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On Homogeneous Polynomials
Determined by their Partial Derivatives

Zhenjian Wang

Abstract. Weprove that a generic homogeneous polynomial of degree d is determined, up to a nonzero
constant multiplicative factor, by the vector space spanned by its partial derivatives of order k for
k ⩽ d

2 − 1.

1 Introduction

We investigate in this note the reconstructibility of a homogeneous polynomial from
its partial derivatives. he study dates back to J. Carlson and Ph. Griõths, who in [1]
showed that a generic homogeneous polynomial could be reconstructed, up to a
nonzero constant multiple, from its Jacobian ideal, or equivalently, from its ûrst or-
der partial derivatives; in that paper, they used this result to study variation of Hodge
structures and proved the global Torelli theorem for hypersurfaces. For further de-
velopments of the determination of a homogeneous polynomial by its Jacobian ideal,
see [3] and references therein.

In the classical theory of variation of Hodge structures for smooth hypersurfaces,
as in [1], only ûrst order derivatives of the deûning homogeneous polynomials are
involved. We can also construct higher order versions of this classical theory; see for
instance [2]. In this higher order analogous theory, a problem arises concerning the
reconstructibility of a homogeneous polynomial from its higher order partial deriva-
tives. In this paper, we will solve this problem and prove that a generic homogeneous
polynomial has the desired property.

Let S = C[x0 , x1 , . . . , xn] be the graded polynomial ring in n + 1 variables with
coeõcients in C,

S =
∞
⊕
d=0

Sn ,d ,

where Sn ,d is the vector space of homogeneous polynomials of degree d. Given f ∈
Sn ,d and a natural number k ≥ 0, denote by Jk( f ) the graded ideal of S generated by
all partial derivatives of f of order k and by Ek( f ) the degree d−k homogeneous com-
ponent of Jk( f ), that is, the vector space spanned by all k-th order partial derivatives
of f . We will prove the following theorem.

Received by the editors April 14, 2019; revised July 11, 2019.
Published online on Cambridge Core December 6, 2019.
AMS subject classiûcation: 14A25, 14J70, 13F20.
Keywords: homogeneous polynomial, derivative.

https://doi.org/10.4153/S0008439519000419 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000419


On Homogeneous Polynomials Determined by Partial Derivatives 359

heorem 1.1 Given n ≥ 1, d ≥ 3, and a natural number k ≥ 1 such that k ≤ d
2 − 1,

suppose f is a generic homogeneous polynomial in Sn ,d . Let g be another homogeneous
polynomial in Sn ,d such that Ek( f ) = Ek(g). hen g ∈ C∗ f .

he underlying idea in the proof is very simple, so we give an outline here. We will
show that Ek−1(g) = Ek−1( f ), then apply induction on k to obtain Er(g) = Er(g)
for all 0 ≤ r ≤ k. Since E0( f ) is essentially nothing but C f , the conclusion follows
immediately.

Note that we already have a more precise result, heorem 1.1 in [3], for the case
k = 1. But we do not need to use it to prove heorem 1.1 here; instead, we will use
induction on k until the case k = 0 is reached. In addition, the restriction k ≤ d

2 − 1 is
given in order to ensure that dim Ek+1( f ) = dim Sn ,k+1 for a generic f ; see Lemma 2.5
below.

Notations

As in the introduction, Sn ,d denotes the vector space of homogeneous polynomials of
degree d.
Consider the multi-index set

Nn+1
= {(i0 , i1 , . . . , in) ∶ i j ≥ 0 for j = 0, 1, . . . , n}.

We denote an element of Nn+1 by I. We shall interpret Nn+1 as a subset of the vector
space Rn+1; among the operations on Nn+1 are addition and subtraction,

I ± I′ = (i0 ± i′0 , i1 ± i′1 , . . . , in ± i′n),

and multiplication by a positive integer,

mI = (mi0 , . . . ,min),

for I = (i0 , . . . , in), I′ = (i′0 , . . . , i′n), and m ∈ N.
Denote by e j , j = 0, . . . , n the canonical basis of Rn+1,

e j = (0, . . . , 0, 1, 0, . . . , 0),

where 1 lies in the j-th entry. Using this basis, we may write I = (i0 , . . . , in) as I =
∑

n
j=0 i je j .
Moreover, there is an obvious partial ordering “≥” on Nn+1, with

I = (i0 , i1 , . . . , in) ≥ I′ = (i′0 , . . . , i′n) ⇔ i j ≥ i′j , j = 0, . . . , n,

or more concisely,
I ≥ I′⇔ I − I′ ∈ Nn+1 .

he order of I = (i0 , . . . , in) is

∣I∣ = i0 + ⋅ ⋅ ⋅ + in .

