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ABSTRACT

We consider exponential smoothing Yn = aXn + (l — <x)Yn-.i, 0 < a < 1, in
experience rating. Here the premium Yn is determined by the policy's own
claims history (Xn). In order to uniformize the fluctuation of premiums, it is
appropriate to use a bigger a for the big policies than for the small ones. When
the size of the policy changes with time, a need arises to change a corre-
spondingly. It has recently been shown that changing based on the size of the
premiums Yn may lead to too low a tariff level. This result is presented here
and illustrated by means of simulation. Further, some general results are given
how the changing can be made without a decline in the tariff level. The results
are applied to a tariff system in which the linking of the smoothing parameter
to the size of the policy is particularly motivated.
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1. INTRODUCTION

In this paper we consider certain questions related to applications of exponen-
tial smoothing to premium rating. Especially, we deal with problems concern-
ing changing the smoothing parameter.

Let (Xn, n > 1) be a sequence of random variables. Exponential smoothing
(Yn) of the sequence (Xn) is defined by

(1.1) YH = aXn + (l-a)Yn-lt

where a is a constant, 0 < a < 1.
Exponential smoothing is often used for defining the premiums Yn on the

basis of the policy's own claims history (Xn) (cf. e.g. [5] and [6]). If the random
variables Xn have a common expectation, then the premiums Yn are (asympto-
tically) unbiased. With suitable additional assumptions exponential smoothing
leads to a strong correspondence between cumulative premiums and claims of
an individual policy. E.g. if the random variables Xn are uncorrelated and have
a common variance, then the variance of the cumulated difference of claims
and premiums remains bounded (cf. [2], p. 288).
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See e.g. [3], [4] and [7] for the connections of exponential smoothing with
credibility theory.

Throughout this paper, Xn is interpreted as the total claim amount at year n,
or some modification of it, of a given policy.

We consider policies consisting of distinct similar risks the number of which
essentially varies from one policy to another. An example is served by the
workers' compensation insurance, where the total risk consists of the risks
related to the workers of the policyholder.

The bigger the smoothing parameter a is, the more closely the premiums
follow the fluctuation of the claims history. For policies like the above, the
fluctuation of the claims history is relatively bigger for small policies than for
big ones, where the size of the policy is measured by the (risk) premium. As a
consequence, if the same smoothing constant a were used for all policies, also
the premiums of the small policies would fluctuate more than those of the big
ones. Therefore, it is natural to use a smaller a for the small policies than for
the big ones, i.e. to define a as a monotonically increasing function of the
premium.

When the size of the policy changes with time, a need arises to vary a, as
above, monotonically increasingly with respect to the premium. In a recent
paper [1], it is shown, in case Xn i.i.d., that this kind of varying procedure leads
to too low a premium level, cf. (1.3) below. This result is based on the theory of
Markov chains on a general state space.

The above paper considers the smoothing procedure

(1.2) Zn = P(Zn^)Xn + (l-y9(Zn_,)) ZB-i ,

where /? is a monotonically increasing function [0, oo) -• [c, d], 0 < c < d < 1.
It follows from Theorem 4 of [1] that EYn, EZn converge with a geometric
convergence rate to their limits Er, Ez and that

(1.3) Ez<EY=EXn.

This result is based on Theorem 3 of [1] which states that (Yn) and (Zn) are
geometrically ergodic Markov chains (see [1] for definition). The limits EY, Ez

are the means of the invariant probability distributions of the Markov chains
concerned. These results are presented in Section 2 in greater detail.

We are concerned in this paper with a reduced model whose stability
properties can be studied. Our purpose is to call attention to the phenomenon
where the asymptotic value is below the value expected. We believe that this
kind of phenomenon may occur also in more general related models.

In Section 3 the result (1.3) is illustrated by means of simulation.
Sections 4 and 5 deal with how the changing of the smoothing parameter, in

certain cases, can be controlled without the above-mentioned descending of the
tariff level. In Section 4 we present some general results and in Section 5 these
are applied to a tariff system, in which linking the smoothing parameter to the
size of the policy is motivated, not only because of the uniformizing of the
fluctuation of premiums as such, but also because of the equitability of the
policies.
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2. VARYING THE SMOOTHING PARAMETER ON THE BASIS

OF THE PREMIUMS

In the following we present results related to varying the smoothing parameter
as a monotonically increasing function of the premium. These results are
from [1]. For unexplained concepts the reader is referred to that paper.

Let Xn, n > 1 be i.i.d. random variables taking non-negative values. Assume
EXn < oo and that Xn has a continuous density function g > 0 on (0, oo) (we
allow P(Xn = 0) > 0).

