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Abstract. In this paper we consider a non-linear periodic problem driven by the
scalar p-Laplacian and with a non-smooth potential. We assume that the multi-valued
right-hand-side non-linearity exhibits an asymmetric behaviour at ±∞ and crosses
a finite number of eigenvalues as we move from −∞ to +∞. Using a variational
approach based on the non-smooth critical-point theory, we show that the problem
has at least two non-trivial solutions, one of which has constant sign. For the semi-
linear (p = 2), smooth problem, using Morse theory, we show that the problem has at
least three non-trivial solutions, again one with constant sign.

2002 Mathematics Subject Classification. 34B15, 34C25.

1. Introduction. In this paper, we consider the following non-linear periodic
problem driven by the scalar p-Laplacian differential operator and having a non-
smooth potential (hemi-variational inequality):{

−(|x′(t)|p−2x′(t)
)′ + β|x(t)|p−2x(t) ∈ ∂j

(
t, x(t)

)
a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b), 1<p<∞, β >0.

}
(1)

Here j : T × IR −→ IR is a measurable function, and for almost all t ∈ T ,
x −→ j(t, x) is locally Lipschitz and in general non-smooth. By ∂j(t, x) we denote
the generalised (Clarke) subdifferential of the locally Lipschitz function x −→ j(t, x)
(see Section 2).

The goal of this paper is to establish a multiplicity result, when the right-hand-side
non-linearity (which in our case is multi-valued because of the non-smoothness of the
potential x −→ j(t, x)) exhibits an asymmetric behaviour at ±∞ and crosses a finite
number of eigenvalues, as we move from −∞ to +∞ (crossing or jumping non-linearity).

Multiplicity results for the scalar periodic p-Laplacian were proved by Aizicovici,
Papageorgiou and Staicu [2], del Pino, Manásevich and Murúa [10], Gasiński and
Papageorgiou [13], Papageorgiou and Papageorgiou [22] and Yang [25]. In [2],
the authors used degree-theoretic methods based on the degree map for certain
multi-valued perturbations of (S)+-operators with the non-linearity able to cross only
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the zero (principal) eigenvalue. A degree-theoretic approach has also been used in [10],
based on the Leray–Schauder degree map, which is coupled with the use of time maps.
In this case the potential is smooth (i.e. j(t, ·) ∈ C1(IR)), and the hypotheses on the
non-linearity f (t, x) = ∂j(t, x) require partial interaction with the Fučik spectrum of
the scalar p-Laplacian. A smooth potential is also assumed in [22], and the approach
there is variational, based on the second deformation theorem. In the work of Yang
[25], the right-hand-side non-linearity depends also on x′, and so the problem is non-
variational. For this reason, the author assumed the existence of an ordered pair of
upper and lower solutions, and his method of proof used degree theory, based on
Mawhin’s coincidence degree (see Mawhin [19]). Finally in [13] the potential was non-
smooth, and the authors used a variational approach based on a non-smooth version
of the local linking theorem, owing to Kandilakis, Kourogenis and Papageorgiou
[16].

Our approach here is variational based on the non-smooth critical-point theory
(see Gasiński and Papageorgiou [14]), together with the spectrum of a weighted periodic
eigenvalue problem for the scalar p-Laplacian, as developed recently by Zhang [26].
Although we are dealing with a jumping non-linearity, we are not using the Fučik
spectrum of the scalar p-Laplacian. This is in contrast with the work of del Pino,
Manásevich and Murúa [10]. In Section 5, we consider the semi-linear (i.e. p = 2),
smooth problem using Morse theory.

2. Mathematical background. As we mentioned in the ‘Introduction’, our
approach is variational based on the non-smooth critical-point theory, which uses
the subdifferential theory of locally Lipschitz functions. For easy reference, first we
recall some basic definitions and facts from this theory. Details can be found in Clarke
[8].

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Given a locally Lipschitz function ϕ : X −→ IR,
the generalised directional derivative ϕ0(x; h) of ϕ at x ∈ X , in the direction h ∈ X , is
defined by

ϕ0(x; h) = lim sup
x′ → x
λ ↓ 0

ϕ(x′ + λh) − ϕ(x′)
λ

,

whereas the generalised subdifferential of ϕ at x ∈ X is defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x; h) for all h ∈ X}.
If ϕ : X −→ IR is continuous convex, then ϕ is locally Lipschitz, and the

generalised subdifferential coincides with the subdifferential in the sense of convex
analysis, defined by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x + h) − ϕ(x) for all h ∈ X}.
Also, if ϕ ∈ C1(X), then ϕ is locally Lipschitz and ∂ϕ(x)={ϕ′(x)} for all x ∈ X .

We say that x ∈ X is a a critical point of ϕ if 0 ∈ ∂ϕ(x). It is easy to see that a local
extremum of ϕ (i.e. a local minimum or a local maximum) is a critical point.

Using the subdifferential theory for locally Lipscitz functions, we can extend the
critical-point theory to non-smooth locally Lipschitz functions. This started with the
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work of Chang [5]. A detailed exposition of the non-smooth critical-point theory can
be found in the book by Gasiński and Papageorgiou [14].

We say that a locally Lipschitz function ϕ : X −→ IR satisfies the Palais–Smale
condition at level c ∈ IR (the PSc-condition for short) if every sequence {xn}n≥1 ⊆ X such
that

ϕ(xn) −→ c and m(xn) = inf
[‖x∗‖ : x∗ ∈ ∂ϕ(xn)

] −→ 0 as n → ∞

has a strongly convergent subsequence. We say that ϕ satisfies the Palais–Smale
condition (PS-condition for short) if it satisfies the PSc-condition for every c ∈ IR.

Using this notion, we can state a non-smooth version of the well-known ‘mountain-
pass theorem’.

THEOREM 2.1. If X is a Banach space, ϕ : X −→ IR is a locally Lipschitz function,
x0, x1 ∈ X, r>0 satisfy

max
{
ϕ(x0), ϕ(x1)

}
< inf

[
ϕ(x) : ‖x − x0‖ = r

] = η, ‖x1 − x0‖>r,

� = {
γ ∈ C([0, 1], X) : γ (0) = x0, γ (1) = x1

}
, c = inf

γ∈�
max
t∈[0,1]

ϕ
(
γ (t)

)
and ϕ satisfies the

PSc–condition, then c ≥ η and c is a critical value of ϕ.

Given a locally Lipschitz function ϕ : X −→ IR and c ∈ IR, we introduce the
following sets:

ϕ̇c = {x ∈ X : ϕ(x)<c} (the strict sub-level set of ϕ at c ∈ IR),

K = {x ∈ X : 0 ∈ ∂ϕ(x)} (the critical set of ϕ) and

Kc = {x ∈ K : ϕ(x) = c} (the critical set of ϕ at the level c ∈ IR).

The next theorem is a non-smooth version of the so-called second deformation
theorem (see Chang [6], p. 23, and Gasiński and Papageorgiou [15], p. 628), and it is
due to Corvellec [9]. In fact, the result of Corvellec is formulated in the more general
context of metric spaces and continuous functions, using the so-called weak slope.
However, for our purposes, the following particular version of the result suffices.

THEOREM 2.2. If X is a Banach space, ϕ : X −→ IR is a locally Lipschitz function,
−∞<a<b ≤ +∞, ϕ has no critical points in ϕ−1(a, b), it satisfies the PSc-condition for
every c ∈ [a, b) and Ka is finite and consists of only local minima of ϕ, then there exists a
continuous deformation h : [0, 1] × ϕ̇b −→ ϕ̇b such that

(a) h(t, ·)∣∣Ka
= id

∣∣
Ka

for all t ∈ [0, 1];
(b) h(1, ϕ̇b) ⊆ ϕ̇a ∪ Ka;
(c) ϕ

(
h(t, x)

) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ̇b.

REMARK 2.3. In particular, the set ϕ̇a ∪ Ka is a weak deformation retract of ϕ̇b.

In the analysis of problem (1), we shall use the spectrum of a certain weighted
periodic eigenvalue problem for the scalar p-Laplacian. First, let us recall the standard
spectrum of the negative scalar p-Laplacian with periodic boundary conditions
(see Drabek and Manásevich [12], Manásevich and Mawhin [18] and Gasiński and
Papageorgiou [15]).
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So, we consider the following non-linear eigenvalue problem:{
−(|x′(t)|p−2x′(t)

)′ = λ|x(t)|p−2x(t) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b), 1<p<∞.

}
(2)

A number λ ∈ IR, for which problem (2) has a non-trivial solution x ∈ C1(T), is
said to be eigenvalue, and x is a corresponding eigenfunction. Clearly, a necessary
condition for λ ∈ IR to be an eigenvalue is that λ ≥ 0. In fact, λ = 0 is the smallest
eigenvalue, with the corresponding eigenspace IR (the space of constant functions).
Moreover, if u ∈ C1(T) is an eigenfunction corresponding to an eigenvalue λ>0, then
u necessarily changes sign (i.e. u is nodal). Also, in this case u(t) �= 0 a.e. on T , and in
fact u has finitely many zeros.

Let πp = 2π(p−1)
1
p

p sin π
p

. Note that if p = 2, then π2 = π . The sequence

{
μ2n =

(2nπp

b

)p}
n≥0

,

is the set of all eigenvalues for problem (2). If p = 2, then we recover the classical
spectrum of the negative scalar Laplacian, with periodic boundary conditions, namely{

μ2n =
(2nπ

b

)2}
n≥0

.

Another spectrum that we shall use in this paper is the one studied recently by
Zhang [26]. It concerns the following weighted eigenvalue problem:{

−(|x′(t)|p−2x′(t)
)′ = (λ + h(t))|x(t)|p−2x(t) a.e. on T,

x(0) = x(b), x′(0) = x′(b), 1<p<∞, h ∈ L1(T).

}
(3)

As before, λ∈IR is an eigenvalue if (3) admits a non-trivial solution. Zhang [26]
showed that (3) has a double sequence of eigenvalues

{
λ 2n(h)

}
n≥1 and

{
λ2n(h)

}
n≥0,

which satisfy

−∞<λ0(h)<λ 2(h) ≤ λ2(h) . . .<λ 2n(h) ≤ λ2n(h)<. . . and

λ 2n(h) −→ +∞ as n → ∞.