For f ∈ Sn ,d , the partial derivative of f of type I is

DI f =
∂∣I∣ f

∂x i0
0 ∂x i1

1 ⋅ ⋅ ⋅ ∂x
in
n

.
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By deûnition, Ek( f ) is the vector subspace of Sn ,d−k spanned by DI f , ∣I∣ = k; thus
we have

Ek( f ) = ⟨DI f ∶ ∣I∣ = k⟩.

2 Polynomials Determined by Higher Order Derivatives

In this section, we will give the proof of heorem 1.1.
We begin our proof with the following lemma.

Lemma 2.1 Let f ∈ Sn ,d . If k ≥ 1 and dim Ek( f ) = dim Sn ,k , then dim Ek−1( f ) =
dim Sn ,k−1.

Proof he proof is almost obvious. If we are given a linear relation

∑
∣I∣=k−1

aIDI f = 0,

by taking diòerentiation with respect to the variable x0, it follows that

∑
∣I∣=k−1

aIDI+e0 f = 0.

On the other hand, the assumption of Ek( f ) implies that {DI+e0 f ∶ ∣I∣ = k − 1} are
linearly independent, so aI = 0 for all I. ∎

An induction on k gives the following corollary.

Corollary 2.2 Let f ∈ Sn ,d . If k ≥ 1 and dim Ek( f ) = dim Sn ,k , then dim Er( f ) =
dim Sn ,r for all 0 ≤ r ≤ k.

As a second step in the proof of heorem 1.1, we show the following proposition.

Proposition 2.3 Given n ≥ 1, d ≥ 3, and k ≥ 1, let f , g ∈ Sn ,d be such that Ek(g) =
Ek( f ) and dim Ek+1( f ) = dim Sn ,k+1. hen Ek−1(g) = Ek−1( f ).

Proof We will show Ek−1(g) ⊆ Ek−1( f ). his is suõcient for our purpose because,
the two vector spaces have the same dimension, by Corollary 2.2.
From Ek(g) = Ek( f ), we consider the following system of linear relations: for all

I ∈ Nn+1 such that ∣I∣ = k, we have

(1) DI g = ∑
∣I′∣=k

aI ,I′DI′ f

for some aI ,I′ ∈ C.
Our discussions in the sequel will be divided into two steps.
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Step 1: Differentiating equations

Fix I and 0 ≤ p ≤ n such that I ≥ ep . For any 0 ≤ q ≤ n, we will apply the equality
DeqDI g = DepD(I−ep)+eq g to equation (1). To this end, we obtain ûrst

DeqDI g = Deq( ∑
∣I′∣=k

aI ,I′DI′ f )

= ∑
∣I′∣=k

aI ,I′DI′+eq f ,

and second,

DepD(I−ep)+eq g = Dep( ∑
∣I′∣=k

a(I−ep)+eq ,I′DI′ f )

= ∑
∣I′∣=k

aI−ep+eq ,I′DI′+ep f .

From our assumption dim Ek+1( f ) = dim Sn ,k+1, it follows that {DJ f ∶ ∣J∣ = k + 1} are
linearly independent. herefore, using DeqDI g = DepD(I−ep)+eq g and comparing the
coeõcients of each term DJ f , we obtain that

aI , J−eq = aI−ep+eq , J−ep

for all ∣J∣ = k + 1. Here we used the convention that aI , J−eq = 0 if J /≥ eq .
Since the above conclusion holds for all I, J , p, q satisfying I ≥ ep , it follows that

for all I, I′ , p, q such that ∣I∣ = ∣I′∣ = k and I ≥ ep ,

(2) aI ,I′ = aI−ep+eq ,I′−ep+eq .

Step 2: Considering (k − 1)-th order partial derivatives

Let K ∈ Nn+1 be such that ∣K∣ = k − 1, then the Euler formula for DK g gives

(3) (d − k + 1)DK g =
n

∑
p=0

xpDK+ep g .

