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Abstract

A compact Hausdorff space is regular Wallman if it possesses a separating ring of regular closed
sets, an j-ring. It was proved by P. C. Baayen and J. van Mill [General Topology and Appl. 9 (1978),
125-129] that if a locally compact Hausdorff space possesses an J-ring, then every Hausdorff
compactification with zero-dimensional remainder is regular Wallman.

In this paper the reasoning leading to this result is modified to work in a more general setting. Let
aX be a Hausdorff compactification of a space X, and let Qa be the family of those closed sets in aX
whose boundaries are contained in A". A main result is the following: If (2T n X contains an j-ring
for some Hausdorff compactification yX, then every larger Hausdorff compactification aX for which
Qa n (aX — X) is a base for the closed sets on aX — X, is regular Wallman. Various consequences
concerning compactifications of a class of rim-compact spaces (called totally rim-compact spaces)
are discussed.

1980 Mathematics subject classification (Amer. Math. Soc.): 54 D 35.

0. Introduction

A compact Hausdorff space is called regular Wallman if it possesses a
separating ring of regular closed sets, an s-ring. Such a space is a Wallman
compactification of every dense subspace. (See [11].) In [1] P. C. Baayen and J.
van Mill discuss conditions for a Hausdorff compactification of a completely
regular space to be regular Wallman. A main result is the following: If a locally
compact space possesses an s-ring, then every Hausdorff compactification with
zero-dimensional remainder is regular Wallman.
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(21 Regular Wallman compactifications 313

In this paper we show how the reasoning leading to this result may be

modified to work in a more general setting. A central role is played by the

family Qa of those closed subsets of the compactification aA" whose boundaries

are contained in X. Among our results is the following: If Qy n X contains an

j-r ing for some Hausdorff compactification yX, then every larger Hausdorff

compactification aX for which Qa n {aX — X) is a base for the closed sets of

OLX — X, is regular Wallman. Applications of this result are discussed. In

particular the result for locally compact spaces quoted above follows as a rather

direct consequence.

1. Basic concepts

In the following, X shall always denote a completely regular Hausdorff space.
By a compactification we shall always mean a Hausdorff compactification.

Let aX be an arbitrary compactification of X. Let 0a and Qa denote the
families of open, respectively closed, subsets of aX with boundaries contained in
X. We note that a set A in Qa is a neighbourhood in aX of every point in
A n paX, where paX denotes the remainder aX — X. We shall say that X is
rim-included in aX if 0a n X is a base for the open sets in X. (When X c Y and
f is a family of subsets of Y, we write f n X for (F n X: F G f}.) We shall
say that paX is rim-excluded in aX if 0a n paX is a base for the open sets in
paX. Clearly if paX is rim-excluded in aX, then paX is zero-dimensional (in the
sense of small inductive dimension).

We shall write int, cl, 3 (respectively inta, cla, 3a) for interior, closure and
boundary in X (respectively in aX).

LEMMA 1. If paX is rim-excluded in aX, then 0a contains a neighbourhood base
in aX for every point in paX.

PROOF. Let xQ G paX, x0 G A, A open in aX, and let Wx be an open set in aX
such that aX — A c Wx, and xQ & cla W,. By assumption there is a set O in 0a

such that x0 G O, c\aW1 n paX c (aX - O) n paX = (aX - c\aO) n paX.
Clearly the set W2 = aX - c\aO belongs to 0a. Write U= Wx\j W2. As
Pa* n c l a W 2 n O = 0 b y definition, and paX n c ^ ^ n O c p,,^ n ^ f l
O, we conclude that cla U n ft,* n O = (cla PF, u cla W2) n PaA' n O = 0 .
Clearly 3af/ n PaA' n (CLV - O) = 0 , and consequently 9 o ( / c l It follows
that the set V = aX - c\aU belongs to 0a. Now x0 G V c aX - Wx a A,
from which we conclude that 0a contains a neighbourhood base for x0. This
completes the proof.
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314 OlavNjastad 13]

LEMMA 2. If X is rim-included in aX, then Sa contains a neighbourhood base in
aX for every point in X.

Proof. Let x0 e X, x0 G A, A open in <xX, and let B be a closed set in aA' such
that x0 £ B, aX - A c B, cla into B = B. Lety G B, and let V be an arbitrary
neighbourhood of y. Then V n intK B =£ 0 , hence (B n X) n F ^ 0, from
which follows that>> e cla(5 n X). Thus 5 = cla(B n A').

