GEOMETRY OF A SIMPLEX INSCRIBED
IN A NORMAL RATIONAL CURVE

SAHIB RAM MANDAN *
(Received 6 August 1965)

In 1959, Professor N. A. Court [2] generated synthetically a twisted
cubic C circumscribing a tetrahedron T as the poles for T of the planes of a
coaxal family whose axis is called the Lemoine axis of C for T. Here is an
analytic attempt to relate a normal rational curve ™ of order n, whose
natural home is an n-space [n], with its Lemoine [#—2] L such that the
first polars of points in L for a simplex S inscribed to ™ pass through #*
anf the last polars of points on r” for S pass through L. Incidently we
come across a pair of mutually inscribed or Moebius simplexes but as a
privilege of odd spaces only. In contrast, what happens in even spaces also
presents a case, not less interesting, as considered here.

1. Polarity for a simplex

(a) If Pbe a point (pg, Py, -+, p,) referred toasimplex S=A4,4,---4,,
the first polar of P for S is the primal (P) =Y (p,/z,) = 0 of order #, and
the last or #'® polar is the prime p =Y (2,/p;) =0 (i=0,1,---,%) as a
well known fact. Thus: If the polar prime g= Y (z,/¢q,) = 0 of a point
Q(q,) for S pass through P; i.e., (p,/q,) =0, (P) passes through Q. Or,
(P) s the locus of the poles for S of the primes through P.

(b) Let the secant through P to an edge A,4, of S and its opposite
[#n—2] a* meet the edge in a point P, and Q,; be the point on this edge
as the harmonic conjugate of P, w.r.t. the pair of the vertices 4,, 4,.
That is, H(4,4,, P,Q,;) or (4,P,A4,Q,) = —1. The (”;1) points Q,,
then all lie in the polar prime p of P for S [4; 7—11]. Conversely, if a
prime p cuts 4,4, in Q,; and P, be such that H(4,4,, P,;Q,,), the (”';1)
primes a‘/p,, concur at the pole P of p for S.

Hence, if p pass through A4,, Q,; and therefore P,; both coincide at
A, which then becomes the pole of p for S. Or, the pole of a prime through
a vertex of S for S lies at this vertex.

* Attached at present to the College of Science, University of Baghdad, as a Visiting
Professor for the Academic year 1965—1966.
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2. Normal rational curve

(a) The normal rational curve (n.r.c.) #" is generated by the cor-
responding primes of # related pencils whose # vertices [#—2]’s form its
chordals [14]. As the prime p in 1(b) varies in a pencil cutting the »# edges
A A, of the simplex S through its vertex A, in the » points Q,;, the n cor-
responding primes a*/ P, of the # pencils with vertices as the [#—2]’s a*
of the prime a* of S opposite 4, generate 7* as the locus of the poles of
primes p of the given pencil for S. From the symmetry of the result follows
the following:

THEOREM 1. The locus of the poles of the primes of pencil for a simplex
S in [n] is an n.or.c. v™ through its vertices.
(b) Conversely we may have the following:

THEOREM 2. The polar primes of the points of an n.r.c. v circumscribing
a simplex S for S form a coaxal family.

Proor 1. Following Court 2], we can prove synthetically the proposition
by induction. For it is true in plane (# = 2) and solid (» = 3).

PrOOF 2. Let »™ be represented parametrically by the #+1 coordinates
z; = 1/(k—u,;) of a point P on r™, k being the parameter [14; p. 220]. The
polar prime p of P for S by 1(a) is
(1) Sk—u)z;, =0, or kY z,—>umx, =0.
This equation shows that p passes through the [#—2] L common to the
2 primes: Yz, = 0, > u,z, = 0, thus proving the proposition.

REMARK 1. Theorem 1 could be proved by taking the vertex [n—2]
of the pencil as L above and deduce the parametric equations z,=1/(k—wu,)
of the »".

DEFINITION. L is said to be the Lemoine [n—2] of »™ for the simplex S.

THEOREM 3. Any n-+3 general points in [n] determine an n.r.c. r* in
(”“2"3) ways by choosing any n+1 of them to form a simplex inscribed to it
thus giving us ("'53) Lemoine [n—2Y's, one for each stmplex.

Proor. Theorem 2 tells us that an »* is determined by n+3 points,

n+1 forming a simplex S and the other two points being the poles for S
of a couple of primes through the Lemoine [»—2] of 7" for S.

3. Polar and Cevian quadrics

The polar quadric of a point P on an 7" circumscribing a simplex S
with coordinates z, = 1/(k—u,) for S is
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(i) > (k—u)(B—u)zax; = 0
or
BYxa,—kD (u4u)e24 > uu,2,2, = 0,

showing that it belongs to a special net [5] determined by the 3 quadrics:
Sy =0, 3 (utu)rx; =0, Juu;zz;=0.

The cevian quadric [10] of P for S touching the edges of S at the feet
thereat of its bicevians through P is

> (k—u.-)zx?—22 (k—u;)(k—u;)z,2; = 0,
or,

(iid) 43 (k—u,) (b—u;) 2,2, — (3 k—ux,)? = 0

showing that it too belongs to a special nef, and has ring contact with the
corresponding quadric of the net (ii) along the polar prime p (i) of P for S.
Thus we have

THEOREM 4. The polar as well as cevian quadrics of the points of an
nr.c. r® circumscribing a simplex S for S belong respectively to two special
nets such that the pair of quadrics corrvesponding to a point P on ™ have ring
contact along the polar prime p of P for S.

4. Lemoine axes

THEOREM 5. The Lemoine [q—2]'s of the n.r. curves in the [q]’s of a
simplex S in [n], which are projections therein of an n.r.c. r* circumscribing
S from the opposite [n—q—1)’s, all lie in the Lemoine [n—2] L of r". In
particular, the Lemoine axes of the cubic projections of r™ in the solids of
S from the opposite [n—4]'s and the Lemoine points of the conic projections
of r* in the planes of S from the opposite [n—3]'s lie in L.

Proor. The polar prime p of a point P for simplex S in [n] passes
through the polar [g—1] p, of the projection P, of P in a [¢] of S from its
opposite [n—g—1] for its g-simplex in this [¢]. If p varies in a pencil through
an [n—2] L, p, too varies in a pencil through the [¢—2] L, which is a
section of L by the [¢]. Thus P, traces an n.r.c. 7%, as a projection of »*
traced by P from the chordal [#—g—1], having Lemoine {¢g—2] as L,.

Conversely we have

THEOREM 6. If the Lemoine [q—2]'s of certain n.r.c.s. tn the [q]'s of a
simplex S in [n] all lie in an [n—2] L, every such r, is then the projection
of an »" circumscribing S from its [n—q—1] opposite its [q] of the r%.
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5. First polars

THEOREM 7. The n—1 first polars for a simplex S in [n] of any n—1
independent points determining an (mn—2] L determine or have an n.r.c. r*
common such that the first polar of any point of L for S passes through r*.

ProoF. The first polar of a point for a simplex in [#] is a primal of
order # and dimension #—1, and contains the (""2'1) [n—2]’s of S once,
the (”+l) [n—3]’s twice, - - -, the (”:fl) [#n—#]’s (r—1)-times, - - - and (”'51)
edges of S (n—1)-times. Thus the intersection of the first polars of 2 points
for S is of dimension »—2 but order n2— ”‘5 l) ( ) that of 3 independent

points is of dimension #—3 but order » ) ( 'g )_ (3) -, that of » in-
dependent pointsis of dimension #—# but order n( » 1) —{r—1) (”+ l) = (”), .ee

r 4

and that of n—1 independent points is of dimension 1 but order (nﬁl) =n.

THEOREM 8. L of the preceding theorem is the Lemoine [n—2] of the
r" for the simplex S.

PrOOF. Let us také L to be the [n—2] given by the pair of linear
equations: >%,=0, >Yux, =0, and P be a point (py, py,* " p,) in L
such that ¥ p,= 0= u;p;. Now the first polar of Pis (P)=> (p,/z,) =0
which obviously passes through the #” given by the coordinates z;=1/(k—wu,)
of any point on it because of the two conditions satisfied by P. Hence,
by the definition of the Lemoine [#—2] of an »", follows the theorem.