If p = 2 (linear eigenvalue problem), then the above two sequences are all the
eigenvalues of (3) (see Magnus and Winkler [17]). If p �= 2 (non-linear eigenvalue
problem), then we do not know if this is the case. Nevertheless, we can have the
following useful property of this spectrum (see Aizicovici, Papageorgiou and Staicu
[1]).

PROPOSITION 2.4. If h1, h2 ∈ L∞(Z)+ satisfy

μ2n ≤ h1(t) ≤ h2(t) ≤ μ2n+2 a.e. on T, for some integer n ≥ 0, and

h1 �= μ2n, h2 �= μ2n+2,

then all the eigenvalues of (3) are non-zero and do not have zero as a limit point.

https://doi.org/10.1017/S0017089509990346 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990346


MULTIPLICITY OF SOLUTIONS FOR NON-LINEAR PERIODIC PROBLEMS 275

In Section 5, for the semi-linear (i.e. p = 2), smooth (i.e. j(t, ·)∈C2(IR)) problem,
using Morse theory, we produce additional non-trivial solutions. So, let us briefly recall
some basic definitions and facts from Morse theory, which will be used in Section 5.

So, let H be a Hilbert space and ϕ∈C1(H) a function which also satisfies the
PS-condition. Let x0 ∈ H be an isolated critical point of ϕ and c0 =ϕ(x0). The critical
groups (over �) of ϕ at x0 are defined by

Ck(ϕ, x0) = Hk
(
ϕc0 ∩ U, ϕc0 ∩ U \ {x0}

)
for all k ≥ 0,

where U is a neighbourhood of x0; Hk is the kth=-singular relative homology group,
with integer coefficients; and for every η∈IR, ϕη ={x ∈ X : ϕ(x) ≤ η} (the sub-level set
of ϕ at η∈IR). From the excision property of singular homology theory, we see that this
definition is independent of the neighbourhood U of x0. Suppose that −∞< inf ϕ(K),
and let c< inf ϕ(K). Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(H, ϕc) for all k ≥ 0

(see Bartsch and Li [4]). From the deformation lemma, which is valid because we have
assumed that ϕ satisfies the PS-condition, we infer that this definition is independent
of c. If the set K is finite, then the Morse-type numbers of ϕ are defined by

Mk =
∑
x∈K

rankCk(ϕ, x)

and the Betti-type numbers of ϕ are defined by

βk = rankCk(ϕ,∞) for all k ≥ 0.

From the Morse theory (see Bartsch and Li [4], Chang [6] and Mawhin and Willem
[21]), we have

m∑
k=0

(−1)m−kMk ≥
m∑

k=0

(−1)m−kβk and (4)∑
k≥0

(−1)kMk =
∑
k≥0

(−1)kβk. (5)

From (4), we infer that βk ≤ Mk for all k ≥ 0. Therefore, if βk �= 0 for some
k ≥ 0, then ϕ must have a critical point x ∈ H, and the critical group Ck(ϕ, x) is
non-trivial. Equality (5) is known as the Poincaré–Hopf formula. If K = {x0}, then
Ck(ϕ,∞)=Ck(ϕ, x0) for all k ≥ 0.

Finally, if A :X −→ X∗ is a map, we say that A is of type (S)+ when for every
sequence {xn}n≥1 ⊆ X such that xn

w−→ x in X and

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0,

one has xn −→ x in X .
In the sequel, we use the notation r± = max{±r, 0} for all r ∈ IR.
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3. Auxiliary results. In this section we prove some general auxiliary results, which
will be used in the sequel. Some of them are of independent interest and can be useful
in the study of the scalar periodic p-Laplacian, in different settings.

In this paper, we shall use the following two spaces:

W 1,p
per (0, b) = {

x ∈ W 1,p(0, b) : x(0) = x(b)
}

and

Ĉ1(T) = {
x ∈ C1(T) : x(0) = x(b)

} = C1(T) ∩ W 1,p
per (0, b).

Both are ordered Banach spaces with positive cones given by

W+ =
{

x ∈ W 1,p
per (0, b) : x(t) ≥ 0 for all t ∈ T

}
and

Ĉ+ = {
x ∈ Ĉ1(T) : x(t) ≥ 0 for all t ∈ T

}
.

We know that intĈ+ �= ∅ and in fact

intĈ+ = {x ∈ Ĉ+ : x(t)>0 for all t ∈ T}.

LEMMA 3.1. If ϑ ∈L∞(T)+, ϑ(t) ≤ β a.e. on T and ϑ �= β, then there exists ξ0 >0
such that

ψ(x) = ‖x′‖p
p + β‖x‖p

p −
∫ b

0
ϑ(t)|x(t)|pdt ≥ ξ0‖x‖p

p for all x ∈ W 1,p
per (0, b).

Proof. Clearly ψ ≥ 0. We argue by contradiction. So, suppose that the lemma is
not true. Since the functional ψ is p-homogeneous, we can find a sequence {xn}n≥1 ⊆
W 1,p

per (0, b) such that ‖xn‖ = 1 and ψ(xn) ↓ 0. By passing to a suitable subsequence if
necessary, we may assume that

xn
w−→ x in W 1,p

per (0, b) and xn −→ x in C(T) as n → ∞.

We have

‖x′‖p
p ≤ lim inf

n→∞ ‖x′
n‖p

p and

‖xn‖p
p −→ ‖x‖p

p,

∫ b

0
ϑ |xn|pdt −→

∫ b

0
ϑ |x|pdt as n → ∞.

Therefore, in the limit as n → ∞, we obtain

‖x′‖p
p ≤

∫ b

0

(
ϑ(t) − β

)|x(t)|pdt ≤ 0

⇒ x ≡ c ∈ IR. (6)

If c = 0, then ‖x′
n‖p −→ 0, and so xn −→ 0 in W 1,p

per (0, b), a contradiction to the
fact that ‖xn‖ = 1 for all n ≥ 1.

Hence c �= 0. Then from (6), we have

0 ≤ ‖x′‖p
p ≤ |c|p

∫ b

0

(
ϑ(t) − β

)
dt<0,

a contradiction. This proves the lemma. �
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We consider the non-linear map A :W 1,p
per (0, b) −→ W 1,p

per (0, b)∗ corresponding to
the periodic scalar p-Laplacian and defined by

〈A(x), y〉 =
∫ b

0
|x′(t)|p−2x′(t)y′(t)dt for all x, y ∈ W 1,p

per (0, b). (7)

LEMMA 3.2. The map A : W 1,p
per (0, b) −→ W 1,p

per (0, b)∗ defined by (7) is bounded,
continuous and of type (S)+.

Proof. Clearly A is bounded continuous. Let {xn}n≥1 ⊆W 1,p
per (0, b) such that

xn
w−→ x and

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0. (8)

Evidently A is monotone (in fact strictly monotone and strongly monotone if
p ≥ 2), and so it is maximal monotone. But a maximal monotone operator is
generalised pseudo-monotone (see Gasiński and Papageorgiou [15], p. 330). So, from
(8) it follows that

‖x′
n‖p

p = 〈A(xn), xn〉 −→ 〈A(x), x〉 = ‖x′‖p
p.

Since x′
n

w−→ x′ in Lp(T) and the space Lp(T) is uniformly convex, from the Kadec–
Klee property, we have x′

n −→ x′ in Lp(T); hence xn −→ x in W 1,p
per (0, b). This proves

that A is an (S)+-map. �
The next auxiliary result permits us to relate C1 and Sobolev local minimisers for

a large class of locally Lipschitz functionals.
So, we consider a potential function j0(t, x), which satisfies the following

hypotheses:

H0: j0 : T ×IR −→ IR is a function such that
(i) for all x ∈ IR, t −→ j0(t, x) is measurable;

(ii) for almost all t ∈ T , x −→ j0(t, x) is locally Lipschitz;
(iii) for every r>0, there exists ar ∈ L1(T)+ such that

|u| ≤ ar(t),

for a.a. t ∈ T , all |x| ≤ r and all u ∈ ∂j0(t, x).

We consider the functional ϕ0 : W 1,p
per (0, b) −→ IR defined by

ϕ0(x) = 1
p
‖x′‖p

p −
∫ b

0
j0
(
t, x(t)

)
dt.

It is easy to see that ϕ0 is Lipschitz continuous on bounded sets; hence it is locally
Lipschitz (see Clarke [8], p. 83).

PROPOSITION 3.3. If Hypotheses H0 hold and x0 is a local Ĉ1(T)-minimiser of ϕ0,
i.e. there exists r0 >0 such that

ϕ0(x0) ≤ ϕ(x0 + y) for all y ∈ Ĉ1(T), ‖y‖Ĉ1(T) ≤ r0,
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then x0 ∈ Ĉ1(T) and it is also a local W 1,p
per (0, b)-minimiser of ϕ0, i.e. there exists r1 >0

such that

ϕ0(x0) ≤ ϕ(x0 + y) for all y ∈ W 1,p
per (0, b), ‖y‖W 1,p

per (0,b) ≤ r1.

Proof. Let h ∈ Ĉ1(T). If λ>0 is small, then by hypothesis

0 ≤ ϕ0(x0 + λh) − ϕ0(x0),

⇒ 0 ≤ ϕ′
0(x0; h). (9)

Since Ĉ1(T) is dense in W 1,p
per (0, b) and ϕ′

0(x0; ·) is continuous, we infer that

0 ≤ ϕ′
0(x0; h) for all h ∈ W 1,p

per (0, b),

⇒ 0 ∈ ∂ϕ0(x0),

⇒ A(x0) = u0, (10)

where u0 ∈L1(T), u0(t) ∈ ∂j0
(
t, x0(t)

)
a.e. on T (see Clarke [8], p. 83). From the

representation theorem for the elements of W−1,p′
(0, b) = W 1,p

0 (0, b)∗ ( 1
p + 1

p′ = 1) (see
for example Gasiński and Papageorgiou [15], p. 212), we have(|x′

0|p−2x′
0

)′ ∈ W−1,p′
(0, b).

