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In 1959, Professor N. A. Court [2] generated synthetically a twisted
cubic C circumscribing a tetrahedron T as the poles for T of the planes of a
coaxal family whose axis is called the Lemoine axis of C for T. Here is an
analytic attempt to relate a normal rational curve rn of order n, whose
natural home is an n-space [«], with its Lemoine [n—2] L such that the
first polars of points in L for a simplex 5 inscribed to rn pass through rn

anf the last polars of points on rn for S pass through L. Incidently we
come across a pair of mutually inscribed or Moebius simplexes but as a
privilege of odd spaces only. In contrast, what happens in even spaces also
presents a case, not less interesting, as considered here.

1. Polarity for a simplex

n»(a) If Pbeapoint {po,pit • • •, pn) referred to a simplex S = .40.41- • -A
the first polar of P for S is the primal (P) = ^(pjxi) = 0 of order n, and
the last or nth polar is the prime p = 2 (£<//><) = 0 (i = 0, 1, • • •, n) as a
well known fact. Thus: If the polar prime q = 2(xil9t) = 0 of a point
Q(qt) for S pass through P ; i.e., (£</<?<) = 0, (P) passes through Q. Or,
(P) is the locus of the poles for S of the primes through P.

(b) Let the secant through P to an edge A(At of S and its opposite
[n—2] a*' meet the edge in a point Pu, and Qif be the point on this edge
as the harmonic conjugate of Ptj w.r.t. the pair of the vertices A{, At.
That is, H{AiAj,PiiQii) or [AtPuAtQtt) = - 1 . The ("+1) points QiS

then all lie in the polar prime p of P for S [4; 7 — 11]. Conversely, if a
prime p cuts AtAt in Qit and Pu be such that H{AiAj, P^Qu), the )
primes ai}pit concur at the pole P of p for S.

Hence, if p pass through At, Qt) and therefore Pif both coincide at
Ai which then becomes the pole of p for S. Or, the pole of a prime through
a vertex of S for S lies at this vertex.

* Attached at present to the College of Science, University of Baghdad, as a Visiting
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2. Normal rational curve

(a) The normal rational curve (n.r.c.) rn is generated by the cor-
responding primes of n related pencils whose n vertices [«—2]'s form its
chordals [14]. As the prime p in l(b) varies in a pencil cutting the n edges
AtAt of the simplex S through its vertex At in the n points Qijt the n cor-
responding primes ai}Pfj of the n pencils with vertices as the [»—2]'s au

of the prime a' of S opposite Af generate rn as the locus of the poles of
primes p of the given pencil for S. From the symmetry of the result follows
the following:

THEOREM 1. The locus of the poles of the primes of pencil for a simplex
S in [n] is an n.r.c. rn through its vertices.

(b) Conversely we may have the following:

THEOREM 2. The polar primes of the points of an n.r.c. rn circumscribing
a simplex S for S form a coaxal family.

PROOF 1. Following Court [2], we can prove synthetically the proposition
by induction. For it is true in plane (n = 2) and solid (n = 3).

PROOF 2. Let r" be represented parametrically by the « + l coordinates
xi = iKk—Uf) of a point P on rn, k being the parameter [14; p. 220]. The
polar prime p of P for S by l(a) is

(i) 2 (*—ui)xi = °. o r *!><— 2 uixi — °-
This equation shows that p passes through the [n—2] L common to the
2 primes: ^,x( = 0, 2"*** = 0, thus proving the proposition.

REMARK 1. Theorem 1 could be proved by taking the vertex [n—2]
of the pencil as L above and deduce the parametric equations xi=ll(k—ui)
of the rn.

DEFINITION. L is said to be the Lemoine \n—2] of rn for the simplex S.

THEOREM 3. Any « + 3 general points in [n] determine an n.r.c. rn in
\ 2 ) waVs by choosing any n-\-l of them to form a simplex inscribed to it
thus giving us y1^ ] Lemoine \n—2]'s, one for each simplex.

