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SOME QUADRATIC AND CUBIC SUMMATION
FORMULAS FOR BASIC HYPERGEOMETRIC SERIES

MIZAN RAHMAN

ABSTRACT  Anidentity of L Carlitz for a bibasic hypergeometric series 1s used to
find some summation formulas for series 1n which the bases are either g and g° or g and
g*,0 < g <1 In general, these series are neither balanced nor very-well-poised in the
usual sense

1. Introduction. A basic hypergeometric series in base g with r + 1 numerator pa-
rameters and r denominator parameters is defined by

ay,az,...,Aar) & (01»029---,ar+1;q)n
(11) r l¢r{ 54,21 = Z",
* bi,....b, go (@.b1,....br Dn
where
(1.2) (a,az,....,a45;@n = (@1, Qn (@ P

1, ifn=0,
@; @ = { (1—a)1—gqa)---(1—q"'a), ifn=12,...
and z is a complex number. We shall assume throughout the paper that 0 < g < 1. If one
of the a’s in the numerator of the ,,; ¢, series is of the form ¢™", n a nonnegative integer,
then the series is a polynomial of degree n in z, otherwise we shall assume that |z] < 1
which guarantees the convergence of the infinite series.

The series (1.1) is called balanced if b\b, - - - b, = qaja; - - - a4+ and z = g; 1tis called
well-poised if a,by = azb, = - - = ap b, = qay, and very-well-poised if, in addition,
ay = —az = qa}/ ?_ Most of the known summation and transformation formulas for
higher order basic hypergeometric series (that is, 3¢, 4¢3, etc.) are for series that are
either balanced or well-poised or both. The main building blocks for these formulas (see
for example, Bailey [2] and Slater [11]) are the g-binomial theorem

@GP,  (aZ, @)oo

a
1.3 3 g,2| = 7= , 7l <1,
( ) 1¢0[_ 1 } r;)(q;Q)n (T @Poo I l
the g-Gauss formula

a, b (c/a,c/b; @)
1.4 3 q, b| = —~1F1——, b| < 1,
a9 2¢'[ ¢4 cla } (c.c/ab; @)oo le/abl <
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the g-Saalschiitz formula

N N S L C Y7

c abql_"/C;q’q ~ (c,c/abyq)n’
and an easily proved identity for a very-well-poised series
12 _,a1)2 -n
a, qa’'”, qa’", q " nl _
(1.6) 493 { a2, g2, g 9d ] = np,

where n is a nonegative integer.
A more general formula containing two independent bases p and g, that reduces to
(1.6) when p = gq, is given by
@il —ap' )G De ok _
i=0 (g (1 —a)(apq™; p)
This is equivalent to eq. (2.1) of L. Carlitz [3] and was rediscovered by Gessel and Stan-
ton [6,7] in their work on g-Lagrange inversion formulas. A closely related formula was
also given in Al-Salam and Verma [1]. Clearly, (1.7) opens up the possibility of gener-
ating summation and transformation formulas for truly bibasic series; however, in this
paper we shall only consider the cases when p = ¢?,¢'/? or ¢°.
We shall first give an elementary proof of (1.7) based on hypergeometric series ma-
nipulations and then proceed to prove the following summation formulas
(1.8)
& (@3¢ —ag’)(b,c,aq/be; @k yaanyn _ (g7, b, cq,a4% [be; ¢*)oo
i=0 (@ (1 — a)(ag? /b, aq? [ ¢, beq; gP)x  (g.a¢%/b,ag?[c,beg; 7)o’
(1.9)
$ (@;¢)n(1 — ag™)(b, aq/b; ¢*)ulc,d, aq/cd; @),
Zo(@; @n(1 — )aq /b, by @)n(ag? [ c,aq’ [d, cdg; n "
(b/a, qbz/a, aq?, b2q2/ac, b’q* [ ad, b*cdq/ a*; ¢*)(c, d, aq/cd; Qo
(a/b,bq,b%q*/a?,aq* | c,aq* | d, cdq; ¢*)so(bc/a, bd | a,bq | cd; @)oo
2 (b /a% qhu(1 — b3¢*" [ a®)(b? | a,bq ] a; ¢Pn(bc/a,bd |a,bq [ cd; q)n
26 (@ nl — b [ad)(bq ] a,b? [ a; Qu(b?? ] ac, b?¢? [ ad, brcdq [ %, ¢2), !
_ (aq’ cq,dq,aq*/cd,bq/c,bq/d,bcd | a,b]a; 4o
" (g,aq*/c,aq?/d, cdq,bc/a,bd/a,bq/cd,bq; ¢Hoo’
(1.10)
& (a1 —ag™)(d,q/d Qub,c,aq[bei g
&6(a% (1 — a)aq? [d. adg: 4P(aq[b.ag]c.bc]a, gt
_(aq,aq/bc; q)(adq/b,adq/c,aq’ | bd, aq* | cd; ¢*)oo
" (agq/b,aq/c; q)sladq, adgq/bc,aq?/d, aq?/ bed; ¢*)oo
, 9 (b,c,a*q® | bc*,a*q’ | b’c; ¢*)oolaq, d, q/ d; @)oo
be (adq,adq | be,aq? | d, aq? | bed; 4*)oo(aq /b, aq/ ¢, be [ a; @)oo
a*q/bc, adq/bc, aq*/bcd
“302 54547 |
aq®bc?, aq® | bc

(1.7)

n,0-

https://doi.org/10.4153/CJM-1993-020-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-020-8

396 MIZAN RAHMAN

X (bedg% ¢*)u(1 — bedg* ) (b, c,d; @) 2
=0 (g On(1 — bedq=?)(cdg, bdg, beg; ¢*)n

(1.11)
. 4¢3[q”» q'" ¢ bedg™ s 3}:(bcdq»bq,cq,dq;q3)oo
bg?, cq’,  dg? T (g, cdq, bdq, beq; ¢3) oo’
and
X, (bedg " ¢*)n(1 — bedg* =) (b, ¢, d; q)n 7
1012 7=0(q> Pn(1 — bedq=")(cdq?, bdq?, beg?; ¢*)n

e {q"‘, q7".q' " bedg™ 4 3] _ (bedg®,bg’, cq*,dq*; 4o

bq,cq,dq o (¢, cdg?, bdq?, beq?; oo
Apart from the assumption 0 < g < 1 the only restrictions on these formulas are
that no zero factors occur in the denominators on either side and a limit needs to be
taken whenever an indeterminate form appears. Specifically, (1.11) is not valid if any of
bq?, cq?,dq*, beq, bdg, cdq is of the form g3,k = 0,1, ... ; similarly (1.12) fails to hold
if any of bg, c¢q, dq, bcq?, bdg?, cdg? is of this form.