In what follows, by 〈·, ·〉0 we denote the duality brackets for the pair(
W−1,p′

(0, b), W 1,p
0 (0, b)

)
. From the definition of distributional derivative, for every

v ∈ C1
c (0, b), we have

−
〈(|x′

0|p−2x′
0

)′
, v
〉
0

=
∫ b

0
|x′

0|p−2x′
0v

′dt = 〈A(x0), v〉 ,

⇒ −
〈(|x′

0|p−2x′
0

)′
, v
〉
0

=
∫ b

0
u0vdt for all v ∈ C1

c (0, b) (see (10)). (11)

Since C1
c (0, b) is dense in W 1,p

0 (0, b), we infer that (11) is valid for all v ∈ W 1,p
0 (0, b)

and so

−(|x′
0(t)|p−2x′

0(t)
)′ = u0(t) a.e. on T, x0(0) = x0(b). (12)

From (12) we see that

|x′
0|p−2x′

0 ∈ W 1,1(0, b) ⊆ C(T).

Recall that the map γp : IR −→ IR defined by

γp(r) =
{

0 if r = 0,

|r|p−2r if r �= 0,

is a homeomorphism. Note that γ −1
p

(|x′
0(t)|p−2x′

0(t)
)=x′

0(t) for all t ∈ T . Therefore
x′

0 ∈ C(T), and so it follows that x0 ∈ Ĉ1(T).
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Now, suppose that x0 is not a local W 1,p
per (0, b)-minimiser of ϕ0. Note that ϕ0

is sequentially weakly lower semi-continuous, and for every r>0 let Br(x0)={x ∈
W 1,p

per (0, b) : ‖x − x0‖ ≤ r
}
. Then, by the Weierstrass theorem, ϕ0 attains its infimum

on Br(x0). Therefore, for every n ≥ 1, we can find vn ∈ W 1,p
per (0, b) such that

‖x0 − vn‖ ≤ 1
n

and ϕ0(vn) = min
[
ϕ0(x) : x ∈ B 1

n
(x0)

]
<ϕ0(x0). (13)

Let ϑ : W 1,p
per (0, b) −→ IR+ be the norm (constraint) functional defined by

ϑ(v) = 1
p
‖v‖p = 1

p

(‖v‖p
p + ‖v′‖p

p

)
for all v ∈ W 1,p

per (0, b).

By virtue of the Lagrange multiplier rule of Clarke [7], for every n ≥ 1, we can find
λn <0 such that

λnϑ
′(vn − x0) ∈ ∂ϕ0(vn) for all n ≥ 1. (14)

Let Kp : Lp(T) −→ Lp′
(T) be the bounded continuous map defined by Kp(x)(·) =

|x(·)|p−2x(·) for all x ∈ Lp(T). Owing to the compact embedding of W 1,p
per (0, b) into

Lp(T), we see that Kp
∣∣
W 1,p

per (0,b) is compact. Note that ϑ ′(x) = A(x) + Kp(x) for all x ∈
W 1,p

per (0, b). From (14), we have

A(vn) − un − λnA(vn − x0) − λnKp(vn − x0) = 0 (15)

with un ∈L1(T), un(t)∈∂j0
(
t, vn(t)

)
a.a. on T . We consider two different cases:

Case I : The sequence of Lagrange multipliers {λn}n≥1 is bounded.
Define

γn(t, r) = |r|p−2r − λn|r − x′
0(t)|p−2(r − x′

0(t)
)− λn|x′

0(t)|p−2x′
0(t)

for all (t, r) ∈ T × IR, all n ≥ 1.

The function γn exhibits the following properties:
� γn ∈ C(T × IR) for all n ≥ 1;
� for all t ∈ T and all n ≥ 1, r −→ γn(t, r) is strictly monotone (strongly monotone

if p ≥ 2);
� there exist c1, c2 >0 such that |γn(t, r)| ≤ c1 + c2|r|p−1 for all (t, r) ∈ T × IR;
� for all t ∈ T and all n ≥ 1, we have γn(t, 0) = 0;
� there exist c3, c4 >0 such that γn(t, r)r ≥ c3|r|p − c4 for all (t, r) ∈ T × IR and all

n ≥ 1.
Note that γn

(·, v′
n(·)) ∈ Lp′

(T) and

〈A(vn) − λnA(vn − x0) − λnA(x0), y〉 =
∫ b

0
γn
(
t, v′

n(t)
)
y′(t)dt

for all y ∈ W 1,p
per (0, b). (16)

From (10), (15) and (16), as before, we obtain

−
(
γn
(
t, v′

n(t)
))′

= un(t) + λn|(vn − x0)(t)|p−2(vn − x0)(t) + λnu0(t) a.e. on T. (17)
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Recall that vn ∈ B 1
n
(x0). Hence, by virtue of Hypothesis H0(iii) and (17), we have

that {(
γn
(·, v′

n(·)))′}
n≥1

⊆ Lp′
(T) is bounded,

⇒
{(

γn
(·, v′

n(·)))′}
n≥1

⊆ W 1,p′
(0, b) is bounded,

⇒
{(

γn
(·, v′

n(·)))′}
n≥1

⊆ C(T) is relatively compact

(we know that W 1,p′
(0, b) is embedded compactly in C(T)).

Fix n ≥ 1 and t ∈ T . Then because of the strict monotonicity of the function
r −→ γn(t, r), the inverse map γ −1

n,t : IR −→ IR is well defined and single valued, and
we have

γ −1
n,t (y) = v if and only if γn(t, v) = y for all v, y ∈ IR.

Clearly γ −1
n,t is continuous (see the properties of γn stated above). We can define

σn : C(T) −→ C(T) by

σn(y)(t) = γ −1
n,t

(
y(t)

)
for all y ∈ C(T) and all t ∈ T.

We have

γn
(
t, σn(y)(t)

) = y(t) for all n ≥ 1, all t ∈ T and all y ∈ C(T). (18)

Claim: If {yn}n≥1 ⊆C(T) is relatively compact, then {σn(yn)}n≥1 ⊆C(T) is relatively
compact too.

To this end, from the properties of γn stated earlier and (18), we have

c3|σn(yn)(t)|p − c2

≤ γn
(
t, σn(yn)(t)

)
σn(yn)(t)

≤ |yn(t)| |σn(yn)(t)|,
⇒ c3‖σn(yn)‖p

∞ ≤ c2 + c4‖σn(yn)‖∞ for some c4 >0, all n ≥ 1,

⇒ {σn(yn)}n≥1 ⊆ C(T) is bounded (since p>1).

Next, let s, t ∈ T . We have(
γn
(
t, σn(yn)(t)

)− γn
(
s, σn(yn)(s)

))(
σn(yn)(t) − σn(yn)(s)

)
=
(
γn
(
t, σn(yn)(t)

)− γn
(
t, σn(yn)(s)

))(
σn(yn) − σn(yn)(s)

)
(t)

+
(
γn
(
t, σn(yn)(s)

)− γn
(
s, σn(yn)(s)

))(
σn(yn)(t) − σn(yn)(s)

)
. (19)

From the definition of the function γn(t, r) and since we assume that {λn}n≥1 ⊆ IR−
is bounded, given ε>0, we can find δ1 = δ1(ε)>0 such that

|t − s|<δ1 ⇒ ∣∣γn
(
t, σn(yn)(s)

)− γn
(
s, σn(yn)(s)

)∣∣< ε

2
for all n ≥ 1.
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Hence (
γn
(
t, σn(yn)(s)

)− γn
(
s, σn(yn)(s)

))(
σn(yn)(t) − σn(yn)(s)

)
≥ −ε

2
|σn(yn)(t) − σn(yn)(s)|. (20)

If p ≥ 2, then(
γn
(
t, σn(yn)(t)

)− γn
(
t, σn(yn)(s)

))(
σn(yn)(t) − σn(yn)(s)

)
≥ c5 |σn(yn)(t) − σn(yn)(s)|p for some c5 >0, all n ≥ 1. (21)

If 1<p<2, then(
γn
(
t, σn(yn)(t)

)− γn
(
t, σn(yn)(s)

))(
σn(yn)(t) − σn(yn)(s)

)
≥ p − 1

2

(|σn(yn)(t)| + |σn(yn)(s)|)p−2 |σn(yn)(t) − σn(yn)(s)|2

≥ c6 |σn(yn)(t) − σn(yn)(s)|2 for some c6 >0, all n ≥ 1 (22)

(since {σn(yn)}n≥1 ⊆ C(T) is bounded). In the derivation of (21) and (22), we have
used some basic inequalities in IRk, k ≥ 1 (see Gasiński and Papageorgiou [15], p. 740).

Therefore, if p ≥ 2, then using (20) and (22) in (19), we obtain

|yn(t) − yn(s)| + ε

2
≥ c6 |σn(yn)(t) − σn(yn)(s)|p−1 (see also (18)). (23)

If 1<p<2, then using (20) and (22) in (19), we obtain

|yn(t) − yn(s)| + ε

2
≥ c6 |σn(yn)(t) − σn(yn)(s)| (see also (18)). (24)

Since, by hypothesis, {yn}n≥1 ⊆ C(T) is relatively compact, it is equicontinuous.
So, we can find δ2 = δ2(ε) ∈ (0, δ1) such that

|t − s|<δ2 ⇒ |yn(t) − yn(s)|< ε

2
for all n ≥ 1. (25)

Using (25) in (23) and (24), we infer that

{σn(yn)}n≥1 ⊆ C(T) is equicontinuous.

Therefore, by the Arzela–Ascoli theorem, we conclude that {σn(yn)}n≥1 ⊆ C(T) is
relatively compact.

We set yn(·) = γn
(·, v′

n(·)) for all n ≥ 1. Then σn(yn) = v′
n, and we know that

{yn}n≥1 ⊆ C(T) is relatively compact. So, the Claim given above implies that {v′
n}n≥1 ⊆

C(T) is relatively compact. Also, {vn}n≥1 being bounded in W 1,p
per (0, b), it is relatively

compact in C(T). Hence, we conclude that {vn}n≥1 ⊆ C1(T) is relatively compact. Since,
from (13), we have vn −→ x0 in W 1,p

per (0, b), it follows that vn −→ x0 in C1(T). Since,
by hypothesis x0 is a local Ĉ1(T)-minimiser of ϕ0, we can find n0 ≥ 1 such that

ϕ0(x0) ≤ ϕ0(vn) for all n ≥ n0,

which contradicts (13). This proves the proposition when {λn}n≥1 is bounded.
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Case II : The sequence {λn}n≥1 ⊆ IR− of Lagrange multipliers is unbounded.
We set zn = vn − x0 ∈ W 1,p

per (0, b), n ≥ 1. From (15), we have

1
|λn| A(zn + x0) + A(zn) = 1

|λn| un − Kp(zn) for all n ≥ 1. (26)

We define

μn(t, r) = 1
|λn| |r + x′

0(t)|p−2(r + x′
0(t)

)+ |r|p−2r − 1
|λn| |x′

0(t)|p−2x′
0(t)

for all (t, r) ∈ T × IR, all n ≥ 1.

It is easy to see that μn(t, r) has the same properties as γn(t, r), and from (26), we
have

−
(
μn
(
t, v′

n(t)
))′

= 1
|λn|un(t) − |zn(t)|p−2zn(t) + 1

|λn|u0(t) a.e. on T. (27)

Reasoning as in Case I, using this time (27), we reach a contradiction. This
completes the proof of Proposition 3.3. �

The eigenvalues {μ2n}n≥0 from Section 2 are all the eigenvalues of the negative
periodic scalar p-Laplacian and of course coincide with the eigenvalues provided
by the Ljusternik–Schnirelmann theory (see Drabek and Manásevich [12], Section
4). The Ljusternik–Schnirelmann theory provides minimax characterisations of the
eigenvalues. In the next proposition, for μ2 >0, i.e. the second eigenvalue (the first non-
zero eigenvalue), we produce an alternative variational (minimax) characterisation,
which suits better our purposes.

So, in what follows let

∂BLp

1 = {
x ∈ Lp(T) : ‖x‖p = 1

}
and

C1(p) = {
x ∈ W 1,p

per (0, b) ∩ ∂BLp

1 :
∫ b

0
|x|p−2xdt = 0

}
.

We know that

μ2 = inf
[‖x′‖p

p : x ∈ C1(p)
]

(28)

(see Mawhin [20] and Gasiński and Papageorgiou [15]). Also, let

u0(t) = 1

b
1
p

for all t ∈ T.

This is the Lp-normalised principal eigenfunction for the periodic scalar p-Laplacian.

PROPOSITION 3.4. If S=W 1,p
per (0, b) ∩ ∂BLp

1 is furnished with the relative W 1,p
per (0, b)-

norm topology and

� = {
γ ∈ C([−1, 1],S) : γ (−1) = −u0, γ (1) = u0

}
then μ2 = inf

γ∈�
max

s∈[−1,1]

∥∥ d
dtγ (s)

∥∥p
p.

https://doi.org/10.1017/S0017089509990346 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990346


MULTIPLICITY OF SOLUTIONS FOR NON-LINEAR PERIODIC PROBLEMS 283

Proof. Let γ ∈ � and set η(s) = ∫ b
0 |γ (s)(t)|p−2γ (s)(t)dt for all s ∈ [−1, 1]. Then

η(−1)<0<η(1),

and so, by the intermediate value theorem, we can find s0 ∈ (0, 1) such that

η(s0) = 0,

⇒ γ (s0) ∈ C1(p).

From (28) it follows that ∥∥∥ d
dt

γ (s0)
∥∥∥p

p
≥ μ2,

from which it follows that

inf
γ∈�

max
s∈[−1,1]

∥∥∥ d
dt

γ (s)
∥∥∥p

p
≥ μ2. (29)

Next, we produce a γ0 ∈ � such that

max
−1≤s≤1

∥∥∥ d
dt

γ0(s)
∥∥∥ = μ2. (30)

To this end, let u1 ∈C1(T) ∩ C1(p) be an eigenfunction corresponding to the
eigenvalue μ2, and let ζ : IR −→ S be defined by

ζ (r) = u1 + r
‖u1 + r‖p

for all r ∈ IR.

We have

d
dt

ζ (r)(t) = u′
1(t)

‖u1 + r‖p
,

⇒
∥∥∥ d

dt
ζ (r)

∥∥∥p

p
= ‖u′

1‖p
p

‖u1 + r‖p
p
.

Then

d
dr

∥∥∥ d
dt

ζ (r)
∥∥∥p

p
= −p ‖u′

1‖p
p ‖u1 + r‖p−1

p

〈
Fp(u1 + r), 1

〉
pp′

‖u1 + r‖p

1

‖u1 + r‖2p
p

,

whereFp : Lp(T) −→ Lp′
(T) is the duality map and 〈·, ·〉pp′ denotes the duality brackets

for the pair
(
Lp′

(T), Lp(T)
)
. We know that

Fp(v)(·) = 1

‖v‖p−2
p

|v(·)|p−2v(·) for all v ∈ Lp(T)

(see, for example, Denkowki, Migórski and Papageorgiou [11], p. 43). Therefore

d
dr

∥∥∥ d
dt

ζ (r)
∥∥∥p

p
= −p ‖u′

1‖p
p

∫ b

0
|u1 + r|p−2(u1 + r) dt

1

‖u1 + r‖2p
p

. (31)
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From (31), we see that the function r −→ ‖ d
dtζ (r)‖p

p has a unique maximum at
r = 0 (recall u1 ∈ C1(p)) and its value is ‖u′

1‖p
p = μ2. Moreover, for r �= 0, we have

ζ (r) = u1

‖u1 + r‖p
+ r

‖u1 + r‖p

= u1

‖u1 + r‖p
+ sgn(r)(∫ b

0

∣∣ u1
r + 1

∣∣pdt
) 1

p

,

⇒ ζ (r) −→ ± 1

b
1
p

= ±u0 as |r| → ∞.

So, if for s ∈ (−1, 1), we set γ0(s) = ζ ( s
1−s2 ); then evidently γ0 is continuous on

(−1, 1), and it can be extended continuously to ±1, by setting γ0(±1)=±u0. Moreover,
γ0(0)=ζ (0)=u1 and

max
−1≤s≤1

∥∥∥ d
dt

γ0(s)
∥∥∥p

p
= μ2.

Hence (30) holds. This combined with (29), concludes the proof of
Proposition 3.4. �

4. Multiple solutions. In this section using a variational approach and the
auxiliary results of the previous section, we prove a multiplicity theorem for problem
(1).

The hypotheses on the non-smooth potential j(t, x) are the following:

H(j): j : T ×IR −→ IR is a function such that j(t, 0) = 0 a.e. on T and
(i) for all x ∈ IR, t −→ j(t, x) is measurable;

(ii) for almost all t ∈ T , x −→ j(t, x) is locally Lipschitz;
(iii) for every r>0 there exists ar ∈ L1(T)+ such that

|u| ≤ ar(t)

for almost all t ∈ T , all |x| ≤ r and all u ∈ ∂j(t, x);
(iv) there exists a function ϑ ∈ L∞(T)+ such that ϑ(t) ≤ β a.e. on T , ϑ �= β and

lim sup
x→+∞

u
xp−1

≤ ϑ(t)

uniformly for a.a. t ∈ T and all u ∈ ∂j(t, x);
(v) there exist functions η, η̂ ∈ L∞(T)+ and an integer n ≥ 0 such that

μ2n +β ≤ η(t) ≤ η̂(t) ≤ μ2n+2 +β a.e. on T,

μ2n +β �= η, μ2n+2 + β �= η̂

and

η(t) ≤ lim inf
x→−∞

u
|x|p−2x

≤ lim sup
x→−∞

u
|x|p−2x

≤ η̂(t)

uniformly for a.a. t ∈ T and all u ∈ ∂j(t, x);
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(vi) there exist ξ0 ∈ L1(T)+ and δ>0 such that β ≤ ξ0(t) a.e. on T , β �= ξ0 and

1
p
ξ0(t)xp ≤ j(t, x) for a.a. t ∈ T, all 0 ≤ x ≤ δ;

(vii) for almost all t ∈ T and all x>0, we have u ≥ 0 for all u ∈ ∂j(t, x).

REMARK 4.1. Hypotheses H(j)(iv) and (v) dictate an asymmetric behaviour of
x −→ ∂j(t, x) as we approach −∞ and +∞. In fact, as we move from −∞ to +∞, the
generalised ‘slopes’ { u

|x|p−2x : u ∈ ∂j(t, x)} cross a finite number of eigenvalues (jumping
multi-valued non-linearity).

EXAMPLE 4.2. The following function satisfies Hypotheses H(j). For the sake of
simplicity, we drop the t-dependence:

j(x) =

⎧⎪⎪⎨⎪⎪⎩
η

p |x|p + ln(1 + |x|r) if x<0,

η

p |x|p if 0 ≤ x ≤ 1,

ϑ
p |x|p − ce−x + c0 if 1<x,

where θ<β, for some integer n≥0, μ2n + β <η<μ2n+2 + β, c>0 and c0 = η−ϑ

p + c
e .

Note that if c = (η − ϑ)e>0, then j ∈ C1(IR).

Let τ+ : IR −→ IR be the truncation function defined by

τ+(x) =
{

0 if x<0,

x if x ≥ 0.

We set j+(t, x)= j
(
t, τ+(x)

)
for all (t, x) ∈ T × IR. Clearly for all x ∈ IR, t −→

j+(t, x) is measurable, and for almost all t ∈ T , x −→ j+(t, x) is locally Lipschitz.
Moreover, from the non-smooth chain rule (see Clarke [8], p. 45), we have

∂j+(t, x) ⊆

⎧⎪⎨⎪⎩
{0} if x<0,

{ru : r ∈ [0, 1], u ∈ ∂j(t, 0)} if x = 0,

∂j(t, x) if 0<x.

(32)

We introduce the functionals ϕ, ϕ+ : W 1,p
per (0, b) −→ IR, defined by

ϕ(x) = 1
p
‖x′‖p

p −
∫ b

0
j
(
t, x(t)

)
dt and

ϕ+(x) = 1
p
‖x′‖p

p −
∫ b

0
j+
(
t, x(t)

)
dt for all x ∈ W 1,p

per (0, b).

Both ϕ and ϕ+ are Lipschitz continuous on bounded sets; hence they are locally
Lipschitz.

PROPOSITION 4.3. If Hypotheses H(j) hold, then ϕ satisfies the PS-condition.