PROOF. Theorem 2 tells us that an rn is determined by n+Z points,
n-\-l forming a simplex 5 and the other two points being the poles for S
of a couple of primes through the Lemoine [n—2] of rn for S.

3. Polar and Cevian quadrics

The polar quadric of a point P on an rn circumscribing a simplex S
with coordinates x{ = l/(&—w.) for S is
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(ii) 2 {k—Ui){k—Uj)xiXj = 0

or
k^XtXf—kJl {ut+ui)xixi+ 2uiujxixj = 0,

showing that it belongs to a special net [5] determined by the 3 quadrics:

ZXfX, = 0, ^ (ui + ui)xtxl = 0, JMJMJXJIJ = 0.

The cevian quadric [10] of P for S touching the edges of S at the feet
thereat of its bicevians through P is

-ui){k-ui)xix} = 0,
or,

showing that it too belongs to a special net, and has ring contact with the
corresponding quadric of the net (ii) along the polar prime p (i) of P for 5.
Thus we have

THEOREM 4. The polar as well as cevian quadrics of the points of an
n.r.c. rn circumscribing a simplex S for S belong respectively to two special
nets such that the pair of quadrics corresponding to a point P on rn have ring
contact along the polar prime p of P for S.

4. Lemoine axes

THEOREM 5. The Lemoine [q—2]'s of the n.r. curves in the [q]'s of a
simplex S in [n], which are projections therein of an n.r.c. rn circumscribing
S from the opposite [n—q—l]'s, all lie in the Lemoine [n—2] L of r". In
particular, the Lemoine axes of the cubic projections of rn in the solids of
S from the opposite [n—4]'s and the Lemoine points of the conic projections
of rn in the planes of S from the opposite \n—3]'s lie in L.

PROOF. The polar prime p of a point P for simplex S in [«] passes
through the polar [q—1] pQ of the projection Pq of P in a [q] of S from its
opposite [n—q—1] for its ^-simplex in this [q]. lip varies in a pencil through
an [n—2] L, pq too varies in a pencil through the [q—2] Lq which is a
section of L by the [q]. Thus Pq traces an n.r.c. r", as a projection of rn

traced by P from the chorda! [n—q—1], having Lemoine [q—2] as Lq.
Conversely we have

THEOREM 6. / / the Lemoine [q—2]'s of certain n.r.c.s. in the [q]'s of a
simplex S in [n] all lie in an [n—2] L, every such rq is then the projection
of an rn circumscribing S from its [n—q—1] opposite its [q] of the rq.
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5. First polars

THEOREM 7. The n—\ first polars for a simplex S in [«] of any n—\
independent points determining an \n—2] L determine or have an n.r.c. r"
common such that the first polar of any point of L for S passes through rn.

PROOF. The first polar of a point for a simplex in [n] is a primal of

order n and dimension n—1, and contains the (nij ) [»—2]'s of S once,

the ("+1) [»-3] 's twice, • • •, the ("+1) [n-r]'s (r-l)-times, • • • and ("+1)

edges of S (n—l)-times. Thus the intersection of the first polars of 2 points

for 5 is of dimension n—2 but order «2—(w^1) = u ) . that of 3 independent

points is of dimension n—3 but order M U M K ' J = ftjV • • •, that of r in-

dependent points is of dimension n—r but order nL * A — (r—1) r*+* 1 = ("V • • •

and that of n—1 independent points is of dimension 1 but order L * j) = n.

THEOREM 8. L of the preceding theorem is the Lemoine [n—2] of the
rn for the simplex S.

PROOF. Let us take L to be the [«—2] given by the pair of linear
equations: ^xt = 0, ^utXi = 0, and P be a point (po,plt • • -,̂ >n) in L
such that ^pt = 0 = J,uipi. Now the first polar of P is (P) == 2 [PtM = 0
which obviously passes through the rn given by the coordinates xt = 1/ (k—w<)
of any point on it because of the two conditions satisfied by P. Hence,
by the definition of the Lemoine [»—2] of an rn, follows the theorem.

6. Tangents

THEOREM 9. The meets of the primes a* of a simplex S in [«] with the
tangents, at its opposite vertices A{, of an n.r.c. rn circumscribing S are the
poles of the [n—2] projections therein, of the Lemoine [«—2] L of rn for S
from A{, for the respective (n-l)-simplexes of S.

PROOF. The equations of the tangent line of an n.r.c. rn at any point
with coordinates xt = (k—Uf)-1 on it are given by

(iv) 0 = [ (^-Mo)-1 • • • (&-W;)-1 • • • (k-uj-11
. . (*-«,)-« • • • (*-«„)-«/,

following the notations of Professor T. G. Room [14]. To find the tangents
at the vertices of the simplex S of reference, we may write (iv) as
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( X0{k—U0)
2 • • • X^k—UiY

1 • •• 1

and put k = ut in (v) to find one at the vertex Ai of S. Thus the tangent
of rn at A( is given by the equations

meeting the opposite prime x{ = 0 of 5 in the point A\ whose n coordinates
other than xt are then x} = («4—w^)"1.

The equation of the [n—2] projection in the prime xt = 0 of S, of the
Lemoine [»—2] of the r" for 5 from the opposite vertex At is found to
be 2i#< (M<"~Mj)a;i = 0 showing it to be the last polar (la) of A\ for the
(n—l)-simplex of S in the prime under consideration.

REMARK 2. rn being the locus (Theorem 1) of the poles, for S, of the
primes through L, Af being the pole of the prime LA{ for S (lb) and the
tangent of r" at At being the limit of the chords of r" through A{, the
Theorem 9 follows immediately from the definition of the pole and polar
for a simplex (2; 4; 7—11).

THEOREM 10. The n tangents of the n r"~1 projections of an n.r.c. rn

circumscribing a simplex S in [«], in its n primes through a vertex At of S
from the opposite vertices, at their common point At meet its n opposite [n—2]'s
in the npoints A'tj which form a Cevian {n—l)-simplex of the (n-l)-simplex
of S opposite A{ for the meet A\ of its prime a* with the tangent of r" at At [10].

PROOF. The tangent of the n.r.c. rB-1 projection of rn, in the prime
xf = 0 of S from the opposite vertex Ajt at the vertex A f meets the opposite
[n—2] a*' (lb) in the point A'u whose coordinates referred to 5 are
x{ = 0 = Xj, xk = l/(«»—Mjfc) for all values of k other than i, j (7a). Thus
Ajt A\, A'u ( ^ A'H) are collinear.

REMARK 3. In view of Remark 2, Theorem 10 can also be deduced
from the definition of the pole and polar for a simplex [2].

7. Even spaces

If we put down the n-\-l coordinates (6a) of the meet A\ of a prime
a' of the simplex S of reference with the tangent of an n.r.c. rn circumscribing
S at its opposite vertex A( as the ith. row of a matrix M (i = 0, • • •, n),
we find M to be skew symmetric such that its determinant \M\ = 0, thus
showing that the w+1 points A\ are co-primal if n is even. Hence follows
the following:
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THEOREM 11. The 2m+1 meets of the 2m-\-\ primes of a simplex S
in [2m] with the tangents of an n.r.c. r2m circumscribing S at its opposite
vertices all lie in a prime which coincides with the Lemoine axis of a triangle
for a conic circumscribing it when m = 1 [11].

8. Odd spaces

THEOREM 12. The 2m meets of the 2m primes of a simplex S in [2m—1]
with the tangents of an n.r.c. y2"*-1 circumscribing S at its opposite vertices
form another simplex S' Moebius or mutually inscribed with S [1—3; 6; 12].

PROOF. The first minor of a skew symmetric matrix obtained by
crossing its ith row and itb column is also skew symmetric. Hence if we
substitute the n-\-\ coordinates xi = 1, xt = 0 (for all j#: i) of a vertex
A i of a simplex S in the ith row of the matrix M of the preceding section,
we find \M\ = 0 thus showing that At lies in the prime determined by
the n points A'f if n is odd.

Thanks are due to the referee for the present presentation of the paper.
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