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THE HERZOG-SCHÔNHEIM CONJECTURE FOR FINITE 
NILPOTENT GROUPS 

BY 

MARC A. BERGER, ALEXANDER FELZENBAUM and AVIEZRI FRAENKEL 

ABSTRACT. The purpose of this note is to prove the Herzog-Schônheim 
[3] conjecture for finite nilpotent groups. This conjecture states that any 
nontrivial partition of a group into cosets must contain two cosets of the 
same index (Corollary IV below). See Porubsky [4, Section 8] for a per­
spective on coset partitions. 

We introduce certain sets of integer lattice points. A product set, 9JI, in Z" is any 
finite nonempty set of the form 

2ft = A, x . . . x A„ 

where A},. . . ,An C Z. The set At is referred to as the /-th projection of 2ft, denoted 

A-, = Tr,(2ft); 1 <i<n. 

We shall also need to make use of the product set 2ft in Z" ' obtained from 2ft by 

2ft = Tr,(2ft) x . . . x Tr„_,(2ft). 

Product sets 2ft and 2ft' are said to be equivalent if 

|Tr,(2ft)| = K-(3ft')|; 1 < / < n. 

Forb = (bi,...,bn) E N" the set 

9> = {c = (c , , . .. ,c#I) E Z": 0 < ci < b-,\ 1 < / < n} 

is called a parallelepiped. Observe that to each product set there corresponds a unique 
parallelepiped which is equivalent to it. 

THEOREM 1. Let 9h,,. . . , 9Kk be product sets in Z" and let 9P,,. . ,9* k be the paral­
lelepipeds which are equivalent to them. Then 

/ • - 1 

> Û9», 
/ - 1 
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PROOF. We shall say that a nonempty set of integers S is connected if 

5 = { m E Z : m , < m < m2} 

for some mi, m2 E Z. For any finite nonempty set T C Z denote by /(7) the maximal 
connected subset of T containing t = min(m: m G T). In other words /(T) is the 
leftmost connected component of T. Define 

L(7) = (/(7) 4- 1) U (T\l(T)). 

That is, L modifies 7 by shifting its leftmost component one unit to the right. Observe 
that t 4- m is the smallest element in L'"(T), and that this set is connected when m is 
sufficiently large. Now define, for , v E Z , 

L(7^v) 
Z/"'(7), .v > f. 

That is, L(T\s) is that iterate L'"(7) whose smallest element is s (or else it is just 7\ 
if kv < 0- We can extend this definition to product sets 2ft by defining 

L(9R;s) = 9R x L O T , , ^ ) ; * ) . 

When .v is sufficiently small L{9R\s) = Ôft, and when s is sufficiently large TT„(L(9R; s)) 
is connected. From these considerations it becomes evident that in order to prove 
Theorem 1 it suffices to establish that 

(1) U L(2ft,;.v) > U L{9Jii\s + 1) 

for any s E Z. 
Fix .v E Z. Let / C {1,. . . , k) be the index set 

and set 

/ = {i\L(9ki\s + 1) * L(9hr,s)}, 

y = U 2ft,. 

When we make the transition s -» .v + 1 to go from U-. ,L(2ft,;kv) to U •_ [L(9hl;s + 1) 
we lose 

Û L(2ft / ; iv))\(Û L(9l,; .v + 1) I S P 1 

elements, and we gain 

Û L(9hi;s + 1 ) ) \ ( Û L(9R,,s) \V\ 

elements. Thus (1) is obvious. • 
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Let p\ , . . . , /?„ be distinct primes. We define A{n\px , . . . , /?„) to be the family of 
those product sets Sft in Z" for which |7r,(2ft)| is a (nonnegative) power of /?,, 
1 < / < «. 

THEOREM II. Let 2P,,. . . , 9 \ be parallelpipeds in A(n;p^. . . ,/?„). 5W 

• A- I 

U 9A= £ 9(d), 

where cp denotes the Euler y-function. 

PROOF. Set 

Di = {dE N:d\\&i\}. 

Observe that for any index set / C {1,. . . , k} 

(2) fl Di = {d<EN: d|g.c.d.(|9M: i E / )} 

and 

(3) n», £.c.d.(|g\|: / G /) . 

Using the well known fact that 

m = 2 9frf) 

we conclude from (2), (3) that 

ri9\. 2 9(d). 
< / 6 n , e / D , 

Since D = U,__ ,D, the desired result follows now from the inclusion-exclusion prin­
ciple. • 

THEOREM III. Let & be a parallelepiped in A(w;/?j,... ,/?„), and let 2T C 
A(n;p\,. . . ,p„) be a partition of®* into at least two sets. Then 9" must contain two 
sets of the same cardinality. 

PROOF. The proof rests heavily on the fact that the sets in 3~ must belong to 
A(«;/7|,. . . ,/?„). We use induction on n. For n — 1 the result follows from an imme­
diate counting argument, and so we proceed directly to the induction step. Assume, 
without loss of generality, that /?„ is larger than any of p\ , . . . , / ?„_ , . Let 
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K(3>)| = p], 

3-, = { ( € e 2 T : K | | ^ | } . 

If 3" i = cj> then 9~ C A(n — 1 ;/?, , . . . ,/?„_,) must be a partition of 2P, where 9" 
denotes 

3" = {<€:<€ G 3"}. 

Then the result follows from the induction step. Otherwise, if 3", ^ (j>, since 9" is a 
partition we must have 

(4) 2 |<e| P'n U <€ 

Suppose now that all the sets in 2T have distinct cardinalities. Let 

M = {\(l\:(l G S-,}. 

Then 

(5) X |<€|*(£ m)( lK) = — I 
//J e M y = o P„ — \ in EM 

According to Theorems I and II 

(6) 

where 

u % s S <p(d) 

D = {J G N: d \m for some m G M}. 

Since the prime divisors of any d G D can only be px,... ,p„_ i and since /?„ is larger 
than any of them we have 

(7) <pW)s d G D. 
/>„- 1 

Putting (5), (6), (7) together, and using the fact that M C D, gives 

'€G:7, P„ ~~ 1 /»6M /?„ "" 1 (/ED /?„ — 1 dED dED 

U «€ 

contradicting (4). • 
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COROLLARY IV. Any coset partition of a finite nilpotent group into at least two cosets 
must contain two cosets of the same order. 

PROOF. Let G be a finite nilpotent group. As is well known (e.g. Rotman [5, p. 120]) 
G is the direct product of its sylow subgroups, 

G = P, x . . . x pn. 

where P, is a/?,-group. We can thus identify G as a parallelepiped in A(n;p\,. . . ,pn). 
Furthermore, any subgroup H C G is of the form 

H = G, x . . . x Qa 

where each Q, is a subgroup of P,-. This means that each coset of G can be identified 
as a product set in A (A; /? , , . . . ,pn). Hence the desired result follows at once from 
Theorem III. • 

REMARK. Theorem III can be strengthened as follows. Let 

N (Pn - i) n (i - /?;') 

where [ • ] denotes the greatest integer function. Then in fact T must contain TV + 1 sets 
of the same cardinality. In the proof above the inequality (5) gets modified to 

(oE.'i i ptl — 1 mEM 

and the inequality (7) gets modified to 

Nd 
y(d)> 

Pn ~ 1 

When this is applied, as in Corollary IV, to a cyclic group it establishes the Burshtein 
[2] conjecture, which was first proved by alternate methods in Berger, Felzenbaum and 
Fraenkel[l, Thm. 4.II]. 
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