Let Yo, Zo be random variables taking non-negative values and let iteratively
for n > 1

where a e (0, 1) and /?: [0, oo) -» [c, d] is monotonically increasing, 0 < c < d < 1.
Here (Yn) and (Zn) are interpreted as (alternative) sequences of premiums

determined by the annual claims amounts (Xn) of a given policy.
With the above assumptions we have the following results.

Theorem 2.1. The sequences (Yn) and (Zn) are geometrically ergodic Markov
chains (with state space S = [0, oo)).

It follows from Theorem 2.1 that the chains (Yn), (Zn) possess unique
invariant probability measures nY, nz with corresponding means EY, Ez,
respectively.

Theorem 2.2.

(i) There exist functions CY,CZ < oo and constants /?r , /?ze(0, 1) such that

(2.1) \EYn-Ey\<CY(yo)p"Y,

(2-2) \EZn-Ez\ < Cz(z0)p"z

for all n, for all initial states yo and for almost all initial states z0 (with respect
to the Lebesgue measure).

(ii) Ez< EY= EXn.

If the random variables Xn and the initial values Yo, Zo take their values in a
finite interval [0, M], the above result can be sharpened. In this case, under the
same assumptions as above (in particular, assuming that g is continuous and
positive on (0, M) and allowing P(Xn = 0) > 0, P(Xn = M) > 0) the result (i)
of Theorem 2.2 can be replaced by the following one:

(i') There exist constants CY, Cz > 0 and pY,pze(0, 1) such that

(2.3) \EYn-EY\ < CYp"Y,
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\EZn-Ez\ < CzP
n
z

for all n and for all initial states y0, z0 e [0, M].
In this case the chains (Yn) and (Zn) are uniformly ergodic on the state space

S = [0, M].

3. A SIMULATION EXAMPLE

The purpose of the simulation is, in a simple case, to give a picture of how
much smaller Ez is than EY, cf. (1.3). One can broaden the picture by
examining other cases and using also numerical methods in addition to
simulation.

The computing was carried out by an IBM Personal Computer XT. The
simulation was arranged as follows. The variables Xn, n > 1 were taken
independent and uniformly distributed over [0, 1]. We fixed

Yo = Zo = 0.5,
a = 0.5.

As p we used

P(z) = 0.2 + 0.6z, 0 < z < 1 (thus c = 0.2 and d = 0.8).

Using the constants and the function p above, we calculated Yn, Zn,
n = 10,50.

We ran the simulation 2000 times and calculated the sample means and
99 %-confidence intervals (using normal approximation) for the variables Yn,
Zn and for completeness also for Xn, n = 10,50.

These quantities are presented in the table below. One can see that Z is
considerably smaller than Y already at time n - 10.

TABLE 3.1

Sample mean Confidence interval

n = 10
X
Y
Z

n = 50
X
Y
Z

0.5067
0.5035
0.4696

0.5077
0.5042
0.4689

0.4902
0.4939
0.4601

0.4910
0.4947
0.4594

0.5232
0.5131
0.4791

0.5243
0.5138
0.4783

The sample mean and its confidence interval were calculated for Z10 as
follows, and similarly for the other variables:
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. 2000
1 r—i

sample mean Z10 = > Z10 k,
2000 *=i

where Z10 k is the value of Z10 at the &'th run,

confidence interval = Zin±2.58 —

t- j 2000 -.1/2

where Szw = Y (ZWtk~Zl0)
2

[2000 *-, J

4. VARYING THE SMOOTHING PARAMETER WITHOUT
CORRELATION WITH THE CLAIMS HISTORY

In the following, we consider certain conditions under which the varying of the
smoothing parameter can be done without a decline in the premium level (cf.
Theorem 2.2). First, we show that this works if the varying procedure is such
that the smoothing parameters do not correlate with the claims history, see
Theorem 4.1 below. We then apply Theorem 4.1 to a case in which the
premium Pn is presented in the form

(4.1) P«=VnPn,

where V is a volume measure of the policy and p a measure of risk per volume
unit derived from the claims history of the policy. The volume measure V can
be e.g. the number of similar subrisks. It turns out that, under certain
assumptions, the varying procedure of the smoothing parameter can be based
on V so that the premiums are unbiased, see Corollary 4.2 below.

Theorem 4.1. Let (Xn) be a sequence of random variables taking non-negative
values, with EXn = a < oo for all n. Let Zo > 0 and let

Z n = anXn + {\-an)Zn-X, f o r « > l ,

where the <xn's are random variables satisfying the conditions

(4.2) 0<c<(xn<d<l

and

(43) E((l -an) (I -a^i) • • • (I -ak+i)txkXk) =

for all k, n; h < n.
Then

(4.4) \EZn-a\ < \Z0-a\(\-c)n for all n.
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Proof. We have

Zn = anXn + (l-aJ<xH-lXn

+ O-oOO-«„_,) " - 0 - a , ) [o + (Zo-a)].
Using (4.3) we get

EZn = aE{a.n + {\ - a B ) a n _ , + ••• + (1 - a B ) (1 - a n _ 0 ••• (1 - a 2 ) a ,

+ 0 - a B ) 0 - a l l _ 1 ) - 0 - a ) ) )

+ (Z0-a) E((\ -aB) (1 - aB_,) • • • (1 - aO).