6. Tangents

THEOREM 9. The meets of the primes a* of a simplex S in [n)] with the
tangents, at its opposite vertices A,, of an n.r.c. r* circumscribing S are the
poles of the [n—2] projections therein, of the Lemoine (n—21 L of r™ for S
from A, for the respective (n—1)-simplexes of S.

ProoF. The equations of the tangent line of an n.r.c. #" at any point
with coordinates z; = (k—u;)~! on it are given by

R
(iv) = ( (h—tg) - (bte) e (k—u,.>—1)
(k—ug)=2 -« - (h—u;)™2 - - - (k—u,)™%,

following the notations of Professor T. G. Room [14]. To find the tangents
at the vertices of the simplex S of reference, we may write (iv) as
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(k—wg) -+ (k—u;) -+ (k—u,)
1 “e 1 ce 1

To(k—g)? - - wi(k—u)? -+« x,(h—u,)?
o |

and put £ = %, in (v) to find one at the vertex A4, of S. Thus the tangent
of r» at 4, is given by the equations

Zo(Ui—twg)= "+ = ;1 (U;—W; 1) = Ty (W;— %) = - - = x,(u,—u,)

meeting the opposite prime z; = 0 of S in the point A} whose # coordinates
other than z, are then z;, = (w;—u,)L.

The equation of the [#—2] projection in the prime z; = 0 of S, of the
Lemoine [#—2] of the " for S from the opposite vertex 4, is found to
be 3., (u;—u,)z, = 0 showing it to be the last polar (la) of A; for the
(n—1)-simplex of S in the prime under consideration.

REMARK 2. #* being the locus (Theorem 1) of the poles, for S, of the
primes through L, A4, being the pole of the prime LA, for S (1b) and the
tangent of #® at A, being the limit of the chords of »® through 4,, the
Theorem 9 follows immediately from the definition of the pole and polar
for a simplex (2; 4; 7—11).

THEOREM 10. The n tangents of the n r* projections of an n.r.c. r*
circumscribing a simplex S in [n], in its n primes through a vertex A; of S
from the opposite vertices, at their common point A ; meet its n opposite [n—2]'s
in the n points Ay, which form a Cevian (n—1)-simplex of the (n—1)-simplex
of S opposite A, for the meet A’; of its prime a* with the tangent of r™ at A; [10].

ProoF. The tangent of the n.r.c. »*~! projection of #*, in the prime
z,; = 0 of S from the opposite vertex 4,, at the vertex 4, meets the opposite
[#—2] a* (1b) in the point A;; whose coordinates referred to S are
z; =0 =z,, , = 1/(u;—u;) for all values of & other than z, § (7a). Thus
A,, A, Ay (# 4;,) are collinear.

REMARK 3. In view of Remark 2, Theorem 10 can also be deduced
from the definition of the pole and polar for a simplex [2].

7. Even spaces

If we put down the n+41 coordinates (6a) of the meet A; of a prime
a‘ of the simplex S of reference with the tangent of an n.r.c. #" circumscribing
S at its opposite vertex A4, as the ¢th row of a matrix M (# = 0, - - -, n),
we find M to be skew symmetric such that its determinant [M| = 0, thus
showing that the #n41 points A} are co-primal if # is even. Hence follows
the following:
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THEOREM 11. The 2m-+1 meets of the 2m—+1 primes of a simplex S
in [2m] with the tangents of an n.r.c. r*™ circumscribing S at ils opposite
vertices all lie in a prime which coincides with the Lemoine axis of a triangle
for a conic circumscribing it when m = 1 [11].

8. 0dd spaces

THEOREM 12. The 2m meets of the 2m primes of a simplex S in [2m—1]
with the tangents of an n.r.c. r*™ 1 circumscribing S at its opposite vertices
form another simplex S’ Moebius or mutually inscribed with S [1—3; 6; 12].

ProoF. The first minor of a skew symmetric matrix obtained by
crossing its 4™ row and ¢* column is also skew symmetric. Hence if we
substitute the #-+1 coordinates z; = 1, z; = @ (for all j # 7) of a vertex
A, of a simplex S in the ¢th row of the matrix M of the preceding section,
we find |M| = 0 thus showing that A, lies in the prime determined by
the » points 4; if » is odd.

Thanks are due to the referee for the present presentation of the paper.
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