Proof. Let {xn}n≥1 ⊆ W 1,p
per (0, b) be a sequence such that {ϕ(xn)}n≥1 ⊆ IR is bounded

and

m(xn) −→ +∞ as n → ∞. (33)
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Because ∂ϕ(xn) ⊆ W 1,p
per (0, b)∗ is w-compact and the norm functional in a Banach

space is weakly lower semi-continuous, by the Weierstrass theorem, we can find x∗
n ∈

∂ϕ(xn) such that ‖x∗
n‖ = m(xn), n ≥ 1. We know that

x∗
n = A(xn) + βKp(xn) − un,

with un ∈L1(T), un(t)∈∂j
(
t, (xn)

)
a.e on T (see Clarke [8], p. 83). From (33), we have

| 〈x∗
n, v

〉 | ≤ εn‖v‖ for all v ∈ W 1,p
per (0, b), with εn ↓ 0.

Let v = x+
n ∈ W 1,p

per (0, b). Then

‖(x+
n )′‖p

p + β‖x+
n ‖p

p −
∫ b

0
unx+

n dt ≤ εn‖x+
n ‖. (34)

Claim 1: The sequence {x+
n }n≥1 ⊆ W 1,p

per (0, b) is bounded.
We argue indirectly. So, suppose that {x+

n }n≥1 ⊆ W 1,p
per (0, b) is unbounded. We may

assume that ‖x+
n ‖ −→ 0. Set yn = x+

n
‖x+

n ‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1, and so we
may assume that

yn
w−→ y in W 1,p

per (0, b) and yn −→ y in C(T), y ≥ 0.

Let ûn(t)=un(t)χ{xn≥0}(t). Clearly un(t)x+
n (t)= ûn(t)x+

n (t) for a.a. t ∈ T . From
Hypotheses H(j)(iii), (iv) and (vii), we have

0 ≤ ûn(t) ≤ â(t) + ĉ(t)x+
n (t)p−1 for a.a. t ∈ T, with â, ĉ ∈ L1(T)+,

⇒
{

hn = ûn

‖xn‖p−1

}
n≥1

⊆ L1(T) is uniformly integrable. (35)

Hence, by virtue of the Dunford–Pettis theorem, we may say that

hn
w−→ h in L1(T) as n → ∞. (36)

Note that x+
n (t) −→ +∞ for all t ∈ {y>0} as n → ∞. For every ε>0 and n ≥ 1,

we define

Dε,n =
{

t ∈ T : xn(t) = x+
n (t)>0,

ûn(t)
x+

n (t)p−1
≤ ϑ(t) + ε

}
.

Hypothesis H(j)(iv) implies that

χDε,n (t) −→ 1 a.e. on {y>0}.

Using the Lebesgue dominated convergence theorem, we have

‖(1 − χDε,n )h‖L1({y>0}) −→ 0,

⇒ χDε,n hn
w−→ h in L1({y>0}) (see (36)). (37)

https://doi.org/10.1017/S0017089509990346 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990346


MULTIPLICITY OF SOLUTIONS FOR NON-LINEAR PERIODIC PROBLEMS 287

From the definition of the set Dε,n, we have

χDε,n (t)hn(t) = χDε,n (t)
ûn(t)

x+
n (t)p−1

yn(t)p−1

≤ χDε,n (t)
(
ϑ(t) + ε

)
yn(t)p−1 a.e. on T.

Passing to the limit as n → ∞, using (37) and Mazur’s lemma and letting ε ↓ 0,
we obtain

h(t) ≤ ϑ(t)y(t)p−1 a.e. on {y>0}. (38)

Moreover, from (35) it is clear that

h(t) = 0 a.e. on {y = 0}. (39)

Since y ≥ 0, from (38) and (39), we infer that

h(t) ≤ ϑ(t)y(t)p−1 a.e. on T. (40)

We return to (34) and divide with ‖x+
n ‖p. We have

‖y′
n‖p

p + β‖yn‖p
p −

∫ b

0

ûn

‖x+
n ‖p−1

yndt ≤ ε′
n with ε′

n ↓ 0. (41)

Passing to the limit as n → ∞ and using (36) and (40), we obtain

‖y′‖p
p + β‖y‖p

p ≤
∫ b

0
hydt ≤

∫ b

0
ϑypdt.

Lemma 3.1 implies that y ≡ 0. Hence, from (41), it is clear that yn −→ 0 in
W 1,p

per (0, b), a contradiction to the fact that ‖yn‖ = 1 for all n ≥ 1. This proves Claim 1.

Claim 2: The sequence {x−
n }n≥1 ⊆ W 1,p

per (0, b) is bounded.
Again we proceed by contradiction. So, suppose that ‖x−

n ‖ −→ ∞. We set vn =
x−

n
‖x−

n ‖ , n ≥ 1. Then ‖vn‖ = 1 for all n ≥ 1, and so we may assume that

vn
w−→ v in W 1,p

per (0, b) and vn −→ v in C(T).

From (33), we have∣∣∣∣〈 x∗
n

‖x−
n ‖p−1

, w

〉∣∣∣∣ ≤ ε′
n‖w‖ for all w ∈ W 1,p

per (0, b), with ε′
n ↓ 0. (42)

Note that

A(xn) = A(x+
n ) − A(x−

n ) and Kp(xn) = Kp(x+
n ) − Kp(x−

n ). (43)

We set

ûn = χ{xn≥0}un and un = χ{xn<0}un for all n ≥ 1.
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We have

ûn(t) ∈ ∂j
(
t, x+

n (t)
)

a.e. on {xn >0} (see (32)), (44)

un(t) ∈ ∂j
(
t, xn(t)

)
a.e. on {xn <0} and (45)

|̂un(t)| ≤ â(t) a.e. on {xn = 0}, with â ∈ L1(T)+. (46)

From (42) and (43), we have∣∣∣∣∣
〈

A(x+
n )

‖x−
n ‖p−1

, w

〉
− 〈A(vn), w〉 + β

‖x−
n ‖p−1

∫ b

0
|x+

n |p−2x+
n wdt

−β

∫ b

0
|vn|p−2vnwdt −

∫ b

0

ûn

‖x−
n ‖p−1

wdt −
∫ b

0

un

‖x−
n ‖p−1

wdt

∣∣∣∣∣ ≤ ε′
n‖w‖.

(47)

Because of the boundedness of {x+
n }n≥1 ⊆ W 1,p

per (0, b), we have〈
A(x+

n )

‖x−
n ‖p−1

, w

〉
−→ 0,

1

‖x−
n ‖p−1

∫ b

0
|x+

n |p−2x+
n wdt −→ 0,∫ b

0

ûn

‖x−
n ‖p−1

wdt −→ 0 (see (44) and (46)).

Moreover, from (45) and Hypothesis H(j)(iii) and (v), we see that{
gn = un

‖x−
n ‖p−1

}
n≥1

⊆ L1(T) is uniformly integrable.

As before, invoking the Dunford–Pettis theorem, we may assume that

gn
w−→ g in L1(T). (48)

Given ε>0 and n ≥ 1, we introduce the set

Eε,n =
{

t ∈ T : xn(t)<0, η(t) − ε ≤ un(t)
| − x−

n (t)|p−2
(− x−

n (t)
) ≤ η̂(t) + ε

}
.

Note that xn(t) −→ −∞ for all t ∈ {v>0} as n → ∞. So, Hypothesis H(j)(v) and
(45) imply

χEε,n (t) −→ 1 a.e. on {v>0}.

Arguing as in the proof of Claim 1, we show that

−η̂(t)v(t)p−1 ≤ g(t) ≤ −η(t)v(t)p−1 a.e. on T. (49)

From (49), it follows that

g(t) = −ξ (t)v(t)p−1 a.e. on T, (50)
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where ξ ∈ L∞(T)+, η(t) ≤ ξ (t) ≤ η̂(t) a.e. on T . Let ξ1(t) = ξ (t) − β. In (47), we let
w = vn − v ∈ W 1,p

per (0, b). Then∣∣∣∣∣
〈

A(x+
n )

‖x−
n ‖p−1

, vn − v

〉
−〈A(vn), vn − v〉+ β

‖x−
n ‖p−1

∫ b

0
|x+

n |p−2x+
n (vn − v)dt

−β

∫ b

0
vp−1

n (vn − v)dt −
∫ b

0

ûn

‖x−
n ‖p−1

(vn − v)dt −
∫ b

0
gn(vn − v)dt

∣∣∣∣∣
≤ ε′

n‖vn − v‖. (51)

The boundedness of {x+
n }n≥1 ⊆ W 1,p

per (0, b) implies〈
A(x+

n )

‖x−
n ‖p−1

, vn − v

〉
−→ 0,

∫ b

0
|x+

n |p−2x+
n (vn − v)dt −→ 0 and∫ b

0

ûn

‖x−
n ‖p−1

(vn − v)dt −→ 0 (see (44) and (46)). (52)

Also, it is clear that∫ b

0
vp−1

n (vn − v)dt −→ 0 and
∫ b

0
gn(vn − v)dt −→ 0 as n → ∞. (53)

So, if we pass to the limit as n → ∞ in (51) and use (52) and (53), we obtain

lim
n→∞ 〈A(vn), vn − v〉 = 0.

This, by virtue of Lemma 3.2, implies that

vn −→ v in W 1,p
per (0, b), i.e. ‖v‖ = 1. (54)

We return to (42), and passing to the limit as n → ∞, we obtain

〈A(v), w〉 + β

∫ b

0
vp−1wdt =

∫ b

0
ξvp−1dt for all w ∈ W 1,p

per (0, b)

⇒
{

−(|v′(t)|p−2v′(t)
)′ = ξ1(t)|v(t)|p−2v(t) a.e. on T,

v(0) = v(b), v′(0) = v′(b).

}
(55)

From Hypothesis H(j)(v), we have

μ2n ≤ η(t) − β ≤ ξ1(t) ≤ η̂(t) − β ≤ μ2n+2, μ2n �= η(·) − β, μ2n+2 �= η̂(·) − β.

Then, from (55) and Proposition 2.4, it follows that v = 0, a contradiction to (54).
This proves that {x−

n }n≥1 ⊆ W 1,p
per (0, b) is bounded.

