
BULL. AUSTRAL. MATH. SOC. 2OF19

VOL. 37 (1988) [69-79]

GROUPS WITH A NILPOTENT TRIPLE FACTORISATION

BERNHARD AMBERG, SILVAN A FRANCIOSI

AND FRANCESCO DE GIOVANNI

In the investigation of factorised groups one often encounters groups G = AB = AK —
BK which have a triple factorisation as a product of two subgroups A and B and a normal
subgroup if of G. It is of particular interest to know whether G satisfies some nilpotency
requirement whenever the three subgroups A, B and K satisfy this same nilpotency
requirement. A positive answer to this problem for the classes of nilpotent, hypercentral
and locally nilpotent groups is given under the hypothesis that if is a minimax group or
G has finite abelian section rank. The results become false if K has only finite Priifer
rank. Some applications of the main theorems are pointed out.

1. INTRODUCTION

If N is a normal subgroup of a factorised group G = AB, where A and B are
subgroups of G, the factoriser X(N) = AN (~1 BN of N can be written as

X{N) = N(A n BN) = N(B n AN) = (AC\ BN)(B n AN)

(see [1], Theorem 1.7). Therefore the investigation of a factorised group very often
reduces to the consideration of a triple factorised group

G = AB = AK = BK

where if is a normal subgroup of G. Groups with such a triple factorisation have
played a role in almost every paper on factorised groups, in particular in [2], [8], [9],
[16], [21].

In the following we are interested in the case that A, B and K satisfy some
nilpotency requirement. Under certain conditions it will then be shown that the triple
factorised group G satisfies the same nilpotency requirement.
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70 B.Amberg, S.Franciosi & F. de Giovanni [2]

THEOREM A. Let the group G = AB = AK = BK be the product of two
subgroups A and B and a normal minimax subgroup K of G.

(a) If A, B and K are nilpotent, then G is nilpotent,

(b) If A, B, and K are hypercentral, then G is hypercentral,

(c) If A, B and K are locally nilpotent, then G is locally nilpotent.

Here, parts (b) and (c) of Theorem A even hold if K has finite abelian section

rank and K/T is a minimax group, where T is the torsion subgroup of K.

However, the condition that K is & minimax group cannot be weakened to the

condition that K has only finite Priifer rank. This can be seen from an example given

in Sysak [18], p. 29 of a torsion-free non-locally-nilpotent group G = AB = AK = BK

where A and B are abelian subgroups with infinite Priifer rank and K is an abelian

normal subgroup of G with Priifer rank 1.

Note also that part (a) of Theorem A becomes false if K is locally finite with finite

abelian section rank. This can be seen from the following:

EXAMPLE: There exists a locally finite non-nilpotent group G with finite Priifer
rank which has a triple factorisastion G = AB = AK = BK where A, B and K are
abelian subgroups and K is normal in G. In fact, for each odd prime p let Gp be a
metacyclic p-group of class ^ p which has a triple factorisation

Gp — ApBp = ApKp — BpKp,

where Ap, Bp and Kp are cyclic and Kp is normal in Gp (see [21], Example 1). The
direct product G = DrpGp can be written as

G = AB = AK = BK,

where A = DrpAp, B = DrpBp and K = DrpKp. It is easy to see that G satisfies
the required conditions, is not nilpotent and has Priifer rank 2.

THEOREM B. Let the group G = AB = AK = BK with finite abelian section

rank be the product of two subgroups A and B and a normal subgroup K of G.

(a) If A, B and K are nilpotent and the torsion subgroup T(K) of K is a Cernikov

group, then G is nilpotent.

(b) If A, B and K are locally nilpotent, then G is locally nilpotent and hence hy-

percentral.

The example above shows that in part (a) of Theorem B the requirement that
T(K) is a Cernikov group cannot be omitted. From this example one can also see
that in parts (a) of Theorems A and B, the nilpotency class of the group G cannot be
bounded by the nilpotency classes of A and B.
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Theorem B also holds in the case that the group G is soluble and the subgroups

A and B have finite abelian section rank. This follows from the Theorem in [7].

Theorem A is a generalisation of Theorem 2 of Zaicev [21] for the product of two

abelian groups, and Theorem B is a generalisation of Theorem 5 of Robinson [16] for

the product of two nilpotent groups; see also [8], Theorem 2.

Theorem B has the following consequence.

COROLLARY. If the radical group G = AB with Unite abelian section r a n i is the
product of two locally nilpotent subgroups A and B, then each term of the ascending
Hirsch-Plotkin series of G is factorised; in particular the Hirsch-Plotkin radical of G
is factorised.

Using the well-known theorem of Kegel anil Wielandt ([12] and [19]), it is easy to
see that the corollary even holds for a group G such that every non-trivial epimorphic
image of G contains a non-trivial finite or locally nilpotent normal subgroup. The
corollary generalises parts of Theorem 5.7 of [1], Satz 4.1 of [3] and Theorem 2.5 of
[4]; for the finite case, see also [13]. Some further consequences of our theorems can be
found in Section 5 below.

In the proofs in this paper, some cohomological arguments are decisive; see in
particular Robinson [17].

Notation.

The notation is standard and can for instance be found in [15]. We note in partic-

ular:

A group G has finite abelian section rank if it has no infinite elementary abelian

p-sections for every prime p.

G has finite Prufer rank if there exists a positive integer r such that every finitely
generated subgroup of G can be generated by at most r elements.

A soluble group G is a minimax group if it has a finite series whose factors are
finite or infinite cyclic or quasicyclic of type p°° ; the number of infinite factors in such
a series is called the minimax rank of G.

The ascending Hirsch-Plotkin series of a group G is defined in the following way:

Ro(G) = l,

Ra+i(G)/Ra(G) = Hirsch-Plotkin radical of G/Ra(G) for every ordinal a ,
R-tiG) = \Ja<y

R<r{G) f o r u m i t ordinals 7.
G is called radical if G = RT[G) for some ordinal T.

A subgroup S of a factorised group G = AB is called factorised if 5 =
{A n S)(B n 5) and A n B ^ S (see [19] or [1]).

https://doi.org/10.1017/S0004972700004159 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004159


72 B.Amberg, S.Franciosi & F. de Giovanni [4]

2. SOME LEMMAS

The first lemma gives a useful criterion for a group with a nilpotent triple factori-

sation to be nilpotent.

LEMMA 2.1. (Robinson [16], Lemma 3). Let the group G - AB = AK - BK be

the product of three nilpotent subgroups A, B and K, where K is normal in G, and

assume that the Baer radical of G is nilpotent. If there exists a normal subgroup N

of G such that the factoriser X(N) and the factor group G/N are nilpotent, then G

is nilpotent.

The following lemma about Baer groups is probably already known. It ensures
that in the proof of parts (a) of Theorems A and B, Lemma 2.1 is applicable.

LEMMA 2.2. Let N be a normal subgroup with finite Priifer rank r of the Baer

group G.

(a) If N is a radicable abelian p-group, then N is contained in the r-th term Zr(G)

of the upper central series of G.

(b) If the torsion subgroup of N is a Cernikov group and the factor group G/N is

nilpotent, then G is nilpotent.

PROOF: (a) If if is a finitely generated subgroup of G, then H is a nilpotent
subnormal subgroup of G. Write Ni — [JV, H,... ,H] for every positive integer i.

i

Then Nt = 1 for some t. Since every Ni is radicable, it follows that N{ is a direct factor
of Ni-i for all i < t. Hence, t ^ r and thus Nr - 1. Therefore also [N, G,..., G] = 1

r

and so N < Zr{G).

(b) Since the torsion subgroup T of N is a Cernikov group, its finite residual J

is a radicable abelian torsion group with finite Priifer rank, and T/J is finite. Clearly,
N/T is a torsion-free nilpotent normal subgroup of G/T with finite Priifer rank, and
so N/T < Z,(G/T) for some positive integer s (see [15], Part 2, p. 35) and G/T is
nilpotent. Thus G/J is finite-by-nilpotent and hence nilpotent. By (a) we have that
J < Zr(G), so that G is nilpotent. |

Essential use will be made of the following cohomological result. As usual,
H'(Q,M) and Hi(Q,M) denote the i-th cohomology group and the i-th homology
group of the group Q with coefficients in the (^-module M, respectively.

LEMMA 2.3. Let Q be a locally nilpotent group and M a Q -module such that

Q/CQ{M) is hypercentral and H°(Q, M) = 0.

(a) If M is an artinian Q -module, then Hn(Q, M) = 0 for every non-negative integer
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(b) If N is an artinian C? -submodule of M, then H°(Q, M/N) = 0.

PROOF: For statement (a) see [17], Theorem 3.5, or also [10], Satz 3.2.9.
For the proof of (b) note that H°{Q,N) = 0 implies H^Q^) = 0 by (a). The

long exact cohomology sequence gives the exact sequence

H°(Q,M) —> H°(Q,M/N) —» ff^Q.JV),

and hence H°(Q, M/N) = 0. |

3. PROOF OF THEOREM A

Proof of statement (a). Assume that this is false, and choose among the counterex-
amples with K of minimal minimax rank a group G for which the sum of the nilpotency
classes of A and B is minimal. We may assume that K is abelian (see [14]).

(i) The case: if is a torsion group.
In this case if is a Cernikov group. There exists a finite G -invariant subgroup F

of K such that K/F is radicable. If G/F is nilpotent, then G is finite-by-nilpotent
and hence \G : Zn(G)\ is finite for some non-negative integer n by a result of P. Hall
(see [15], Part 1, p. 117). Since statement (a) holds for a finite group G (see for
instance [2], Satz 3.3), it follows that G is nilpotent. Therefore we may assume that
K is radicable.

Let if be a non-trivial radicable G -invariant subgroup of K. If H < K, then
the group G/H and the factoriser X(H) of if in G = AB are nilpotent. By Lemma
2.2(b), the Baer radical of G is nilpotent, so that G is nilpotent by Lemma 2.1. This
contradiction shows that every proper G -invariant subgroup of K is finite.

Clearly the normal subgroups AC\K and BC\K of G are properly contained in K,
so that C = (AD K)(B n K) is a finite normal subgroup of G. If G/C is nilpotent,
then G is finite-by-nilpotent and it follows as above that G is nilpotent. Therefore
G/C is not nilpotent and we may assume that A C\ K = B C\ K = 1. For every
a £ Z(A), the group [K,a] is a normal subgroup of G which is properly contained in
K (see[6], Lemma 1.2). Since K is radicable, we have that [K,a] = 1. This shows
that Z(A) < Z(G), so that G/Z(G) is nilpotent. This contradiction proves that G is
nilpotent when if is a torsion group.

(ii) The general case.
The factoriser X(T) of the torsion subgroup T of K is nilpotent. by case (i). By

Lemma 2.2 (b) the Baer radical of G is nilpotent, so that G/T is not nilpoteiit by
Lemma 2.1. Hence we may assume that K is torsion-free.

Since Z(A)nK < Z(G), the group G/(Z(A) n K) is not nilpotent, so that Z(A)n
K — 1 and hence even AC\K = 1. Since K is a torsion-free miniinax group, the abelian
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subgroups of A/CA{K) are minimax groups, so that the nilpotent group A/CA(K) is
a minimax group by theorems of Baer (see [15], Part 2, pp. 171-173). Clearly CA(K)

is even normal in G and the factor group G/CA{K) is also a minimax group, so that it
is nilpotent by Theorem 4 of [16]. Since CA(K)C\K — 1, it follows that G is nilpotent.
This contradiction proves Theorem A(a).

The following lemmas deal with special situations needed in the proof of part (c)
of Theorem A.

LEMMA 3.1. Let the group G = AK be the product of two hypercentral subgroups

A and K, where K is normal in G, and let J be a radicable abelian normal torsion

subgroup of G such that G/J is hypercentral. If Z(G) = 1 and every proper G-

invariant subgroup of J is finite, then A fl J = 1 and CQ(J) = J •

PROOF: Since the socle of J is finite, J satisfies the minimum condition on sub-
groups. From H°(G/J, J) = 0 it follows that H2(G/J, J) = 0 by Lemma 2.3(a). Hence
G = L K J for some hypercentral subgroup L of G. Then Cz(L)(J) ^ Z(G) = 1 and
so CL(J) = 1 and CQ(J) = J • For each positive integer n the group JZn{K) is
nilpotent, so that [J,Zn(K)] < J. Since J is radicable, [J,Zn(K)\ = 1. Therefore
Zn(K) < CG(J) = J and thus also ZU(K) = \JnZn(K) < J .

If ZU{K) < J , then K is nilpotent and K ^ J. In this case Z(A)n J ^ Z(G) = 1
and hence even A D J = 1. Assume now that ZU(K) = J. Suppose that a is a non-
trivial element of Z(A)C\ J, and let n be the least positive integer such that a 6 Zn(K).

HG = G/Zn_1(K), then a £ Z(G)nJ,so that Z(G)nJ^l. This contradicts Lemma
2.3(b). Therefore also in this case Z(A)C\ J — 1 and A n J = l . This, then proves the
lemma. |

LEMMA 3.2. Let the group G — AB be the product of two nilpotent subgroups
A and B, and let J be a radicable abelian normal torsion subgroup of G such that
CG(J) = J and the factor group G/J is nilpotent. If every proper G-invariant sub-
group of J is finite, then J is f&ctorised.

PROOF: Since the socle of J is finite, J satisfies the minimum condition on sub-
groups. By Lemma 2.2(b) the Baer radical V of G is nilpotent. It follows that [J,V]

is a proper G -invariant subgroup of J and since J is radicable, [J, V] = 1. Then
V < CG{J) = J and hence J = V. The factoriser X = X(J) of J is nilpotent by
Theorem A(a). Therefore X ^ V = J and J = X is factorised. |

Proof of s tatements (b) and (c) of Theorem A. Part (b) will follow immediately
from part (c), since if G is locally nilpotent then K lies in the hypercentre of G (see
[15], Part 2, p. 39).

Assume that statement (c) is false, and let G be a counterexample such that the
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torsion-free rank of K is minimal. We may suppose that the torsion subgroup T of
if is a p-group. Among all such counterexamples choose one G for which the finite
residual J of T has minimal Priifer rank.

(i) The case: K nilpotent.
In this case we may suppose that K is abelian (see [14]). Since the hypercentre

factor group G/Z(G) is not locally nilpotent, without loss of generality we may take
Z(G) - 1. But Af) K lies in the hypercentre Z(A) and hence also in Z{G). Thus
AnK = 1, and similarly B n K = 1.

If G = G/T, the locally nilpotent group A/CA(R) is isomorphic with a group of
automorphisms of the torsion-free abelian group of finite Priifer rank R and is therefore
nilpotent (see [15], Part 2, p. 31). Moreover its abelian subgroups are minimax groups
and it is itself a minimax group by results of Baer (see [15], Part 2, pp. 171—173).
Clearly C A{R) is even normal in G and G/CA(R) is a minimax group. Now

(BCA(R)/CA(R)) n (RCA(R)/CA(R))

is contained in some term with finite ordinal type of the upper central series of
BCA(R)/CA(R) (see [15], Part 2, p. 35). Therefore BCA(R)/CA(R) is nilpotent.
This implies that G/CA(R) is hypercentral by Lemma 4 of [16]. Since A D R = 1,
the factor group G — G/T is locally nilpotent.