It is easy to see that

aB + (l ~a n ) a n ^ ] + ••• + (1 — aB) (1 — aB_0 ••• (1 — a2)aj

+ ( l - a B ) ( l - a n _ 1 ) - - - ( l - a , ) = 1 for all n.

Thus

Since (1 — <xk) < 1 — c for all k, the assertion follows from (4.5).
Note that condition (4.3) does not hold true for ( Z J in case of Theorems 2.1

and 2.2. We apply Theorem 4.1 to a claims process satisfying the following
assumption.

Assumption (4.6). Let a risk at year n consist of Nn subrisks tjn u ..., rjnNii for
which

(1°) Ennk = a < oo fo r al l n,k.

The numbers of subrisks Nn are here random variables, ENn < oo for all n. We
assume that the variables r\nk are independent of the process (Nn). (We allow
mutual correlation of the variables rjn k as well as that of the variables Nn.)

Denote £„ = 2 ^ M and Xn = ZJNn.

Under assumption (4.6) and using the notation above, we have the following
corollary of Theorem 4.1.

Corollary 4.2. Let a be a function of the number of the subrisks N satisfying

0 < c < a(N) < d < 1. Then

(i) relation (4.4) holds true for the process

(4.7) ZB = aBAr
B + ( l - a « ) Z B _ 1 , n > 1,

where <xn = a(A^B_j),

(ii) it Pn = ZnNn, then
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EPn-E£A
(4.8) — < \a-zg\0—c)n,

ENn

where z0 is the initial value of the process (4.7).

Proof.

(i) Clearly, EXn = a for all n. We have to verify condition (4.3). Denote
(1 — an) ••• (1 — <xk+l)ak = tx(k,n). Since the variables r\k , are independent of
the process (Nn), they are independent of a (A:, n). Hence

(4.9) E((x(k, n)rjkj) = E<x(k, n)Er;ki = aE<x(k, n)

for all k, n, i; k < n, i < Nk. Condition (4.3) then follows from (4.9).

(ii) By the independence assumption of (4.6), E£n = aENn. By a similar
reasoning as in the proof of Theorem 4.1 and in that of item (i) above, we see
that EPn = aENn + {z0-a)E{{\ -an) ••• (1 -(*,)#„). Accordingly, the assertion
follows from condition c < an.

Consequently, in this case where the varying of the smoothing parameter is
based on the volume measure Nn instead of the premiums, the premiums keep
the right level.

Note that the variables Xn in assumption (4.6) need not be independent of
the parameters <xn. If, for instance, a is a monotonically increasing function of
the number of the subrisks N, then in case a is big (small) then also N is big
(small) and X is more (less) concentrated. Note also that the variables rjnj,
i = 1, . . . , Nn are allowed to be mutually correlated. This fact has significance
in the application presented in Section 5.

Condition 1° in assumption (4.6) can be weakened. For example, it is easy to
see that Collorary 4.2 remains valid if condition (1°) is replaced by the
following one:

(2°) The portfolio is composed of classes Cj,j= 1 , . . . , m such that each class
consists of N'n subrisks tj{ {,..., t]j

n ^ for which

Er]'n k = cij < oo for all n, k,

and that the ratios ry = NJ
n/Nn are constants. (In this case a = 2^ rjaj-)

j

In workers' compensation insurance the subclasses CJ can be interpreted as
different occupational groups.

5. A TARIFF SYSTEM IN WORKERS' COMPENSATION INSURANCE

The following presentation is founded on a Finnish tariff system for workers'
compensation insurance. The tariff (in the following FT) is intended for
medium-sized and bigger employers and is applied since 1983. The tariff aims
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at a relatively strong correspondence between claims and premiums of individ-
ual policies. The premium is mainly determined by smoothing the policy's own
claims history. However, in order to decrease the effects of large claims
amounts, also a collective part of the premium is charged.

For each policy, the premium Pn of year n is presented in the form (cf.
4.1)

(5.1) Pn=VnPn.

Here Vn is the payroll of the policyholder at year n. The risk per wage
monetary unit measure pn will be defined later. Let

where £,„ is the policy's total claims amount at year n. The purpose of the tariff
is to smooth the possibly strongly fluctuating time series (Xn) to a less
fluctuating sequence of coefficients (/>„).

We restrict, in this context, the presentation of the application of the tariff to
the case where there is not any significant trend in (Xn) and the risk structure of
the policy does not essentially change. (Note that the idemnifications are, for
the most part, tied to the wage-index and follow this index closely. As a
consequence, a trend in (Xn), caused by inflation, can be regarded as
negligible.) In case of a trend or structural change the tariff will not be
straightforwardly applied. (See e.g. [2] for controlling this type of situations.)

The time series (Xn) is smoothed, first, by taking a moving average

(5.2) X*=

where c, > 0, £ c,•= 1, m < oo. (In FT cx = 0.5, c2 = 0.3, c3 = 0.2.)
Then exponential smoothing is applied to {X*) resulting in the sequence

(Zn), defined as follows

(5.3) Z0 = z 0 ,
Zn = <xnXn* + (l-ocn)Zn^, w h e n n > l ,

where zo is an initial value and an's are the smoothing parameters. (A
motivation for the double smoothing is that the change in the premiums,
caused by a large claims amount, has a flatter shape than what would be the
case if only exponential smoothing were applied.) We will revert to the
definition of an's later. The varying procedure of the smoothing parameters will
be such that (ZJ can be considered to represent a correct tariff level (cf.
Section 4 and the discussion at the end of this section).

The smoothing procedure (5.3) is such that, as an effect of a big claims
amount in some year, (Zn) can increase remarkably. Consequently, (Zn) is not
suitable for (/>„), since an even development of the premiums is desirable from
the policyholder's point of view. For this reason, the increase of the premiums
is reduced by introducing the variables qn, defined as follows

https://doi.org/10.2143/AST.20.2.2005442 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.2.2005442


CHANGING THE PARAMETER OF EXPONENTIAL SMOOTHING 199

(5.4) 1o = Zo,

qn = min (Zn, hqn-{), for n > 1,

where h > 1 is a coefficient limiting the increase of the process (qn). (In FT
h = 1.5.) See Figure 5.1.

—z —-q
FIGURE 5.1.

Clearly, qn < Zn. As mentioned above, (Zn) can be considered to represent a
correct tariff level. Due to this, all policies are charged a collective part of the
premium corresponding to the expected difference Zn — qn over the whole
insurance portfolio. The coefficient/>„ (cf. 5.1) is defined as follows

Pn = (l + rn)qn,

where the coefficient rn is common for all policies and rn qn Vn is the collective
part of the premium of the individual policy in question. (In FT rn has been
0.02.)

We turn to the definition of the smoothing parameter a. Since the policies
consist of several similar risks the number of risks varying from one policy to
another, the fluctuation of the claims process is steeper for small policies than
for bigger ones. This steeper fluctuation would be transmitted also to ( Z J if
the same smoothing constant were applied for all policies. In this case (qn) of
the small policies would differ more from the correct tariff level (Zn) than (qn)
of the big policies. As a consequence, the small policies would line their pockets
at expence of the big ones. For this reason, and also for harmonizing the
fluctuation of the premiums, it is reasonable to use a smaller a-coefficient for
small policies than for big ones.

In the following, we first consider the choosing of a when a policy starts in
the tariff system considered. The insurance portfolio is divided, on the basis of
the size of the premiums, into classes C, , / = 1 , . . . , / , where the classes are in
increasing order according to the premium size. The limits of the classes are
adjusted yearly on the basis of the wage-index. For the smoothing parameter of
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the "medium-sized" policies has been chosen a = 0.2. The purpose of this
choice is that the fluctuation of the premiums would be of a suitable magnitude
from the policyholders point of view. On the basis of the insurer's statistics, a
parameter a' has been associated with every class C, so that the gain caused by
the truncation (5.4) would be approximately of equal size for the different
classes. This has led to an increasing sequence of parameters a',
0.1 < a' < 0.28, i — 1, . . . , / . A new policy starts in the tariff system with the
smoothing parameter a' defined by its initial premium.

The changing of a is carried out on the basis of the payroll Vn of the
policyholder (cf. 5.1). Every fifth year the size of the policy, measured by the
payroll proportioned to the wage-index, is checked, and if the size has changed
essentially, the parameter a is changed correspondingly.

The changing procedure is in accordance with assumption (4.6) (with 2°).
Note first that it follows from assumption (4.6) that condition (4.3) holds true
even if Xk in (4.3) is replaced by Xk_\, Xk_2 or Xk_}. As a consequence,
Corollary 4.2 remains valid if X* (see 5.2) is substituted for Xn in (4.7).
Further, it is reasonable to assume that the risks nnk associated with single
wage monetary units k are independent of the size of the total payrolls. In
addition, the straightforward use of the tariff is restricted to the case where
there is not a significant trend in (Xn) and the risk structure is stable. Note also
that assumption (4.6) allows mutual correlations of the variables nn k.

Accordingly, by Corollary 4.2 (Zn), and hence (/?„), can be considered to
represent a correct tariff level.
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