Claims 1 and 2 imply that {xn}n≥1 ⊆ W 1,p
per (0, b) is bounded, and so, we may assume

that

xn
w−→ x in W 1,p

per (0, b) and xn −→ x in C(T).

As above, we can have

lim
n→∞ 〈A(xn), xn − x〉 = 0,
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which via Lemma 3.2 implies xn −→ x in W 1,p
per (0, b), and so ϕ satisfies the PS-

condition. �
PROPOSITION 4.4. If Hypotheses H(j) hold, then ϕ+ is coercive on W 1,p

per (0, b).

Proof. By virtue of Hypothesis H(j)(iv), given ε>0, we can find M =M(ε)>0 such
that

u ≤ (
ϑ(t) + ε

)
xp−1 for a.a. t ∈ T, all x ≥ M and all u ∈ ∂j+(t, x) (see (32)).

From this, Hypothesis H(j)(iii) and (32), it follows that we can find aε ∈ L1(T)+
such that

u ≤ (
ϑ(t) + ε

)|x|p−1 + aε(t) for a.a. t ∈ T, all x ∈ IR and all u ∈ ∂j+(t, x). (56)

Hypothesis H(j)(i) and (ii) and Rademacher’s theorem imply that for almost all
t ∈ T , r −→ j+(t, r) is differentiable almost everywhere on IR, and at every point of
differentiability r ∈ IR, we have d

dr j+(t, r) ∈ ∂j+(t, r) (see Clarke [8]). Combining this
with (56), we have

d
dr

j+(t, r) ≤ (
ϑ(t) + ε

)|r|p−1 + aε(t) for a.a. t ∈ T\D, |D|=0 and

for all r ∈ IR\D(t), |D(t)| = 0

(by | · | we denote the Lebesgue measure on IR). Integrating this inequality and recalling
that j+(t, x) = 0 for a.a. t ∈ T and all x ≤ 0, we obtain

j+(t, x) ≤ 1
p

(
ϑ(t) + ε

)|x|p + aε(t)|x| for a.a. t ∈ T, all x ∈ IR. (57)

Then, for x ∈ W 1,p
per (0, b), we have

ϕ+(x) = 1
p
‖x′‖p

p + β

p
‖x‖p

p −
∫ b

0
j+(t, x)dt

≥ 1
p
‖x′‖p

p + β

p
‖x‖p

p − 1
p

∫ b

0
ϑ |x|pdt − ε

p
‖x‖p − cε‖x‖ for some cε >0

(see (57))

≥ ξ0 − ε

p
‖x‖p − cε‖x‖. (58)

Choosing ε<ξ0, from (57) we conclude that ϕ+ is coercive. �
PROPOSITION 4.5. If Hypotheses H(j) hold, then problem (1) has a solution x0 ∈ intĈ+

which is a local minimiser of ϕ.

Proof. Exploiting the compact embedding of W 1,p
per (0, b) into C(T), we can easily

check that ϕ+ is sequentially weakly lower semi-continuous. This fact together with
Proposition 4.4 and the Weierstrass theorem implies that we can find x0 ∈ W 1,p

per (0, b)
such that

ϕ+(x0) = inf
[
ϕ+(x) : x ∈ W 1,p

per (0, b)
]

= m+. (59)
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Let r ∈ (0, δ], where δ>0 is as in Hypothesis H(j)(vi). Then

ϕ+(r) = β

p
rpb −

∫ b

0
j+(t, r)dt

≤ rp

p

∫ b

0

(
β − ξ0(t)

)
dt<0,

⇒ m+ <0 = ϕ+(0),

⇒ x0 �= 0 (see (59)).

From (59), we have

0 ∈ ∂ϕ+(x0),

⇒ A(x0) + βKp(x0) = u+, (60)

with u+ ∈ L1(T), u+(t) ∈ ∂j+
(
t, x0(t)

)
a.a. on T . On (60), we act with the test function

−x−
0 ∈ W 1,p

per (0, b). We obtain

‖(−x−
0 )′‖p

p + β‖ − x−
0 ‖p

p = 0 (see (32))

⇒ −x−
0 = 0, i.e. x0 ≥ 0, x0 �= 0.

From (60), as in Gasiński and Papageorgiou [13] (see also the proof of Proposition
3.3), we obtain{

−(|x′
0(t)|p−2x′

0(t)
)′ + β|x0(t)|p−2x0(t) = u+(t) a.e. on T,

x0(0) = x0(b), x′
0(0) = x′

0(b).

}
(61)

Since x′
0(t) = 0 a.a. on {x0 = 0}, from (61) and Hypothesis H(j)(vii), we see that(|x′

0(t)|p−2x′
0(t)

)′ ≤ 0 a.e. on T. (62)

Invoking the non-linear strong maximum principle of Vazquez [24], from (62) we
infer that

x0(t)>0 for all t ∈ (0, b).

Moreover, if x0(0) = x0(b) = 0, then

x′
0(b−)<0<x′

0(0+),

a contradiction to (61). This means that

x(t)>0 for all t ∈ T, and hence x0 ∈ intĈ+.

Therefore, we can find r>0 small such that

B
Ĉ1(T)

r (x0) = {
x ∈ Ĉ1(T) : ‖x − x0‖Ĉ1(T) ≤ r

} ⊆ Ĉ+. (63)

Note that

ϕ
∣∣
Ĉ+

= ϕ+
∣∣
Ĉ+

. (64)
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But x0 is a minimiser of ϕ+. So, from (63) and (64), it follows that x0 is a local
Ĉ1(T)-minimiser of ϕ. Invoking Proposition 3.3, we conclude that x0 is a local
minimiser of ϕ. �

Without any loss of generality, we can assume that x0 is an isolated critical point
(and local minimiser) of ϕ. Otherwise, we already have a whole sequence of distinct
non-trivial positive solutions of (1). Hence, we can find �>0 small such that

ϕ(x0)<ϕ(y)<0 and 0 /∈ ∂ϕ(y) for all y ∈ B� \ {x0}. (65)

Here B�(x0) = {
y ∈ W 1,p

per (0, b) : ‖y − x0‖ ≤ �
}
.

PROPOSITION 4.6. If Hypotheses H(j) hold and x0 ∈ intĈ+ is the solution of problem
(1) obtained in Proposition 4.5, then ϕ(x0)< inf[ϕ(x) : ‖x − x0‖ = �] = c�, with �>0 as
in (65).

Proof. We argue by contradiction. So, suppose that Proposition 4.6 is not true.
Then, we can find {xn}n≥1 ⊆ W 1,p

per (0, b) such that

‖xn − x0‖ = r and ϕ(xn) ↓ ϕ(x0) as n → ∞. (66)

By passing to a suitable subsequence if necessary, we may assume that

xn
w−→ x in W 1,p

per (0, b) and xn −→ x in C(T) as n → ∞.

The sequential weak lower semi-continuity of ϕ and that of the norm functional
imply

ϕ(x) ≤ lim inf
n→∞ ϕ(xn) = ϕ(x0), ‖x − x0‖ ≤ � (see (66)). (67)

From (65) and (67), it follows that

x = x0.

From the non-smooth mean-value theorem (see Clarke [8], p. 41), we have

ϕ(xn) − ϕ

(
1
2

(xn + x0)
)

=
〈
y∗

n,
1
2

(xn + x0)
〉

(68)

with y∗
n ∈ ∂ϕ

(
snxn + (1 − sn) xn+x0

2

)
, sn ∈ (0, 1). Recall that

y∗
n = A

(
snxn + (1 − sn)

xn + x0

2

)
+ βKp

(
snxn + (1 − sn)

xn + x0

2

)
− un, (69)

with un ∈ L1(T), un(t) ∈ ∂j(t, snxn(t) + (1 − sn) xn+x0
2 (t)) a.e. on T . We use (69) in (68)

and then pass to the limit as n → ∞. We obtain

lim sup
n→∞

〈
A
(

snxn + (1 − sn)
xn + x0

2

)
, xn − x0

〉
≤ 0. (70)
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We have〈
A
(

snxn + (1 − sn)
xn + x0

2

)
, snxn + (1 − sn)

xn + x0

2
− x0

〉
= 1 + sn

2

〈
A
(

snxn + (1 − sn)
xn + x0

2

)
, xn − x0

〉
,

⇒ lim sup
n→∞

〈
A
(

snxn + (1 − sn)
xn + x0

2

)
, snxn + (1 − sn)

xn + x0

2
− x0

〉
≤ 0

(see (70)). (71)

Assuming that sn −→ s ∈ [0, 1] and since xn
w−→ x0 in W 1,p

per (0, b), we infer from
(71) and Lemma 3.2 that

snxn + (1 − sn)
xn + x0

2
−→ x0 in W 1,p

per (0, b). (72)

But note that∥∥snxn + (1 − sn)
xn + x0

2
− x0

∥∥ = (1 + sn)
∥∥xn − x0

2

∥∥ ≥ �

2
>0,

which contradicts (72). This completes the proof. �
To produce a second non-trivial solution for problem (1), we need to strengthen

the hypotheses on j(t, ·) near the origin and on the negative half-line. So, the new
hypotheses on j(t, x) are the following.

H(j)′: j : T ×IR −→ IR is a function such that j(t, 0) = 0 a.e. on T , 0 ∈ ∂j(t, 0) a.e. on T ,
Hypotheses H(j)′(i)−→(v) and (vii) are the same as the corresponding Hypotheses
H(j)(i)−→(v) and (vii) and

(vi) there exist δ>0 and σ >0 such that σ >μ2 + β and σ
p |x|p ≤ j(t, x) for a.a.

t ∈ T , all |x| ≤ δ and j(t, x) ≥ η(t)
p |x|p for a.a. t ∈ T , all x ≤ 0, with η ∈ L∞(T)+

as in H(j)′(v).

REMARK 4.7. The potential function x −→ j(x) produced in the Example 4.2,
satisfies also Hypotheses H(j)′.

THEOREM 4.8. If Hypotheses H(j)′ hold, then problem (1) has at least two non-trivial
solutions, namely x0 ∈ intĈ+ and v0 ∈ C1(T).

Proof. From Proposition 4.5, we already have one solution x0 ∈ intĈ+.
Also, by virtue of Proposition 4.6, we can find �>0 small such that

ϕ(x0)< inf
[
ϕ(x) : ‖x − x0‖ = �

]
= c�. (73)

Using Hypotheses H(j)′(iii) and (v), we see that given ε>0, we can find aε ∈L1(T)+,
such that

j(t, x) ≥ 1
p

(
η(t) + ε

)|x|p − aε(t)|x| for a.a. t ∈ T and all x ≤ 0. (74)
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Let r<0. Then

ϕ(r) = β

p
|r|pb −

∫ b

0
j(t, r)dt

≤ β

p
|r|pb − 1

p
|r|p

∫ b

0
η(t)dt + ε

p
|r|pb + |r| ‖aε‖1 (see (74))

= |r|p
p

[∫ b

0

(
β − η(t)

)
dt + εb

]
+ |r| ‖aε‖1. (75)

Note that γ = ∫ b
0

(
η(t) − β

)
dt>0. So, if we choose ε>0 small such that εb<γ ,

then from (75) it follows that

ϕ(r) −→ −∞ as r −→ −∞.

Then, for r0 <0 with |r0|>0 large, we can have

‖r0 − x0‖>� and ϕ(r0)<c�. (76)

Because of (73), (76) and Proposition 4.3, we can apply Theorem 2.1 and obtain
v0 ∈ W 1,p

per (0, b) such that

0 ∈ ∂ϕ(v0) and c� ≤ ϕ(v0) = inf
γ0∈�0

max
0≤t≤1

ϕ
(
γ0(t)

)
, (77)

where �0 = {
γ0 ∈ C

(
[0, 1], W 1,p

per (0, b)
)

: γ0(0) = r0, γ0(1) = x0
}
.

From the inclusion 0 ∈ ∂ϕ(v0) in (77), we infer that v0 ∈ C1(T) solves (1). It remains
to show that v0 is non-trivial.

According to the minimax expression in (77), in order to show the non-triviality
of v0, it suffices to produce a path γ ∗

0 ∈ �0, such that ϕ
∣∣
γ ∗

0
<0. To this end, let ν >0 be

such that

μ2 + β + ν <σ. (78)

By virtue of Proposition 3.4, we can find

γ1 ∈ � = {
γ ∈ C([−1, 1],S) : γ (−1) = −u0, γ (1) = u0

}
such that

max
[
‖x′‖p

p : x ∈ γ1([−1, 1])
]

≤ μ2 + ν. (79)

Since W 1,p
per (0, b) is embedded (compactly) in C(T), we can find ε>0 small such

that

|εx(t)| ≤ δ for all t ∈ T and all x ∈ γ ([−1, 1]),

with δ>0 as in Hypothesis H(j)′(vi). Hence

σ

p
εp|x(t)|p ≤ j

(
t, εx(t)

)
for a.a. t ∈ T, all x ∈ γ1([−1, 1]). (80)
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So, if x ∈ γ1([−1, 1]), then

ϕ(εx) = εp

p
‖x′‖p

p + βεp

p
‖x‖p

p −
∫ b

0
j
(
t, εx(t)

)
dt

≤ εp

p
‖x′‖p

p + εp

p
β‖x‖p

p − εp

p
σ‖x‖p

p (see (80))

≤ εp

p

[
μ2 + ν + β − σ

]
(see (79) and recall that ‖x‖p = 1)

<0 (see (79)).

Therefore, if γ ε
1 = εγ1, then

ϕ
∣∣
γ ε

1
<0. (81)

Next, let γ−(t) = tr0 + (1 − t)(−εu0), and let v ∈ γ−([−1, 1]) ⊆ IR−. Then

ϕ(v) = β

p
|v|pb −

∫ b

0
j(t, v)dt

≤ |v|p
p

∫ b

0

(
β − η(t)

)
dt (see Hypothesis H(j)′(vi))

< 0

⇒ ϕ
∣∣
γ−

<0. (82)

Finally, we shall produce a continuous path γ+ which joins εu0 with x0 and along
which ϕ is strictly negative. To this end, we proceed as follows.

We may assume that {0, x0} are the only critical points of ϕ+. Indeed, if this is
not the case, then we can find a third critical point v0 of ϕ+, distinct from 0 and x0.
Arguing as in the proof of Proposition 4.5, we can show that v0 ∈ intĈ+ and that it
solves problem (1). So, we have produced a second non-trivial solution for (1), and we
are done.

Let a = m+ = ϕ+(x0) = ϕ(x0) = inf ϕ+ <0 = b. Note that Ka(ϕ+) = {x0} and x0

is a minimiser of ϕ+. Also, from Proposition 4.4, we know that ϕ+ is coercive. From
this, it follows easily that ϕ+ satisfies the PS-condition. So, we can apply Theorem 2.2
and produce a continuous deformation h : [0, 1] × ϕ̇b

+ −→ ϕ̇b
+, such that h(t, ·)∣∣Ka(ϕ+) =

id
∣∣
Ka(ϕ+) and

• h(1, ϕ̇b
+) ⊆ ϕ̇a

+ ∪ Ka(ϕ+) = {x0}, (83)

• ϕ+
(
h(t, x)

) ≤ ϕ+(x) for all t ∈ [0, 1] and all x ∈ ϕ̇b
+. (84)

We set

γ+(t) = h(t, εu0) for all t ∈ [0, 1].

Evidently, γ+ ∈ C
(
[0, 1], W 1,p

per (0, b)
)
. Also,

γ+(0) = h(0, εu0) = εu0 (because h is a deformation),

γ+(1) = h(1, εu0) = x0 (see (83)).
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Therefore, γ+ is a continuous path which joins εu0 with x0. Moreover,

ϕ+
(
γ+(t)

) = ϕ+
(
h(t, εu0)

)
≤ ϕ+(εu0) (see (84))

< 0 (see (81)),

⇒ ϕ+
∣∣
γ+

<0. (85)

Note that for all x ∈ γ+([0, 1]), we have

j
(
t, x(t)

) = j+
(
t, x(t)

)
for a.a. t ∈ {x ≥ 0} and

j
(
t, x(t)

) ≥ j+
(
t, x(t)

)
for a.a. t ∈ {x<0} (see Hypothesis H(j)′(vi)).

Therefore

ϕ
∣∣
γ+

≤ ϕ+
∣∣
γ+

,

⇒ ϕ
∣∣
γ+

<0 (see (85)). (86)

We concatenate paths γ−, γ ε
1 and γ+ and this way we produce a path γ ∗

0 ∈ �0 such
that ϕ

∣∣
γ ∗

0
<0 (see (81), (82) and (86)). Then from (77) it follows that ϕ(x0)<0 = ϕ(0),

and hence v0 �= 0. �

5. Semi-linear and smooth problems. In this section, we consider the semi-linear
(i.e. p = 2), smooth (i.e. j(t, ·) ∈ C2(IR)) problem. By strengthening the hypotheses near
the origin and using Morse theory in our approach, we show the existence of three
non-trivial solutions.

Now, the problem under consideration is the following:{
−x′′(t) + βx(t) = f

(
t, x(t)

)
a.e. on T,

x(0) = x(b), x′(0) = x′(b).

}
(87)

The hypotheses on the f (t, x) are the following:

H(f): f : T ×IR −→ IR is a function such that f (t, 0) = 0 a.e. on T and

(i) for all x ∈ IR, t −→ f (t, x) is measurable;
(ii) for almost all t ∈ T , x −→ f (t, x) is C1;

(iii) for every r>0 there exists ar ∈ L1(T)+ such that

|f ′
x(t, x)| ≤ ar(t) for almost all t ∈ T and all |x| ≤ r;

(iv) there exists a function ϑ ∈ L∞(T)+ such that ϑ(t) ≤ β a.e. on T , ϑ �= β and

lim sup
x→+∞

f (t, x)
x

≤ ϑ(t) uniformly for a.a. t ∈ T ;
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(v) there exist functions η, η̂ ∈ L∞(T)+ and an integer n ≥ 0 such that

μ2n +β ≤ η(t) ≤ η̂(t) ≤ μ2n+2 +β, η �= μ2n + β and

η̂ �= μ2n+2 + β

and

η(t) ≤ lim inf
x→−∞

f (t, x)
x

≤ lim sup
x→−∞

f (t, x)
x

≤ η̂(t)

uniformly for a.a. t ∈ T ;

(vi) there exists an integer k ≥ 0

μ2k + β ≤ f ′
x(t, 0) = lim

x→0

f (t, x)
x

≤ μ2k+2 + β

uniformly for a.a. t ∈ T,

μ2k + β �= f ′
x(·, 0), μ2k+2 + β �= f ′

x(·, 0),

while if k = 0, then μ2 + β <ess inf f ′
x(·, 0),

and
1
2
η(t)x2 ≤ F(t, x)

for a.a. t ∈ T, all x ≤ 0, with η ∈ L∞(T)+, as in H(f)(v);

(vii) for almost all t ∈ T and all x>0, we have f (t, x) ≥ 0.

EXAMPLE 5.1. The following function satisfies Hypotheses H(f). For the sake of
simplicity, we drop the t-dependence:

f (x) =
{

ηx if x<0,

η ln(1 + x) if x ≥ 0,
with μ2n + β <η<μ2n+2 + β.

We introduce the functional ϕ : W 1,2
per (0, b) −→ IR defined by

ϕ(x) = 1
2
‖x′‖2

2 + β

2
‖x‖2

2 −
∫ b

0
F
(
t, x(t)

)
dt for all x ∈ W 1,2

per (0, b).

Note that in this case ϕ ∈ C2
(
W 1,2

per (0, b)
)
.

PROPOSITION 5.2. If Hypotheses H(f) hold, then Cm(ϕ,∞) = 0 for all m ≥ 0.

Proof. Let h ∈ L∞(T)+ and h �= 0 and consider the one-parameter family of C1

functionals ϕt : W 1,2
per (0, b) −→ IR, 0 ≤ t ≤ 1, defined by

ϕt(x) = 1
2
‖x′‖2

2 + β

2
‖x‖2

2 − t
∫ b

0
F
(
t, x(t)

)
dt − 1 − t

2

∫ b

0
η(x−)2dt

+ (1 − t)
∫ b

0
hxdt, for all x ∈ W 1,2

per (0, b).

Claim: There exists R>0 such that inf
[‖ϕ′

t(x)‖ : t ∈ [0, 1], ‖x‖>R
]
>0.

https://doi.org/10.1017/S0017089509990346 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990346


298 SOPHIA TH. KYRITSI AND NIKOLAOS S. PAPAGEORGIOU

We proceed by contradiction. So, suppose that the Claim is not true. Then we can
find sequences {tn}n≥1 ⊆ [0, 1] and {xn}n≥1 ⊆ W 1,2

per (0, b) such that

tn −→ t ∈ [0, 1], ‖xn‖ −→ +∞ and ϕ′
tn

(xn) −→ 0 in W 1,2
per (0, b)∗.

So, we have∣∣ 〈ϕ′
tn

(xn), v
〉 ∣∣ ≤ εn‖v‖ for all v ∈ W 1,2

per (0, b) with εn ↓ 0,

⇒
∣∣∣ 〈A(xn), v〉 + β

∫ b

0
|xn|p−2xnvdt − tn

∫ b

0
f (t, xn)vdt + (1 − tn)

∫ b

0
η(x−

n )2dt

+ (1 − tn)
∫ b

0
hvdt

∣∣∣ ≤ εn‖v‖. (88)

In (88) we use as a test function v = x+
n ∈ W 1,2

per (0, b). We obtain

∣∣∣‖(x+
n )′‖2

2 + β‖x+
n ‖2

2 − tn

∫ b

0
f (t, xn)x+

n dt + (1 − tn)
∫ b

0
hx+

n dt
∣∣∣ ≤ εn‖x+

n ‖. (89)

Hypotheses H(f)(iii), (iv) and (vii) imply that given ε>0, we can find ξε ∈ L1(T)+
such that

0 ≤ f (t, x) ≤ (
ϑ(t) + ε

)
x + ξε(t) for a.a. t ∈ T and all x ≥ 0,

⇒ 0 ≤ f (t, x)x ≤ (
ϑ(t) + ε

)
x2 + ξε(t)x for a.a. t ∈ T and all x ≥ 0. (90)

Using (90) in (89), we obtain

‖(x+
n )′‖2

2 + β‖x+
n ‖2

2 −
∫ b

0
ϑ(x+

n )2dt − ε‖x+
n ‖2

2 ≤ γ ‖x+
n ‖ for some γ >0,

all n ≥ 1 (since h ≥ 0 and 0 ≤ tn ≤ 1),

⇒ (ξ0 − ε)‖x+
n ‖2 ≤ γ ‖x+

n ‖ (see Lemma 3.1). (91)

Choosing ε ∈ (0, ξ0), from (91), we see that

{x+
n }n≥1 ⊆ W 1,2

per (0, b) is bounded.

Since ‖xn‖ −→ ∞, we must have ‖x−
n ‖ −→ ∞. We set yn = x−

n
‖x−

n ‖ , n ≥ 1. Then
‖yn‖ = 1 for all n ≥ 1, and so by passing to a suitable subsequence if necessary, we may
assume that

yn
w−→ y in W 1,2

per (0, b) and yn −→ y in C(T).

In (88) we use the test function v=yn − y∈W 1,2
per (0, b) and divide with

‖xn‖. Exploiting the boundedness of {x+
n }n≥1 ⊆ W 1,2

per (0, b) and the boudedness of
{ f (·,−x−

n (·))
‖x−

n ‖ } ⊆ L2(T) (see Hypotheses H(f)(iii) and (v)), we obtain

lim
n→∞ 〈A(yn), yn − y〉 = 0. (92)
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Invoking Lemma 3.2, from (92) we infer that

yn −→ y in W 1,2
per (0, b), i.e. ‖y‖ = 1. (93)

Moreover, arguing as in the proof of Proposition 4.3 (Claim 2), we can show that

{ f
(·,−x−

n (·))
‖x−

n ‖
}

−→ g in L1(T) (94)

with g(t) = −ξ (t)y(t), ξ ∈ L∞(T)+, η(t) ≤ ξ (t) ≤ η̂(t) a.e. on T .
Hence, if we divide (88) with ‖x−

n ‖, pass to the limit as n → ∞ and use (93) and
(94), we obtain

〈A(y), v〉 + β

∫ b

0
yvdt =

∫ b

0

(
tξ + (1 − t)η

)
yvdt for all v ∈ W 1,2

per (0, b),

⇒ A(y) + βy = ξ̂y with ξ̂ = tξ + (1 − t)η ∈ L∞(T)+. (95)

From (95), it follows that{
−y′′(t) + βy(t) = ξ̂ (t)y(t) a.e. on T,

y(0) = y(b), y′(0) = y′(b).

}
(96)

Invoking Proposition 2.4, from (96) we infer that y = 0, a contradiction to (93).
So, the Claim is true.

Clearly, we also have

inf
[
ϕt(y) : t ∈ [0, 1], ‖y‖ ≤ R

]
>−∞.

Finally note that x −→ ∂tϕt(x) and x −→ ϕ′
t(x) are both locally Lipschitz maps.

Therefore, we can apply Lemma 2.4 of Perera and Schechter [23] and can obtain

Cm(ϕ0,∞) = Cm(ϕ1,∞) for all m ≥ 0. (97)

We have

ϕ0(x) = 1
2
‖x′‖2

2 + β

2
‖x‖2

2 − 1
2

∫ b

0
η(x−)2dt +

∫ b

0
hxdt

and ϕ1(x) = ϕ(x) for all x ∈ W 1,2
per (0, b).

Let x ∈ W 1,2
per (0, b), be a critical point of ϕ0. Then

ϕ′
0(x) = 0,

⇒ A(x) + βx = −η(x−) − h. (98)

On (98), we act with the test function x+ ∈ W 1,2
per (0, b). Then

‖(x+)′‖2
2 + β‖x+‖2

2 ≤ 0 (since h ≥ 0)

⇒ x+ = 0, i.e. x ≤ 0, x �= 0 (see (98) and recall h �= 0).
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Let u = −x ≥ 0. Then from (98), we have

A(u) = (η − β)u + h,

⇒
{−u′′(t) = (

η(t) − β
)
u(t) + h(t) a.e. on T,

u(0) = u(b), u′(0) = u′(b).

}
(99)

As in the proof of Proposition 4.5, using the non-linear strong maximum principle
of Vazquez [24], since u �= 0, we obtain u ∈ intĈ+. Let v ∈ C1(T), v(0) = v(b), v′(0) =
v′(b) and v ≥ 0 and set

R(u, v)(t) = v′(t) − u′(t)
(v2

u

)′
(t) for all t ∈ [0, 1].

Then, from Picone’s identity (see Allegretto and Huang [3] and Gasiński and
Papageorgiou [15], p. 785), we have

0 ≤
∫ b

0
R(u, v)(t)dt

= ‖v′‖2
2 −

∫ b

0
u′(t)

(v2

u

)′
(t)dt

= ‖v′‖2
2 −

∫ b

0
−u′′(t)

(v2

u

)
(t)dt (by integration by parts)

= ‖v′‖2
2 −

∫ b

0

(
η(t) − β

)
u(t)

(v2

u

)
(t)dt −

∫ b

0
h(t)

(v2

u

)
(t)dt (see (99))

= ‖v′‖2
2 −

∫ b

0

(
η(t) − β

)
v(t)2dt −

∫ b

0
h(t)

(v2

u

)
(t)dt. (100)

Let v ≡ 1. Then from (100), we have

0 ≤ −
∫ b

0

(
η(t) − β

)
dt −

∫ b

0
h(t)dt<0,

a contradiction. Hence ϕ0 has no critical points, and so

Cm(ϕ0,∞) = 0 for all m ≥ 0,

⇒ Cm(ϕ,∞) = 0 for all m ≥ 0 (see (97) and recall ϕ1 = ϕ).

�
PROPOSITION 5.3. If Hypotheses H(f) hold, then Cm(ϕ, 0) = δm,k� for all m ≥ 0.

Proof. We know that ϕ ∈ C2
(
W 1,2

per (0, b)
)
, and for all u, v ∈ W 1,2

per (0, b), we have

〈
ϕ′′(0)u, v

〉 = ∫ b

0
u′(t)v′(t)dt + β

∫ b

0
u(t)v(t)dt −

∫ b

0
f ′
x(t, 0)u(t)v(t)dt.

Hence, if u ∈ ker ϕ′′(0), then{−u′′(t) = (
f ′
x(t, 0) − β

)
u(t) a.e. on T,

u(0) = u(b), u′(0) = u′(b).

}
(101)
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By virtue of Hypothesis H(f)(v) and Proposition 2.4, we have u ≡ 0. Therefore, 0
is a non-degenerate critical point, with Morse index k. Hence

Cm(ϕ, 0) = δm,k� for all m ≥ 0

(see Chang [6], p. 33, and Mawhin and Willem [21], p. 188). �
Now we are ready for multiplicity result concerning problem (87).

THEOREM 5.4. If Hypotheses H(f) hold, then problem (87) has at least three non-
trivial solutions

x0 ∈ intĈ+, v0, y0 ∈ C1(T).

Proof. From Theorem 4.8, we already have two non-trivial solutions x0 ∈ intĈ+
and v0 ∈ C1(T). From Proposition 4.5, we know that x0 ∈ intĈ+ is a local minimiser
of ϕ. Hence

Cm(ϕ, x0) = δm,0� for all m ≥ 0 (102)

(see Chang [6], p. 33, and Mawhin and Willem [21], p. 175). Moreover, from the proof
of Theorem 4.8, we have that v0 is a critical point of ϕ of the mountain-pass type.
Hence

Cm(ϕ, v0) = δm,1� for all m ≥ 0 (103)

(see Chang [6], p. 9, and Mawhin and Willem [21], p. 195).
Suppose that {0, x0, v0} are the only critical points of ϕ. Then from Propositions

5.2 and 5.3, from (102) and (103) and from the Poincaré–Hopf formula (see (5)), we
have

(−1)0 + (−1)1 + (−1)k = 0,

⇒ (−1)k = 0, a contradiction.

Hence, ϕ has one more critical point y0 ∈ W 1,2
per (0, b) distinct from {0, x0, v0}. Then

y0 ∈ C1(T) and solves (87). �
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