Note that the infinite series in (1.8)—(1.10) have a well-poised structure although none
of them is a very-well-poised series in the usual sense. The same is true for the series in
(1.11) and (1.12), however, the 4¢3 series in both are balanced in base ¢>. Note also that
(1.9) and (1.10) are nonterminating extensions of [6, (1.14)] and [6, (1.4)], respectively.

2. Proof of (1.7). Let us assume that max(|p|, |q|, |ap|) < 1. Clearly (1.7) 1s true for
n = 0. Denoting the sum on the left side of (1.7) by f,, we then have to prove that f, = 0
forn > 1. Since 1 — ap*q* = ¢*(1 — ap*) + (1 — ¢*), we can split up £, into two series:

n 7n; ap; n 7n; a; nk
an fi=3 (q. Dl [:.P)kq(nn)k N (.q il f)k q
=0 (@ Dilapq™; p)i =1 (g Q- l(apq Pkl —a
_ @ Oraps P ek ")Z q' " @)ap; p) nk

=0 (@ Di(apqg"™; p)i 0 (@ Di(apq™; p)i+1

By the g-binomial theorem (1.3),

AL I @p*'q": p)oo

=0 (sp), (ap**'; p)oo
and ") -
@q"p) ey, _ @ q"p)oo
,Z% »;p), (ap™)" = (ap*!; p)oo
Hence
_ _(ap;p)eo {°° (q";p), ,q)k .
I (apq™; P)so ;=0 (p'p)J( )’Z (g5 9k )
S @dsp) @ T, e
2.2) )Z (pp)/( )kzo (g5 Pk w'q’)

i (q";p)+1@P’; @)oo

J
P = 2 o @)oo

(ap; p)oo {°° (4" p),(gp’; P (ap)!

(g™ p)oo |3 03074 oo
=0.
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Since (1.7) is a finite-series identity we may now drop the assumptions |p| < 1 and
|ap| < 1. George Gasper [4] pointed out to me that a slight modification of this proof
yields the infinite series identity

X (a;p(1 — ap*gd) (b~ @i 1
2.3 b =0,
@3 r;) (q; Pi(1 — a)(apb; p)i

provided max(|p|, |q|, |b]) < 1.

3. Quadratic summation formulasI. Let p = ¢ in (1.7), from which it follows
that for a nonnegative integer n,

2 (@ g — ag™ )G Dk ok _

3.1 bn
S & @l — a)ag™ % ) 0
and
3.2) W @ g% = ag™) gL e aman _

= (g 1 — a)(ag¥+; g*)

So, for arbitrary bounded sequences {\,} and {u,} we have

o (— 1 gD (@; @l — ag )
3.3) A=
G r;)k;n (@ D@ i1 — a)(ag?; P
_ 5 (=1)q9)(@; (1 — ag™) Ausk/2
keven (q; q)k(l —a) n>0 (q; Q)Zn(aqz; q2)3k/2+n
(— 1 g@(a; (1 — ag™) Aptsd
K oad (g (1 — a) 70 (4> Dann1(@g®; ¢ v,
and
G 0=y 1@l -agh Hnsk 2
keven (g1 —a) n>0 (45 @ans+1(ag?; q2)3k/2+n
C o g9@ gl — agt) Hppist

bda @l —a) 56 9mlag’ 4D acr,,

The key to the whole set of calculations that follows is that we use both (3.3) and (3.4).
The A- and p-sequences have to be chosen so that the corresponding series are conver-
gent. Being aware of the g-Saalschiitz formula (1.5) and its nonterminating extension

a, b, C, (Q/e,a»b»C»ﬂI/e;‘I)oo
3¢2[ e, f’q’q]+(e/q,aq/e»bq/e’cq/e,f;q)oo
¢2[ﬂ¢1/e’ bq/e, C‘I/e.q q] _ @/ef/af/bf]ciPw
’ q*/e. fgle’™" (aq/e.bq/e,cq/e.f; oo

3.5)
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where abcq = ef, known as Sears’ formula [9], we choose
(3.6) An = (b,c,aq/bc; gHng™,
pin = (bq.cq.aq” | be: g ng™".
We now substitute (3.6) and add a multiple, say A, of (3.4) to (3.3). The sum of the two

even series gives
3.7

4O (@ g1 — ag™) | (b.c.aq/bei @) ¢ [bqk’ cd', ad Jbe. ‘12}
2 + ) )
keven (@1 —a) (aq*; 4")3x/2 ez

9, aq

}.

(bq,Cq,culz/bc;f]z)k/z3 i [bq"”, cqtt, aq"*z/bc_qz 7
(aq*;qM)3k/2(1 — q) ¢, ag*? T

If we choose
(aq37 b’ C’ aq2 /bC; q2)00
1 (ag?, bq, cq, aq?/be; )0

then by (3.5), (3.7) reduces to

(q.a4> /b, aq’ | ¢, beq; 4o (@ g1 — ag)(b, ¢,aq/bc; k. 42
(aq?,bq,¢q,aq [ b¢; 4P)oo yeven (@3 Pi(1 — a)(ag? [ b,aq? [ ¢, beg; g ’
It turns out that the two odd series in (3.3) and (3.4) also add up to the same as (3.8) with

a negative sign. Since A9 = 1, we have the summation formula (1.8).

To prove (1.9) we proceed as follows. First observe that by (1.5),
—k 1-k 2%k

(3.8)

a
3.9 3¢ i ! 9 | = (d,aq/d; 4" -6
dg, aq/d (ag/d.d; q)
Hence
> (a;g* (1 — ag*)(d,aq/d; ¢*)(b, c,aq/bc; @) 4
(3.10) =0(q; (1 — a)aq/d, d; g)aq? | b, aq? | ¢, beg; g*)

_yy (@; Py (1 — ag®)(b, ¢, aq/be; gl )™
© 5 (@ @—(1 — a)aq? | b,aq? [ c, beq; )% 47)(aq? [ d, dq; q%),
Setting k—2j = n and interchanging the order of summation which can be easily justified
because of the assumption 0 < g < 1, the double sum on the right side of (3.10) becomes

f (a; 4931 — aq®)(b, c,aq/bc; 9)5,q”
(% ¢7),(1 — a)aq? [ b,aq? [ ¢, beq; q°)y(dg, aq? [ d; g7,
& (g% gDl — ag¥t") (b, cq”, ag?* [bC; Dn iuary)2
=0 (@ Dn(1 — aq®¥)(aq¥*? | b,aq¥*? [ ¢, beg¥*!; g?),
_ i (a; ¢*)3,(1 — ag¥)(b, c,aq/bc; q)y)
120 (g% ¢»),(1 — a)(aq? | b,aq* ] ¢, beg; g*)y
. q2/ (aq(’f’“z,quf“, Cq2j+| ’aq2/+2/bc; qz)oo
(dq, an/d; qZ)J (q, aq4f+2/b, aq4j+2/c, qu“fH : qz)oo ’

(3.11)
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by (1.8). Simplifying the sum on the right side of (3.11) we find that

(3.12) f (a; 41 — ag®)(d, aq/ d; §)i(b, c, aq | be; @) -
’ =0(q: (1 — a)aq/d, d; q)laq? | b, aq?] ¢, beq; g7

b, ¢, aq/bc
(aq?, bq, cq, ag* bc;q2) ’ ’
_ \aq ‘1‘1‘1/ 0<>¢2 ;qz’qz.

- 2 2 AP
(9,a4*/b,aq’ | ¢, beq; 7)oo dq, aq?/d

Note that the 3¢, series is balanced and so is summable by (1.5) if it terminates. Suppose
aq / be = q‘z", n=0,1,2,.... Then, after some simplifications we obtain

2 (beq > g0 — beg® " )(d, beq " [ d; )b e, g @)k
& (@ (1 — beg 2 V)(beq 27/ d, d; qilcq' 2" bg" 2", beg; Py
_ (9.q/be,dq/b,dq/c; gP)n
~ (q/b,q/c.dg,dq/bc;gd)n

(3.13)

Since (g7 ¢%)oo = 0, it also follows from (3.12) that

2 (beq™ 22 @01 — beg®* =" =2)(d, beg ™" [ d; ¢Pi(by ¢, " @ 4
(B.14) & (@@l —beg 2=2)(beq 27! [d, d; qi(cq=", bg=", beq; )i
=0, n=0,1,2,....

Formulas (3.13) and (3.14) are the same as (6.14) of [6].
To prove (1.9), which is the nonterminating extension of (3.13) and (3.14), note that
3.15)

b ¢ agfbc 2]~(d/a,alq/b,a,rq/c,bcar/a;qz)oo

302 dg, aq?/d AL (bd/a,cd/a,dq/bc,dq; ¢*) s
(d/a,b,c,aq/bc,qd | a; )

- 3 Tarar
(a/d,bd/a,cd]a,dq/bc,dq; 4%

bd/a, cd/a, dq/bc
¢2[

dq*/a, qd*/a

However, (3.12) enables us to express the balanced 3¢, series on the right side of (3.15)
in terms of a bibasic series similar to the one on the left side of (3.12). Combining these
results and interchanging b and d we obtain (1.9).

If we let a — 0,b — 0 in (1.9) such that /b = constant and then rename the
parameters, we obtain a summation formula for

(3.16)
o a, b, c, —c o+ (a,b; Poolg ], abg’ | *; ¢H)oo
Jabg, —yabg, @ | (@a/¢ba/5 @) /q,abg; q oo
ag/?,  bq/d, q/c, —q/c
“ 403 "
Vabgd/c?, —\Jabg® |3, ¢*/c
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which, by virtue of Bailey’s transformation formula [2, 8.5 (3)] can be expressed as

sWi(—cy/ab/q;a,b,c,—c, —\/E/c; q,c\/q/ab)
(3.17) _ (—q.c*/a,—c\/abq,c\/aq ] b; @)oc(a* %, bg, . G | B 4P)oo

(c2, —ag,c\/q/ab,—c\/bg | a; @)so(? | a,abg, ag?, agc® | b2 ¢¥) oo

where |gc? /ab| < 1, and

(3.18)  3Wpa(a; by, by, ... ,br5q,2)

a, gva, —q+/a, bi,....b,
= 30m2 g2

va, —a, aq/b,...,aq/b,

Formula (3.17) was found previously by Gasper and Rahman [5].

Before closing this section we would like to point out that (3.12) is equivalent to a
formula due to Gosper which was communicated to various people including Dennis
Stanton who brought it to my attention. In order to prove this equivalence we first use
(3.15) in (3.12) and rewrite the formula in Gosper’s notation

% (a*h?’ctq ' @* (1 — a*b* g Y abed, abed™'; gP)i(@?, b2, P Qi 4
& (@l — ab22q V)abed 1, abed; q)(b2c2q, CaPq, b3, )y |
_ (a’b%c*q,a%q,b*q,c*q,dq/ abe, bedq  a, cdaq | b, dabq / c; ¢ oo
(g, b*c%q, c?a’q, a’b%q, abcdq, adq [ be, bdq [ ac, cdq [ ab; ¢?)

