Otherwise there might exist consecutive pairs of intersections with the same disk,
in the form xix

−1
i , which would cancel out during cyclic reduction. In that case the

resulting set S
′
would underestimate the number of intersections with

⋃
D′

i.)
We are almost finished. We only need to fix the situation when some of the

∂D′
i do no intersect

⋃
τ at all. Say, for definiteness, that one of them is ∂D′

1. By
definition

⋃
∂D′

i does not separate ∂N , and by assumption
⋃
τ is non-empty, so

there is an arc that joins a point in ∂D′
1 to a point in

⋃
τ while being disjoint from

the remaining ∂D′
i. Travel along this arc starting from its end point in ∂D′

1 until
first hitting

⋃
τ . Discarding the rest of the arc, we have an arc a whose interior is

disjoint from all the ∂D′
i and all the t-curves and whose end points lie one on ∂D′

1

and another on some t-curve (figure 12(a)).
Drag a tiny portion of ∂D′

1 along the arc a until it intersects τ in two very closely
spaced points (panels (b) and (c) in figure 12). This is performed by an isotopy of
∂N supported in a small neighbourhood of a and can be extended to an isotopy of
N again supported in a small neighbourhood of a (in N ) which, in particular, we
can take to be disjoint from all the remaining D′

i. The extended isotopy produces
carries D′

1 onto a new disk D′′
1 , which together with the remaining D′

i is a new cut
system for N where now ∂D′′

1 intersects the system of t-curves transversally exactly
twice. Repeating this procedure if necessary, we can then obtain a new complete
cut system that now satisfies the geometric criterion. �

We conclude with an observation: only the essential t-curves in N are relevant as
far as the geometric criterion is concerned. Ultimately, this owes to the fact that any
inessential t-curve in a coloured handlebody N can be pulled off (via an isotopy)
all the disks in a cut system {Di} without introducing any new intersections. This
can be proved directly by a somewhat tedious cut-and-paste argument, but it also
follows directly from the theorem above. Indeed, the set of words Smin is just the
expression of the conjugacy classes of the t-curves of N in a certain basis of the
fundamental group π1(N). The inessential (i.e., contractible) t-curves are precisely
those that correspond to the empty word 1. Clearly, empty words can be disregarded
when checking the algebraic condition (A), and the claim follows.
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(a) (b)

Figure 13. Models for genus 1.

6. Models that satisfy the geometric criterion

This last and brief section is motivated by the following ill-posed, but intuitively
appealing, question. Suppose one observes an isolating block N which is a handle-
body with a complicated pattern of tangency curves. Is it likely that its maximal
invariant subset has a non-trivial one-dimensional cohomology? Roughly, we need
to count how many colourings of a given handlebody satisfy the geometric crite-
rion. Of course, there are infinitely many that do (for example, any colouring with
all t-curves inessential) and infinitely many that do not (any colouring with three
or more parallel, essential t-curves). In spite of this, the very simple discussion in
this section shows that there is a certain finiteness property in the collection of all
colourings that satisfy the geometric criterion of theorem 1.1.

6.1.

Recall the handlebody Hg with its standard cutting system {Di} shown in figure
1. Suppose that it is endowed with a colouring that satisfies the geometric crite-
rion with respect to {Di}. Focus only on the essential t-curves {τ ′}, which must
all intersect

⋃
Di. Cutting Hg open along the Di we obtain a 3-ball B with 2g

distinguished disks D±
i on its boundary ∂B, each with at most two marked points

in ∂D±
i corresponding to the intersection of ∂Di with

⋃
τ ′. The t-curves τ ′ give

rise to a collection of at most 2g pairwise disjoint arcs in ∂B \
⋃
D±

i whose end
points are the marked points in the boundaries of the D±

i . It is not difficult to
see that there are only finitely many of these collections A of arcs up to isotopies
fixing the disks D±

i . The reason is that the isotopy class of A depends only on
how the arcs pair the marked points and what distinguished disks are enclosed by
cycles of arcs. Returning to the handlebody Hg by pasting back together each pair
D±

i , we conclude that any colouring of Hg which satisfies the geometric criterion
with respect to the system {Di} must be, after removal of its inessential t-curves,
isotopic to one of finitely many models {Mg

i } on Hg.
Figures 13 and 14 below show all possible models for genera g =1 and g =2.

In figure 13(a), the model contains no curves; there is a similar empty model for
every genus (not shown in figure 14). Empty models correspond to the case when
all the t-curves in the colouring of Hg are inessential. We remark that, because the
models {Mg

i } only show the essential t-curves of a colouring, some of them may
not be colourable ‘as is’. For instance, the model in figure 14(b) needs an inessential
t-curve to be added so that it can be coloured (see figure 15).
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(a) (b) (c) (d)

Figure 14. Models for genus 2.

Figure 15. An example of model (b) in Figure 14.

To generate these models we have essentially reversed the argument given in the
previous paragraph, starting with four disjoint disks in the boundary of a 3-ball
with at most two marked points on the boundary of each and listing all possible
collections of arcs joining those up to isotopy relative to the disks. One should
bear in mind that this procedure is very inefficient and many of the configurations
it produces have to be discarded because they include inessential curves, or they
are equivalent up to a homeomorphism, or they cannot be completed (by adding
inessential t-curves) to a collection that can be coloured.

6.2.

We return to dynamics with the following proposition, which should be interpreted
as a sort of (very weak) Hartman–Grobman theorem. For an isolated invariant set
with a trivial one-dimensional cohomology it provides, up to a local topological
conjugacy, ‘essentially finitely many models’ for its possible isolating blocks and
their entry and exit patterns. It does not say anything about the dynamics inside
the block.

Proposition 6.1. Suppose N ⊆ R3 is an isolating block with a connected bound-
ary. Assume that its maximal invariant subset K has a trivial one-dimensional
cohomology. As we know by theorem 1.1, N must be a handlebody of some genus g.
There exists a flow ψ on R3 which realizes Hg as an isolating block such that:

(i) There exist open neighbourhoods U of N and V of Hg and a homeomorphism
h : U −→ V which carries N onto Hg and conjugates ϕ and ψ.

(ii) The essential tangency curves in Hg accord to one of the finitely models
{Mg

i } corresponding to genus g.

Proof. By theorem 1.1 the system of tangency curves of N satisfies the geometric
condition for some complete cut system {D′

i}. There is a homeomorphism h1 :
N −→ Hg which carries each D′

i onto the corresponding Di. This is a standard,
purely topological fact about handlebodies, and it is easily proved by first cutting
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both N and Hg open into 3-balls, each with 2g marked disks, and constructing a
homeomorphism between these two balls that matches corresponding disks.

Copying the colouring of N onto Hg via h1 we obtain a colouring of Hg which
evidently satisfies the geometric criterion with respect to {Di}, and so there exists
a homeomorphim h2 of Hg which carries the essential t-curves of the colouring onto
one of the finitely many models Mg

i . The composition h := h2 ◦ h1 : N −→ Hg

then carries the essential tangency curves of N onto Mg
i . Since N is tame by

definition and Hg is obviously tame, both can be slightly enlarged within R3 by
adding external collars to their boundaries, obtaining neighbourhoods U = N ∪
∂N × [0, 1) and B = Hg ∪ ∂Hg × [0, 1) of N and Hg. h can be extended to a
homeomorphism h : U −→ V in the obvious way. Copying the (now local) flow in
U to V via h produces a local flow ψ there, which can easily be extended to a
complete flow in R3 by slowing it down to a halt near fr V and letting all points
outside V be stationary. �
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