The set U = (aX — B) n X is & neighbourhood of x0 in X, and U c A. By
assumption there is a W in ©„ such that xo& W, W n X c U. Clearly
W n (B n X) = 0, hence also W n cla(B n A") = 0 . Thus ^ c a J f -
cla(5 n X) = aX — B c A, which means that ©„ contains a neighbourhood
base for x0. This completes the proof.

We recall that paX is said to be zero-dimensionally embedded in aA" if 0a (resp.
Co) is a base for the open (resp. closed) sets in aX. A countable remainder is
always zero-dimensionally embedded (see [10, p. 273]).

COROLLARY 1. paX is zero-dimensionally embeded in aX if and only if X is
rim-included in aX and paX is rim-excluded in aX.

PROOF. Follows immediately from Lemma 1 and Lemma 2.

REMARK 1. A locally compact space X is rim-included in every compactifica-
tion aX. The remainder paX (of a locally compact space A") is rim-excluded in
aA" if and only if it is zero-dimensional (in which case it is also zero-dimen-
sionally embedded).

We recall that a space is called rim-compact if the family of open (resp.
closed) subsets with compact boundaries form a base for the open (resp. closed)
sets on X. We formulate as a proposition the following fact.

PROPOSITION 1. The space X is rim-compact if and only if it is rim-included in
some compactification.

PROOF. The sufficiency follows immediately from Lemma 2, since boundaries
in aA" are compact. The necessity follows from the well-known result that a
rim-compact space X has at least one compactification in which the remainder is
zero-dimensionally embedded, namely the Freudenthal compactification <f>X
(see, for example, [4, p. 189], [7, p. 223]).
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[4] Regular Wallman compactifications 315

We shall briefly illustrate by some examples the concepts we have been
discussing so far.

First consider the situation where X is rim-included and paX is rim-excluded
in aX. Examples of this situation are of course exactly those where the re-
mainder is zero-dimensionally embedded (Corollary 1), among those the locally
compact spaces with zero-dimensional remainder. In the following example X is
not locally compact (though of course rim-compact).

EXAMPLE 1. Let S denote the closed unit square [0, 1] X [0, 1] with standard
metric topology, let S° denote the open unit square (0, 1) X (0, 1), and let T
denote the subspace of S consisting of all points both coordinates of which are
rational. Define X = S° - T, and let Y be the one-point compactification of
5°. Then Y is a compactification aX of X, and paX is easily seen to be
zero-dimensionally embedded in aX. (Actually aX is the Freudenthal compacti-
fication of X, see [6, p. 658].)

Also consider the space X = S — T with aX = S. Also in this situation paX is
zero-dimensionally embedded in aX.

Next consider the situation where X is rim-included while paX is not rim-
excluded in aX. Examples of this kind have to be found among rim-compact
spaces with compactifications where the remainder is not zero-dimensionally
embedded (Corollary 1 and Proposition 1). In particular all locally compact
spaces with compactifications where the remainder is not zero-dimensional, give
examples. In the following example, X is not locally compact.

EXAMPLE 2. Let S, S°, T and X be as in Example 1. The space S is a
compactification aX of X. Clearly X is rim-included in aX, while paX contains
S — S° and is thus not zero-dimensional.

Next consider the situation where paX is rim-excluded while X is not rim-in-
cluded in aX. Examples of this kind have to be found among spaces with
compactifications where the remainder is zero-dimensional but not zero-dimen-
sionally embedded (Corollary 1). Such examples are not so easily constructed as
the foregoing. We shall only indicate where to find relevant material.

EXAMPLE 3. In [8] Yu. M. Smirnov described a space X where (in our
terminology) p^X is rim-excluded but not zero-dimensionally embedded in (IX
(the Stone-Cech-compactification). Details of a similar construction is given in
[5, p. 118].

We note that X is not rim-compact. This is a consequence of the fact that for
a rim-compact space, the maximal compactification with zero-dimensional re-
mainder (which in this example evidently is fiX) has zero-dimensionally em-
bedded remainder (see, for example, [6, p 658]).
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Finally consider the situation where X is not rim-included and paX is not
rim-excluded in aX. Examples have to be found among spaces which are not
locally compact, with compactifications where the remainder is not zero-dimen-
sionally embedded. In the following example the space is rim-compact.

EXAMPLE 4. Let X be the spaces S° n T, where 5° and T are as in Example 1,
and let aX be the compactification S. Here X is obviously not rim-included in
<xX. Furthermore p^X contains the connected set 5 - S°, and is therefore not
rim-excluded in aX.

We note that the space X is zero-dimensional, and thus in particular rim-
compact.

2. Preliminary results

For further reference we discuss some simple relationships between sets in X
and in aX.

LEMMA 4. Let C G Qa. Then clo(C n X) = C.

PROOF. Obviously cla(C n X) c C. