AN ISOPERIMETRIC INEQUALITY FOR CONVEX POLYHEDRA
WITH TRIANGULAR FACES

Magelone Kémhoff

H.T. Croft [1] has conjectured that among all tetrahedra with
fixed total edge length the regular one has the greatest surface area.
In this note we prove the following result, which includes this conjecture
as a special case:

THEOREM. Let P be a convex polyhedron with triangular faces,
- T

and let L and A denote its total edge length and its total surface
T T

area. Then

2
L /A > 123
T T

with equality if and only if P is a regular tetrahedron.
T

The proof of this theorem will be based on the following preliminary
remarks:

A (finite) set M of polygons will be called a L -set if the following
T

hold:

A. The sum of the perimeters of the polygons of M is 2L
T

B. Each side of any polygon in M may be paired with a side of equal
length from a different polygon in M, with no two polygons containing
more than one complete set of paired sides.

C. No polygon in M has more than 3 sides.

The maximum total area of the polygons ina L -set will be at
T

least as great as the surface area of any convex polyhedron with triangular
faces and fixed total edge length L . since the set of faces of such a
T

polyhedron is a L -set.
T
Sets of polygons satisfying A and B were considered by O. Aberth
in [2]. The proof of the existence of a L -set of convex polygons enclosing
T

maximum total area A% (L ) is completely analagous to that of Lemma 1
T

in [2]. Further, O. Aberth shows in [2] that a circle may be circumscribed
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about each polygon of the maximal set. The sum, 2L , of the perimeters
T

of all polygons of the maximal set satisfies

2L > z G(s),
T — Sel:'1

where P1 denotes the polygon with the largest circumscribed circle
and G(s) is defined as the length of any side s.gP1 plus the perimeter

of that polygon Pq containing the side s' paired to s.

Using Lemma 3 of [2] and normalizing the maximal set by putting

2A%(L )/ L =1, O. Aberth obtains in [2]:
T T

G(s) > 2r sin® (1 +7/d) for 1/2 <d <1

6r sin® for d >1

Here r is the radius of the circle circumscribing P1 (with centre 0),

28 is the angle s.sP1 subtends at 0 and d is the distance from 0 to
1 r sin®

s defined in Lemma 3 of [2]. 24 = tan
1 -r cos®

is the angle

st qu subtends at the centre of the circle circumscribing Pq.

Proof. The simple transformation of the function sin® in
2

2'sin%-cos% = ,Z-tan%-cos g allows us to establish a lower bound for

the sum 2L as a function of the number of the sides of P1 . Using
T

the inequality of Jensen for the convex function tanTZ-, we obtain
1

(since P,, in our case, has 3 sides (which implies r > ————— = 1));
1 — 2 cosw/3
2L > z G(s) = 4 z tang -_.G(L > 12 tan_Ti min __Gﬂ_
T— seP seP 2 6 - 6 )
1 1 4 tan—z- s«gP1 4 tanz

with equality only if the number of the polygons of the maximal set is
four and P1 is a regular triangle.
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Now:

3r.coslgz 3(12+ coese >3 for d=r cos® > 1.
G(S) < cOs
0 - 2 &)
4 tanE r.cos > (1 +w/¢) = £(r, 8) for 1/2 < d < 1.

with ¢ = tan—1 (r sinB/1 - r cos®) .

We will show now that

E]

f(r, 8) > f(1,-§-) =3 for 1<t <(cos®) T, 0<8<

Y A B

N

° )

3y X

\

Since f(r, 0) is continuous and has partial derivatives everywhere
in its domain of definition shown as the shaded area in the figure, one of
the following cases occurs:

1. f(r, ) assumes its minimum at a point on AD or at an interior
point of DC (i.e. r =1).

2. f(r, ) assumes its minimum at an interior point wit of _of | 0

of 98
3. A sequence of points (r , 8 ) can be found, approaching a boundary
v v

point on BC, such that f(r , © ) is a monotone decreasing sequence
v A%

and lim f(r , 8 ) is a strict lower bound for the function in the
B
domain.
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Case 1: Along AD, rcos®=1/2 and ¢ =6 >7/3, so that

1 1 s
f(r, 8) =£(0) = 4 (Cose + 1) (1 + e) .
Since 6 > % , we have:
df(9) 1 tanB s ™
de 4 cosB (tand +m B 62) B 02

N |-

0

‘/1.73 +3.14 - 4.3

i.e., along AD, f{(r, 8)> f(4,

]>0,
-
3) 3.

Along DC (i.e., r=1) with %< ¢ < -121, one has

e6=m- 2¢, 0<9<‘g‘, and therefore

f(r, 8) =1(¢)= sinzip (1 +7/4).

Further: dffe) . sin¢ [Zcost‘b (1 +1)' ™ sln ]

do

; Ty s Ty - af(e) -
Since f(3)—f(2) = 3 and do >0 for ¢ =

b o

f(r, 8) >3 along DC with 0<e<§ )

Case 2:

of 20 0 [r (4 +w/o]

ar ~ °% 2 or

of r m 20 T rcos® - r*
— = =1 +—) (-sinb) - r- -
06 2 ( ¢) (-sin6) - r-cos 2 ¢* 1-2rcosB +r*
£ .
8 0 implies 1+ T = XTI ., —__sinb
or b 1-2rcosB +r
. of .
Together with 58 - 0 one obtains:
_ . Le e
% = cos"z (cos® - r) which implies r =1 .

But along r =1 with 0< 8 <
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3

sin6
1-2rcos® +r* !

we have f(r, 6)> 3 .
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Case 3: Along BC, r-cos9® =1, and ¢ =127", so that

0
f(r, 6)=3r-cosLE>3 for 6> 0.

However, lim (3r-cos’“'g) = 3,
v=+1
6—0

Thus f(r, 0) > f(i,%) =3 in ABCD, and therefore

2a%(Ly)
L

T

2L > 12N3  in the case
T

with equality if and only if the number of the polygons of the maximal
set is four and the four polygons are congruent regular triangles.

2A%(L )

In the general case, since varies directly with L ,

_T
L T
T

2
L™ > 123 - A%(L )
T T

with equality only for the set of polygons consisting of the faces of a
regular tetrahedron. This completes the proof of the theorem.
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