Substituting (1) into (3), we have

(d − k + 1)DK g =
n

∑
p=0
∑
∣I′∣=k

xpaK+ep ,I′DI′ f .

By (2), we deduce ûrst of all that aK+ep ,I′ = 0 if I′ /≥ ep , and thus

(d − k + 1)DK g =
n

∑
p=0
∑
I′≥ep

xpaK+ep ,I′DI′ f

=
n

∑
p=0
∑
I′≥ep

xpaK+ep ,(I′−ep)+epDI′ f ,
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or written in a more convenient way,

(d − k + 1)DK g =
n

∑
p=0

∑
∣K′∣=k−1

xpaK+ep ,K′+epDK′+ep f

= ∑
∣K′∣=k−1

(
n

∑
p=0

xpaK+ep ,K′+epDK′+ep f ) .

Now the relations (2) imply that aK+ep ,K′+ep = aK+eq ,K′+eq for any p, q = 0, . . . , n;
therefore, we obtain

(d − k + 1)DK g = ∑
∣K′∣=k−1

aK+e0 ,K′+e0(
n

∑
p=0

xpDK′+ep f ) .

By the Euler formula for DK′ f , we have that
n

∑
p=0

xpDK′+ep f = (d − k + 1)DK′ f ,

so
DK g = ∑

∣K′∣=k−1
aK+e0 ,K′+e0DK′ f .

Since this holds for all K satisfying ∣K∣ = k − 1, it follows that Ek−1(g) ⊆ Ek−1( f ). ∎

2.4 Linear Independence of Partial Derivatives

As a ûnal step to our proof of heorem 1.1, we need the following lemma, which is
interesting in its own right; see also [2, Proposition 3.4].

Lemma 2.5 Given n ≥ 1 and d ≥ 3, suppose 0 ≤ k ≤ d
2 . hen for a generic f ∈ Sn ,d ,

we have
dim Ek( f ) = dim Sn ,k .

Proof Suppose given a linear relation

(4) ∑
∣I∣=k

aIDI f = 0.

he remaining proof will be divided into two steps. We ûrst show that our proof
can be reduced to the case where d = 2k. Indeed, the cases k = 0, 1 are rather trivial.

Step 1: Reduction

If k > 1 and d > 2k, take derivative D(d−2k)e0 in (4), we obtain

∑
∣I∣=k

aIDI(D(d−2k)e0 f ) = 0.

Note that D(d−2k)e0 ∶ Sn ,d → Sn ,2k is a linear surjective morphism, hence for a generic
f ∈ Sn ,d , the polynomial D(d−2k)e0 f ∈ Sn ,2k is also generic.
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Step 2: The case d = 2k

From the linear relation (4), we obtain for any I′ ∈ Nn+1 with ∣I′∣ = k,

∑
∣I∣=k

aIDI+I′ f = 0.

Hence {aI ∶ ∣I∣ = k} satisûes a system of linear equations with coeõcients given by
{DI+I′ f ∶ ∣I∣ = k, ∣I′∣ = k}. Note that DI+I′ f is a constant since ∣I + I′∣ = 2k = deg f .

Recall that the lexicographic order on the set {I = (i0 , . . . , in) ∶ ∣I∣ = k} is given as
follows:

I = (i0 , . . . , in) ≺ I′ = (i′0 , . . . , i′n)
if and only if there exists 0 ≤ j ≤ n such that

i0 = i′0 , . . . , i j = i′j , i j < i′j .

One can use this order to write the sequence {DI+I′ f ∶ ∣I∣ = k, ∣I′∣ = k} into a
square matrix, denoted by S( f ), whose rows and columns are both indexed by the set
{I ∈ Nn+1 ∶ ∣I∣ = k} and whose (I, I′)-entry is given by DI+I′ f .

To ûnish the proof of Lemma 2.5, we need to show the matrix S( f ) is nonsingular
for a generic f . To this end, it suõces to ûnd one f for which S( f ) is nonsingular,
because the subset of f ∈ Sn ,2k with nonsingular S( f ) is clearly a Zariski open subset
of Sn ,2k . Just take the polynomial f = ∑∣I∣=k x2I ; then the matrix S( f ) is a diagonal
matrix whose (I, I)-entry is the nonzero number (2I)!, hence it is nonsingular. ∎

Remark 2.6 In view of the obvious bound for dim Ek( f ) given by
dim Ek( f ) ≤ min{dim Sn ,k , dim Sn ,d−k},

the condition on k in Lemma 2.5 is optimal.