(3 19) (02b2c2q’ a2q,b2q’ C2q’ a2’ b2, C2, qd/abc, d2q2; qz)oo
(g, b%c%q, ?a2q,a?bq, adq [ be, bdq ] ac, cdq [ ab, abe [ qd; )
adq/bc, bdq/ac, cdq/ab
-m[ ;42,42}-
d’q*,  dq*/abc
Since
(3.20)

abq/bc, bdq/ac, cdq/ab
302 [ ;42’42}
d*q*, dq’/abc
= lim sW1(d’q | abce; adg | be, bdq | ac, cdq | ab, dq’ | abce, d*q* | e; 4. q°),

it follows, by an iterate of the following limit case of Jackson’s transformation formula
[11, (3.4.24)]

, ,22bd,22bd;OO
sW1(a; b,c,d, e.f3q,a°q" [ bedef) = (ag.a9/¢f.a 32/ | /2 odf; 9)
(3.21) (aq/e,aq/f,a*q*/bedef,a’q? | bed;, q) s
- §Wo(a’q/bed; aq/ cd,aq/bd,aq/ be, e.f; aq/ ef ),
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that
(3.22)
adq/bc, bdq/ca, cdq/ab .
v 9/ a/ a/ P | = qwl(adq/bc, bdq/ac,cdq | ab; q*)oo

d’¢*,  dq’/abc
. i (1 — d*q*"**)(bcdq / a, cdaq b, dabq [ c; ¢*)n (_ d ) 1
=0 (1 — d*q*)(adq’ | be, bdq? | ac, cdq® [ ab; g?), \  abc

Using (3.22) in (3.19) we obtain Gosper’s formula

X (a2b2c2 -t 2),,(1 — a2b202q3”‘1)(abcd, abed™; qz),,(az, b2, 2 Dn
=0 (g (1 — azbzczqfl)(abcd*‘,abcd; Pn(b3q, cta’q, a?b%q; ¢%), q
B (a*b*2q,dq, b*q, c*q,dq  abc, bedq/ a, cdaq [ b, dabq  ¢; 4*)oo
(g, b22q, c2a’q, a’b?q, abcdq, adq [/ be, bdq [ ac, cdg [ ab; ¢?)s
(@, b, %5 9)oo(@®b7*q; 4)o
(g Q)oo(B22q, 2aq, a’b2q, abcdg, abed ' q; oo
. i(l _ d2 4n+2) (deQ/a* Cdaq/b’ dabq/C; qz)" (__d_)n (n+1)2'
(adq/bc,bdq/ac,cdq/ab; qPnei \  abe

(3.23)

4. Quadratic summation formulas II. Let us now consider the p> = g case of
(1.7). For an arbitrary sequence {A, },” we then have

il PR Ay " (a1 — ag™)q a4 e
@1 0=2 2. 52 . 2 a2), (1 — 2n+1.
n=0 (q g )n(aq’ ‘I)Zn k=0 (q ' q )k( a)(aq ’q)k
& @l = ag®) (=1 F Aan

T & (@B —a@gPu 2 (% dInag @’

where it is assumed that the infinite series over n is absolutely convergent. If we now
set A; = (b,a’*q*™*'/b,q 2", q%);,j = 0,1,..., where n is a fixed nonnegative integer,
then this series becomes a terminating balanced 3¢, series which can be summed by the
g-Saalschiitz formula (1.5). This leads us to the summation formula

42 ¥ (@91 —ag™)(b, @’ [b,g ™ % ¢y & _ (@@,

0 (4% g1 — a)(aq/b,bg=?" ] a, ag®*!, D! " (aq/b; 9
Since
72k’ a k’ a +1
4.3) 3¢ ! ! 4 A | = ﬂa_aqu_ kg
dq anZ/d (dq a2 2/d qz)k
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by (1.5), we find that
4.4)
(a3 (1 — ag®)(d/a,aq/d; b, a* > [b,q"; ¢*); 4
Z0(g% (1 — a)(a?q? | d, dg; g*)i(aq | b,bg=?" | a, ag™*'; q)
A& @@yl —ag) b, b, gD (1Y@t 0 ig
20,50 (4% 67),(@% ¢*h—aq [ b,bg™>" [ a,ag** ', @) (1 — a)(dq,a*q* | d; q?),
_ & @yl —ag¥)(b,a*g™! b, ¢ (—1Yg
120 (g% ¢7),(1 —a)(aq/b,bg?"/a,ag®™"; q),(dq.a’q* | d: ¢°),
n—j (anJ;q)k(l _ aq3]+3k)(bq21’a2q2n+2]+l/b’ q21—2n;q2)k
= (qz; q2)k(1 _ aq3j)(aq]+l/b’ bql—z"/a, aq2n+j+] : Q)k

By (4.2) the series over k equals (ag¥*"; ¢)2n—2, (bg¥Y "/ (ag'*' | b; q)an—2,. The right side
of (4.4) then simplifies to

g Oagh™*.

(aq; @on g b @b s 2
m_“)—b "3¢2 49,9 |-
q/0:9)n dq, a2q2/d

But this 3¢, series is balanced and so, by (1.5) we get the summation formula

“.5) 3 (a; (1 — ag™)(d/a,aq/d; Qub.a*¢*" | b.q™>"; 4> y
0@ (1 — a)(a’q? [ d.dgq; g*)laq [b,bg~ 2" a,ag”™*!; )i
_ (ag:q)an(dq /b, a’q’ | bd: g%
(aq/b; @)2n(dq, a*q* | d; 4*)n °
which is the same as [6, (1.4)].
The n — oo limit of this formula gives

o0 a; (1 — ag®)(d, q/ d; )i(b; ¢* a "
.6) 3 2‘(24)1(( q 2)( q/ .qz)k( q )k' (_q)k ¢
i20(a% (1 — a)(aq? [ d, adq; q*)i(aq [ b; @) b
_ (aq, aq*,adq /b, aq*/bd; ¥
- (aq/b,aq*/b,aq*/d,adq; ¢*)
Using (4.6) we shall now derive (1.10). First observe that, by (3.5)
“4.7)