Since T is a Cernikov p-group, there exists a finite G-invariant subgroup F
of T with FJ = T. The locally nilpotent group G/CG(J) is hypercentral since
it is linear over the field of p-adic numbers (see [15], Part 2, p.31). The finite
factor group G/CG(F) is obviously nilpotent. Since CG(T) - CG(F) D CG(J),
the factor group G/CG(T) is hypercentral. From H°(G/T,T) = 0 it follows that
tf^G/T,!1) = H2(G/T,T) = 0 by Lemma 2.3(a). In particular this means that
G — L K T for some subgroup L of G. Then R = (R D L) x T and Rf\L is normal in
G. If R D L ^ 1, the factor group G/(R n L) is locally nilpotent by the minimality of
the torsion-free rank of R. Then also G is locally nilpotent. This contradiction shows
that RnL = l and R = T. Therefore ^(G/R^R) = 0 and the complements A and
B of R in G are conjugate, so that A = B = G is locally nilpotent. This proves that
G is locally nilpotent when R is nilpotent.

(ii) The general case.
Now let R be an arbitrary locally nilpotent minimax group whose torsion subgroup

T is a p-group. Here R/J is nilpotent and hence G/J is locally nilpotent by case (i).
Again we may assume that Z(G) — 1. The locally nilpotent group G/CG{J) is linear
over the field of p-adic numbers, and then it is nilpotent since its periodic subgroups
are finite (see [15], Part 1, p. 85 and Part 2, p. 31). If 5 is an infinite G-invariant
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subgroup of J then H°(G/J, J/S) - 0 by Lemma 2.3(b). But the minimality of the
Priifer rank of J ensures that G/S is locally nilpotent and so J/S < 2(G/S). Then
J = S. We have shown that every proper G -invariant subgroup of J is finite.

From H°(G/J., J) = 0 it follows that H2(G/J, J) = 0 by Lemma 2.3(a). Therefore
G = L X J for some locally nilpotent subgroup L of G. If G* = G/C'L(J), then
CG*(J*) = J* and G*/J" is nilpotent. But A* D J* lies in the hypercentre of A*

and so .4* is hypercentral. Since Z(G*) = 1 we can apply Lemma 3.1. Therefore
A* n J* = B* n J* = I. Thus A* and B* are nilpotent and Lemma 3.2 says that
J* = (A* n J*)(B* n J*) = 1. Thus J - 1. This contradiction proves the theorem.

4. P R O O F OP THEOREM B

P r o o f of s t a t e m e n t (a ) . Since the torsion subgroup T of K is a Cernikov group, its
factoriser X(T) in G = AB is nilpotent by Theorem A(a). Clearly K/T is torsion-
free, and so GjT is nilpotent by Theorem 4 of [16]. The Baer radical of G is nilpotent
by Lemma 2.2(b), so that G is nilpotent by Lemma 2.1. This proves statement (a) of
Theorem B.

P r o o f of s t a t e m e n t (b) . This runs along the same hnes as that of Theorem A(c).
Note that in this case G/C^ (if) has finite abelian section rank by supposition, enabling
the application of Lemma 4 of [16].

P r o o f of t h e Corol la ry . Let G = AB be a radical group and let

1 = Ro < Ri K • • • ^ RT = G

be the ascending Hirsch-Plotkin series of G. For every ordinal a ^ r let Xa be the
factoriser of Ra in G. Then for every a < T the subgroup Xa+i/Ra is the factoriser
of Ra+i/Ra in G/Ra, so that Xa+i/Ra is hypercentral by Theorem B(b). Since
Ra ^ Xa ^ Xa+i, the subgroup Xa is ascendant in Xa+i. If 7 is a limit ordinal,
also Ry < U/3<7-^/3 ^ Xy and so X 7 = U / 3 < T ^ / 3 - ^ follows that Xi = X(Ri) is a
hypercentral ascendant subgroup of G, so that the Hirsch-Plotkin radical R = X(R)
of G is factorised.

Since the hypotheses of the corollary are inherited by factor groups, each term of
the ascending Hirsch-Plotkin series of G is factorised. This proves the corollary.

5. SOME FURTHER RESULTS

Theorem A has the following consequences.

COROLLARY 5.1. Let the group G = AB be the product of an abetia.11 subgroup

A and and a hypercentral subgroup B. If the Hirsch-Plotkin radical R of G is a
minimax group, then R is factorised.
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PROOF: Let X = X(R) be the factoriser of R in G, and write G = G/R. Then
X = A n B is normal in A and ascendant in B. Thus XG — XB ^ B and hence X

is ascendant in G. Therefore X is ascendant in G and so X ^ R, since A" is locally
nilpotent by Theorem A(c). This yields that R — X is factorised. |

COROLLARY 5.2. Let tie group G — AB be the product of two abelian subgroups
A and B. If the Fitting subgroup F of G is a minimax group then F is factorised.

PROOF: The factoriser X(N) of a nilpotent normal subgroup N of G is a nilpo-
tent normal subgroup of G by Theorem A(a), so that X(N) ^ F. Therefore F is
generated by factorised normal subgroups of G and hence is itself factorised. |

COROLLARY 5.3. Let the group G = AB / 1 be the product of two abelian
subgroups A and B . If the commutator subgroup G' of G is a minimax group, then
at least one of the subgroups A and B contains a non-trivial normal subgroup of G.

PROOF: Assume that this is false. Then for instance by condition (+) in the proof
of the Proposition in [5] it follows that the factoriser X = X(G') of G' has trivial
centre. But X is nilpotent by Theorem A(a), since G' is abelian by a well-known
theorem of It6 (see [11]). This contradiction proves Corollary 5.3. |

Remarks, (a) Note that Corollaries 5.1 and 5.2 are improvements of Theorems 2.5
and 2.4 of [4]. Also, corollary 5.3 improves the Theorem in [5].
(b) The example of Sysak [18] mentioned in the introduction shows that Corollary
5.3 does not hold when the commutator subgroup G' is only (torsion-free) with finite
Priifer rank.

In our last result we note a situation in which the hypothesis of parts (b) and (c)
of Theorem A can be weakened.

PROPOSITION 5.4. Let the group G = AB = AK — BK be the product of two
subgroups A and B and a radicable normal subgroup K of G with finite abelian
section rank.
(a) If A, B and K are hypercentral, then G is hypercentral.
(b) If A, B and K are locally nilpotent, then G is locally nilpotent.

PROOF: Statement (a) will follow from statement (b), since if G is locally nilpotent
then K lies in the hypercentre of G (see [15], Part 2, p.39).

Assume that (b) is false, and let G be a counterexample such that A" has minimal
torsion-free rank. If T is the torsion subgroup of A", then K/T is nilpotent. Since A"
is hypercentral and radicable, it is nilpotent (see [15], Part 2, p. 125). We may suppose
that K is abelian (see [14]), and that its torsion subgroup is a p-group for some prime
P-
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The factor group G/(K fl Z(G)) is not locally nilpotent, so that K n Z(G) is
periodic and hence G/' (K D Z(G)^ is also a minimal counterexample. Therefore it can
be assumed that K D Z(G) = 1. The normal subgroup A C\ K of the locally nilpotent
group A is contained in the hypercentre of A (see [15], Part 2, p.39). It follows that
A D K < K n Z(G) = 1. Similarly it follows that also BnK = 1.

Write 5 = G/T. If i? D Z(<?) ^ 1, then G/(KnZ(G)) is locally nilpotent
and hence also G is locally nilpotent. If K n Z(<?) = 1, then H°(G/R,K) = 0 and
therefore HQ(G/K,K) has finite exponent by Proposition 4.1 of [17]. It follows that
H0(G/K,K) = 0 since K is radicable. Then H^G/K^R) = 0 by Theorem 4.5 of
[17]. Thus the complements A and B of K in G are conjugate, so that G — A = S
is locally nilpotent. Therefore in both cases G/T and hence also G/CG{T) are locally
nilpotent.

As G/Cc(T) is also linear, it must be hypercentral (see [15], Part 2, p. 31).
From H°(G/T,T) = 0 it follows that H2(G/T,T) = 0 by Lemma 2.3(a). Therefore
G = L K T for some locally nilpotent subgroup L oi G. Then if = (K D X) x T,
where the subgroup K C\ L is normal in G. The group G/(K D L) is locally nilpotent
by Theorem A(c). Hence also G is locally nilpotent. This contradiction proves the
proposition. I
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