2.7 Proof of Theorem 1.1

Let f be a generic polynomial in Sn ,d and Ek(g) = Ek( f ). Under the assumption
k ≤ d

2 − 1, it follows that k + 1 ≤ d
2 , hence, by Lemma 2.5, we have dim Ek+1( f ) =

dim Sn ,k+1; therefore the requirements in Proposition 2.3 are satisûed. By Propo-
sition 2.3, it follows that Ek−1(g) = Ek−1( f ). Note that by Corollary 2.2, we have
dim Ek( f ) = dim Sn ,k , so the requirements in Proposition 2.3 are satisûed with k re-
placed by k − 1 and we obtain Ek−2(g) = Ek−2( f ). hese arguments can be repeated
until we obtain E0(g) = E0( f ). By deûnition, we have E0(g) = Cg and E0( f ) = C f ,
therefore g is a constant multiple of f .

3 Applications

As pointed out in the introduction, the most remarkable application of the results in
this paper lies in the study of a higher order analogue of variation of Hodge structures
for hypersurfaces; see [2]. In this section, we give some other applications in the study
of deformations of homogeneous polynomials.
For k ≥ 0, denote by Un ,d(k) the set

Un ,d(k) = { f ∈ Sn ,d ∶ dim Ek( f ) = dim Sn ,k}.
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From semi-continuity of dim Ek( f )with respect to f , we see thatUn ,d(k) is a Zariski
open subset of Sn ,d . Obviously, we have Un ,d(k) = ∅ if k > d

2 . From Lemma 2.5, we
have the following result.

Corollary 3.1 Given n ≥ 1 and d ≥ 3, for k ≤ d
2 , the set Un ,d(k) is a Zariski open

dense subset of Sn ,d .

In addition, for any f ∈ Un ,d(k), we have by deûnition that dim Ek( f ) = dim Sn ,k ;
by Lemma 2.1, we deduce that dim Ek−1( f ) = dim Sn ,k−1, that is f ∈ Un ,d(k − 1). In
other words, for ûxed n and d, the sequence of sets {Un ,d(k)} satisûes the relations

Un ,d(0) ⊇ Un ,d(1) ⊇ ⋅ ⋅ ⋅ ⊇ Un ,d(k) ⊇ Un ,d(k + 1) ⊇ ⋅ ⋅ ⋅ .

Note thatUn ,d(k) is a cone in Sn ,d , hence we can consider its projectivization, de-
noted by P(Un ,d(k)) , in P(Sn ,d). Similar to the construction in [3], the assignment

[ f ] ↦ P(Ek( f ))

gives a well-deûned map, denoted by φk , from P(Un ,d(k)) to an obvious Grassman-
nian for k ≤ d

2 .
Using Proposition 2.3 and Lemma 2.1, we prove the following result, which gives

an extension of Corollary 7.7 in [3].

Corollary 3.2 For k ≤ d
2 −1, themap φk ∶P(Un ,d(k)) ∋ [ f ] ↦ P(Ek( f )) is injective

when restricted to P(Un ,d(k + 1)) . In particular, it is generically injective.

Proof To begin the proof, suppose [ f ] and [g] are two elements of P(Un ,d(k + 1))
such that φk([ f ]) = φk([g]). By the deûnition of φk , this means that Ek( f ) = Ek(g).
Now the assumption [ f ] ∈ P(Un ,d(k + 1)) implies that dim Ek+1( f ) = dim Sn ,k+1,
hence by Proposition 2.3, we obtain Ek−1( f ) = Ek−1(g). An induction argument on k
gives [ f ] = [g], which goes exactly the same as the proof of heorem 1.1, where only
the properties dim Ek+1( f ) = dim Sn ,k+1 and Ek( f ) = Ek(g) are essentially used.
hus, φk is injective on P(Un ,d(k + 1)). ∎

Remark 3.3 We do not knowwhether φk is injective on P(Un ,d(k)) or not, except
the case k = d

2 , where φ d
2
is a constant map, because in this case Ek( f ) = Sn ,k for any

f ∈ Un ,d(k).
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