302

quk, bqhk/a, bqlfk/a
;qZ’q2
b’cq/a*,  bq*/c
_ (@q/Peq’ /e )xlag/ D0 (8q/beiq) b
(a%q/bc,bq? [ ¢; ¢*)oolaq [ be; @) (aq [ ¢, bc [ a; @)y a
_ (b,gd’ [bc,d’@ [b ¢P)o(b] a5 @) (ag/b,a’q/be; g7 ({)_25)"
(a%q/bc,b*c/aq,bq? | c; P oolaq /b @) (b, bc]a; ¢*) aq
g™ [be, aq'*[be, ag®*/be
'3¢2[ ;qz,qz}.

a2 b, a*q®/bc
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Hence

® (@l —ag®)(d.q/d; qu(b,c,a’q/bc; q*)
=0(q% (1 — a)(aq?/d, adq; g*)aq /b, aq [ c.bca; @)
_ (d%q/bc,bg? [ c; 4Poo(aq /b @)oo i (b; q»),(b/a; )0,q”
(@%q/b%c,q% /¢ Polaq ] c; @)so 55 (g2 bg? [, bPcq]a?; P,
& (@l — ag™)(d.q/d; g)lbg”: 4 ) (g ._2,)’< ®
& (@ n( — a)ag?/d, adg; @x(aq 2 b, 9 \ b 1
(b, 8¢ | b*;¢*)oo(b] a:9)00 & (aPq/bc; q?)(aq ] bc; q)q”
(¢*/c,b*c/a’q; ¢)olaq ] ¢; @)oo S5 (g% a2q® [ bt a2 P [ b2, gP),
& (@l — ag™)d, q/d; a7 [ be; g (bcq_z,) o)
4.8) & (@ a1 — a)aq?/d, adg; @ylbeg P [a; g\ a )7
_ (aq,aq/ bc;q)oo(azq/bc, qu/c,aqz/ bd, adq | b; ¢*)o
(aq/b,aq/c; Poola’q/b?c,q* [ c,adq, ag? | d; ¢P)oo

b, bd/a, bq/ad
3¢2[ ;qz,qz}

bq*/c, b’cq/a®
(aq,b/a; q)oolb,a*q® | bc?, beq [ ad, bed | a; 4P oo
(aq/c,be/a; @oob?c/a*q, ¢* [ ¢, adq, aq? | d; 4*)oo
a’q/bc, adq/bc, aq*/bcd
[ ;qz,qz} .

“3¢2
PG 6P, P b

by (4.6). Applying (3.5) on the first 3¢, series on the right side of (4.8) we get
4.9)

(@l —ag®)(d,q/d; b, c.a’q /b 4

& (% w1 — a)aq?/d, adq, @aq/b.aq]c.bec]a g

(aq,aq/bc; 9)ladq/b,adq/c,aq® | bd, aq? | cd; 4*)oo
- (aq/b,aq/c; @)ladq, adq/bc, aq?/d, aq? [ bed; ¢*) oo
. (ag; @oolb, @’ /bS5 4o
(aq/c; @)oo(b?c/ a?q,q* [ c,adq,aq* | d; ¢*)oo

(beq/ad,bed]a; gP)(b/a; @) (bd/a,bq/ad,aq’/bd, adq]b; ¢*)x(aq/bc; g)oo
{ (be/a; @)oo - (adq/be, aq? [ bed; 4H)oo(aq [ b; g)oo
[azq /bc, adq/bc, aq®/bcd

362 A qt .

a2q3/bcz, a2q3/b2c

https://doi.org/10.4153/CJM-1993-020-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-020-8

404 MIZAN RAHMAN

However, by [11, (7.4.4)],
(4.10)
(aq/bc,aq? | be,beq/a, bea,bd/a,aq® | bd,adq /b, bq/ad; ¢*)s

— (b/a,aq’/b,bq/a,aq/b,adq/bc,beq/ad, bed |/ a,aq’ | bed; ¢*)oo
a
= —21(d.q/d.q’[d.dg.c.q’[c.a’q’ [bPe.b’c/a"q: q")co

a
= —2(d.q/d: le.q [ e.a’q [bPe.bPe [ aq: oo

and so the coefficient of the 3¢, series on the right side of (4.9) simplifies to

aq (b,c,a’q’ |b?,a*q® | b*c,; 4P olaq,d, q/ d; @)oo
be (adq,adq/bc,aq?/d, aq? | bed; ¢*)(aq /b, aq /¢, be ] a; )

which completes the proof of (1.10). It can be shown that (1.10) is equivalent to Gosper’s
formula (1.7,) in his second letter to Gessel and Stanton.

It is clear that if either b and c is of the form g~ %",n = 0, 1, ..., then (1.10) reduces to
(4.5), but it is not clear how (1.10) becomes (4.5) if a*q/bc = g~ *". The problem is that
the right side of (1.10) is not symmetric in b, c, a2q/bc, as it should be. So our final task in
this section is to transform the right side of (1.10) to a form where the symmetry becomes
obvious. To that end let us first make the changes: a — abcq, b — acq, c — abq so that
a’q /bc — bcg and (1.10) conforms to Gosper’s notation. So (1.10) is rewritten as

i (abeq; @1 — abeg®*+')(d, q/ d; q)i(abq, acq, beq; ¢
i=0(q% @ (1 — abeq)(abeq? [ d, abedq?; q*)i(cq, bq, aq; g
_ (abeq?,a™"; q)oolcdq, bdg, cq® /d, bq? | d; ¢*)oo
" (bg,cq; 9)oolabeq’ [ d, abedq?,d ] a, q/ ad; 4*)o
o (abq, acq, bq® | a,cq* | a; ¢*)o(abeq?, d, q | d; @)oo
(abcq? /d,abcdq?,d a, q/ad; ¢*)x(aq, bq, cq; §)o
beq, d/a, q/ad
342 :q%.q% |-
bq*/a, cq*/a

4.11)

By Bailey’s summation formula [11, (IV. 15)] for nonterminating very-well-poised bal-
anced g¢ series,
4.12)
sWi(abcgq; beg, caq, abq,d, q/d; ¢%, %)
_ (abeg’,a”';q)oo(bdg, cdq, bq? [ d, cq® | d; 4o
"~ (bq, cq; q)oolabeg’ /d,abcdg?,d/a,q/ad; q*)s
_, (abcq’,abq,acq,d,q/d,bq*/d,cq*/a,beq® | d, bedg®; ¢*)oo
(beq? [a,aq?,bq,bq?, cq,cq*,d/a,q/ad,abcq? | d, abedq?; ) oo
-§Wa(bcq/a; beq, bq, cq,d/a,q/ad; ¢, q°).

+a
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However, by [2, 8.5(3)],
(4.13)
sWs(bcq/a; beq,bq,cq,d/a,q/ad; ¢, q°)
 (bcq®[a,abcq?, dq,q* | d; 4P
 (aq,q4%/a,beq? | d, bedg?; oo
bcq, d/a, q/ad
392 [ ;qz,qz}
bq*/a,cq’/a
(beq® /a,beq,d/a,q/ad, bg®, cq*,q/a; ¢%oo
(¢*/a,1/aq,bq*/a,cq*/a,beg? | d, bedg?, q%; ) oo
dq, q*/d, g%, abcq?
;qz,qzl .

43

aq3, bq3, cq3
Combining (4.11), (4.12) and (4.13) we obtain the desired formula

4.14)
i (abcg; @(1 — abeq®™*')(d, q/d; q)i(abq, beq, caq; ¢ 4
0 (4% ¢*(1 — abcq)(abeq? [ d, abedq?; *)i(cq, aq, bg; @)
rbcq, q*\/abcq, —q°*+/abcq, d, q/d, abq, beq, caq }
2
= g7

Vabcq,  —+/abcq, abcq’/d, abcdq?, cq’, aq*, bq?
N (abcq3, abq, beq, caq,d,q / d; (]2)oo q
(4>, aq%,bq*, cq?, abcq? [ d, abedq?; ¢*)oo (1 — ag)(1 — bg)(1 — cq)
q*, abcq?, dq, ¢*/d
'4¢3[ g |
ag®, by, g’

It is clear that if any one of d, q/d, abq, bcq and cagq is of the form g~ %", then the second
term on the right vanishes and the g¢; series can be summed by Jackson’s formula [11,
(IV.8)]. On the other hand, if d or g/ dis g " where n is an odd integer then the appropriate
formula to use is (4.11) since the coefficient of the 3¢, series on the right side vanishes.

5. Proof of the cubic summation formulas. We now set p = ¢* in (1.7) and obtain
the following formulas

5.1) o (@i (1 = aq™q " @k s _ g
' 0 (@ (1 — a)ag®™3; ¢ "
5.2) L @ q 0 = ag) G e g _
' 20 (@l — a)(ag*: g ’
5.3) 2 @ @1~ ag")G " O nan _

o0 (@ (1 — a)ag®*s; ¢
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Similar to the quadratic case we then easily deduce the following summation formulas

o S D@ —agth & Musk3
k=0 (mod3) (@ (1 — a) 720 (45 930(aq3; ) naas /3
5.4 L 2 CDO@gn —agt) & Angiz
. k=1 (mod3) (g (1 —a) 720 (@ D3ne2(aq; 47),, u2
L2 D@ —agh) & Anitst
k=2 (mod3) (g (1 —a) =0 (@5 @3nn1(ag; (13)n+4k+|
© (=g (a; g — ag*)
(5.5) 0= ,
& @od-a %
o (—1¥a®(a: a1 — aa**
(5.6) O:Z( )qzi(a,q)k( aq™) .
k=0 (g: (1 —a)
where
- Hau k e 3
2n=0 G g if k = 0 (mod3),
00 Hoy ksl ’ .
(5.7 8k = Z":O @.Dn(ag*q>) w1’ ifk =1 (mod3),
Koy ksl . -
2":0 (’I.q)3n+z(aq4-ll3)mﬂ3+_| » ifk =2 (mod3),
and
vk
3 . —
Zno @@mi(ag™q), g if k = 0 (mod 3),
. Vekgl I
(5 8) hk = Zn:O m, ifk=1 (mod 3),
> e if k = 2 (mod 3),

00
= 5.3
n=0 (g.9)m(aq’.q )Mﬂz—_z ’

where {\,}, {u.} and {v, } are arbitrary complex sequences such that the corresponding
series on the right sides of (5.4)-(5.8) are convergent. Since (a; )3, = (a,aq,aq*, ¢*)n,
the simplest choice that can be made for these sequences is

(5.9 M\ = (b,c,d,aq’ | bed; ¢)ng™,
pin = (bq, cq,dq,aq" | bed; g*)ng",
vn = (bg?, cqz,dqz,aqS/bcd; g™
so that each of the series in (5.4), (5.7) and (5.8) is a balanced and nonterminating 4¢3

series in base ¢*. But nonterminating 4¢3 series are neither summable nor transformable
to another single series and so the only logical thing to do is to add suitable multiples of
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(5.5) and (5.6) to (5.4) so that multiples of two 4¢3 series combine to give a very-well-
poised g¢7 series by [2, 8.5 (3)]. Thus, adding

—q(b,c,d,aq’ |bed,aq*; ¢°) | {(bq, cq,dq, aq* | bed, ag’; ¢*) oo }
times (5.5) to (5.4) we obtain

2 (=D gD 2 (a; g1 — ag™) (aq% ¢¥)oo

(5.10) = s
;;) (g; (1 — a) *7 @.b,c,d,aq? [bed; )

where

(5 11) = (bcqzk”,bqu"“,cdq2k+1,aq4k+3;q3)oo

(bq"“, qu+l , qu+l, bqk, qu’ qu’ bcdq3k+1 , aq"+3/bcd; q3)oo
-sWa(bcdg®™ 2 bedg™, bgt, cq*, dg¥, bedqg™ % | a; ¢, ag™* | bed),  if k = 0 (mod 3),

1 (beg®*2, bdg?*2, cdg®*?, ag™*S; ¢¥)oo
1= q (bg"2,cq*?, dgh*2, bqk’ch,qu?bcdq3k+4’aqk+5/bcd; oo

Fy =

'8W7(bcdq3k+l;bcdq3k, bqk+2, qu+2’qu+2’ bcdqfkfl/a;q3’aqk+3/bcd)’
if k = 1 (mod 3),

q (bcq2k+3 bdq2k+3 qu2k+3 aq4k+4.q3)oo
Te= 1 q (bg**2,cq*2,dgk+2, bg**!, cqt*l, gk, bedg®+, agt [bed;, ¢3)oo

s Wo(bedg®™*'; bedg™, bg**, cg"*', dg""!  bedq™ | a; ¢°, g [ bed),  if k = 2 (mod 3),

assuming, of course, that |ag® /bed| < 1.
Similarly, adding

—g(b,c,d,aq’ | bed, aq’; ¢*)o [ {(bg%, cq*, dq*, ag’ [ bed, ag®; ¢¥)oo }

times (5.6) to (5.4) we get
(5.12) i (—D*g" D2 (a; g (1 — aq4k)Sk _ aq®; oo
k=0 (q; 9)(1 —a) (@ b.c.d,ag’ [bed, @)’
where
(5 13) S = (bcqz"*z,bdq2"+2,cdq2k+2,aq4"+3;q3)oo

(bqk+2’ qu+2, qu+2’ bqk, qu, qu’ bcdq3"+2,aq"+3 /bcd; qS)OO
sWi(bedg®™ ' bedg®, bg*, cq*, dg*, bedg™ " | a; ¢*, ag"*® | bed),  if k = 0 (mod 3),

B q (qu2k+3, bdq2k+3, qu2k+3’ aq4k+5; q3)oo
1— q2 (bq"+2, qu+2’ qu+2’ bqk+l , qu+l , qu+l R bcdq3k+5, aqk+5 /bcd; q3)oo

Sk =

sWa(bcdg®™*%; bedg™, bg"*?, cq!*?, dgt*?, bedq™ | a; ¢°, ag*** | bed),  if k = 1(mod 3),
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(qu2k+l bdq2k+l qu2k+l aq4k+4. q3)oo
- (bqk, ch, qu’ bqk+1 , qu+1 R qu+l , bcdq3"+2, aq’““/bcd; q3)oo
.8W7(bcdq3k71; bcdq3k’bqk+l,ch+l’qu+l,bcdqvk72/a.’ q3,aqk+3/bcd),

if k = 2 (mod 3).
Unlike the quadratic case there does not seem to be any choice of the parameters a, b, ¢, d
that would render any of the g W5 series in (5.11) and (5.13) summable to ratios of g-
shifted factorials, so the next best thing is to choose them so that the formulas (5.10) and
(5.12) can be brought to forms that suggest they are cubic extensions of the quadratic
summation formula (1.8).

First, let us take aq2 = bcd in (5.10) and (5.11). All the gW; series in (5.11) then
terminate and hence, by Watson’s formula [2, 8.5(2)], can be transformed to balanced
terminating 4¢3 series each of which can, in turn, be freely transformed to other 4¢3
series of the same type by virtue of Sears’ transformation formula [10]

Sk =

(5.14)
q", a, b, c
4¢3 d, e, f 9‘1»‘1}
_(ag""/e,aq"" [f; ) b0>" [q‘”, a, d/b, dfc .
B (e.fs@n <a’ 493 d, ag' /e, ag'/f 9]
where def = abcgq'™". Thus
(5.15)

sWi(bedg™ % bedg™, bq*, cq", dg" . q *, ¢, %)
(bcdq3k+l’qlfk/b; q3)§
(qu2k+1,q; q3)§
g% bedg*,  bgt,  bgt!
493 [

;q3,q3}

qu, bcq2k+l, bdq2k+l
(deq3k+l,Cq2,dq2,ql_k/b', q3)§
- (qu2k+l’ q, bcqzk“ , bdq2k+l : q3)&
3

—k 1—-k 2—k 3k

9 q 5 g% bedg™ 5 4

4¢3[ b, g, dg* 4 ’q}
(bq2 Cq2 qu bcq3k+l bdq3k+1 qu3k+l qk+1 bcdq3k+l.q3)oo
T (g, cqh* 2, dgh* T beg T bdg?R | cdg? | g, bedg™ T g3) o

. kgl k2 pedgk
'(—1)3q(2)4¢3[q %qz, chz, dqqz ;613,613}

(bqZkfl)é

when k = 0 (mod 3). Similarly
8W7(deq3k+] , bcdq3k, bqk+2, qu+2’ qu+2’ qlfk; q3, qk+1)
B (bq2, CqZ,qu’qu3k+l ,bdq3k+l, qu3k+l,qk+3,bcdq3k+4; qj)oo
(5.16) T (bg*, cgtt!, dgMt, b2, bdg?* 2, cdg? 2, ¢*, bedg™ T ¢ ) e

el gk 7k’ lfk’ 27k’ bcd 3k
'(—l)ﬂq(2)4¢3[q (iqz chz dq% ;q3,q3]
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when k = 1 (mod 3), and

8W7(bcdq3k+l;bcdq3k, bqk+l’ch+l)qu+l,q2fk; q3’qk+3)
B (qu,qu,dq2,bcq3k+l , bdq3k+l,qu3k+l,qk+2, bcdq3k+4; q3)oo
(5.17) T (bgk, gt dg*, beg? 3 bdg?*3, cdg? 3, ¢, bedg™*?; ¢P)oo

—k 1—-k 2—k 3k
(=D F B! q", q % q7F% bcdgt 3 3
(=17 ¢ 493 [ b, cq?, dg? ‘94 }

when k& = 2 (mod 3). Substitution of (5.15)—(5.17) in (5.11) gives

re = (bg’, cq’,dq’, beg, bdg, cdg; ') (b, di g
(5.18) (4:3¥)oo(b, ¢, d5 @)oo (cdg, bdq, beg; ¢°)x

—k 1—k 2—k 3k
. g g% g " bedg™ 3 5
493 [ b, o, dif ‘99 ] )

gO1)

Formula (1.11) then follows by combining (5.10) and (5.18). By a similar calculation we
find that

. (bq,cq,dq, beg?, bdg?, cdg*; ¢*)oo (b,c,d; @)
£ @ )b, ¢, d; 9o (cdq?, bdq?, beq?; ¢,
(519) k—1 1—k 3 -
. ¢ q, q‘k’ q deq.k. 3 3
493 by, cq dg 9|
Using (5.19) in (5.12) we obtain formula (1.12).

gD (=1

6. Limiting forms of the summation formulas. In this section we will display the
limiting form of the summation formulas obtained in Sections 3-5. Use of the g-gamma

function
(@@l =)' .
6.1) 00 = %, 0<q <1, Te) = im0
gives us
® (@),(a+ 2)(2b),(2)(2a+ 1 —2b — 200,
6.2) a0 nl@)(1+a—by,(1+a—c)(L+b+o),

_TOIA+a—bI(l+a—ol(b+c+3)
S T +a)l(b+ Hc+ DI +a—b—c)

as the limit of (1.8) and

0 a)i(a + 3k)2b)(1 — 2b)(c)y(2a —c+n + %)k(—n)/(
,;)k!(Qa)(l +a— b)k(% +a+b)(1+2a—20)(2c — 2a — 2n) (1 + 2a + 2n);
B (1 +2a)2,,(% +a+b—c),(1+a—b—c),

(1+2a—2¢)(1 +a —b)u(s +a+b),

(6.3)

as the limit of (1.10). This formula is the same as (1.7) in Gessel and Stanton [8]. The
nonterminating extension of (6.3) is obtained by taking the ¢ — 1 limit of (4.7):

https://doi.org/10.4153/CJM-1993-020-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-020-8

410 MIZAN RAHMAN

(6.4)
e (2a)(2a + 3k)2d)(1 — 2d)(b)i(c)(2a — b —c + %)k

i—o k!Q2a)(1 +a —d)k(% +a+d)(1+2a—2b)(1+2a—2c)(2b+2c —2a)y
B I'(l +2a-2b)I(1 +2a——2€)F(%+a+d)I'(l +a—d)I"(%+a+d—b—c)l"(l +a—b—c—d)
T +2a)(1+2a—2b— 2003 +a+d—b)FE +a+d —of(l+a—b—dT(1+a—c—d)

, T+2a—2pT(l +2a—20T(2b+2c —2a)07(} +a+d)(1 +a - d)

T(1 + 2a)[ (B ()T )T (1 — 2d)
FrG+a+d—b—ol(l+a—b—c—d)
TG +2a-2b—T(3+2a—b—2c)
%+2a—b—c. %+a+d*b-c, l+a—b—c—d }
1

3F,
%+2a—2b~c, %+2avb’2c'
The limiting form of (3.12) is

(6.5)
2 (a)(2a + 3k)(d)(5 +a — d(2b)(2e)(1 +2a — 2b — 2¢);

20 k12a)(1 +2a — 2d)(2d)(1 +a — b)(1 +a — (3 + b+ o)
T +a=bld+a=ord+b+o b, o yta—b-c |
T TU+arG+nrd+or(d+a—b—0o ° ’

%+d, l+a—d

which is the nonterminating extension of formula (1.8) in Gessel and Stanton [8].
Similarly,

2 (@(a+ F)B)(a — b+ 3)u(20),2d)n(2a — 2¢ — 2d + 1),

6.6 a0 nl(a@)(2b),(2a —2b+ Dy(a— c+ Dy(a—d+ Dy(c+d + 1),

. I'a — b)['(b+ %)F(Bb —2a+ D) (a—c+1D(a—d+1D)I(c+d+ %)F(Zb — 2a +2c¢)
I'b—a)T(2b —a+ %)F(a +DIR2b—a—c+DI'2b—a—d+1)I'2b—2a+c+d+ %)I‘(Zc)

T(2b —2a+2d)T(2b — 2¢ — 2d + 1) 2 (3b — 2a),(3b — 2a + 2)2b — a),(b — a + }),
FQ2d)T(2a —2c —2d + 1) = n'(3b — 2a)(4b — 2a),(2b — 2a + 1),

2b —2a+2¢),(2b — 2a + 2d),(2b — 2¢ — 2d + 1),
2b—a—c+1),2b—a—d+1),2b—2a+c+d+ %),,

CTMa—c+ Dla—d+ DI —a+ (b —a+dT(c+d+ )T —c—d+ )b +3)
" Ta+ Db —al(c+ HId+ Ha—c—d+ DI —c+ HIb —d+ HI b +c+d —a)’

x (a+b+c— %),,(a +b+c— % + %")(3(1),,(3b),,(3c),,
ponla+b+c—3Hb+c+ Dulc+a+ Ha+b+ 1),

—2n

ol n
©7 Rl IS SN S
TN +ce+ PDlc+a+ Pa+b+5)
S Ta+ Hre+ Hic+ Hia+b+c+ 1y’

a+b+c+n.1
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and
X (a+b+c— Dala+b+c—1+2)3a),(3b)(30), 3
isonla+b+c—Db+c+Hulcra+Ila+b+i),
—nil =+ Ln +b+c+n
6.8 2 R B -
©.8) a3 a+i, b+l c+d

TG b+c+HI(c+a+ ) a+b+3)
T+ )T+ HMc+Ha+b+c+ )

are the limits of (1.9), (1.11) and (1.12), respectively.
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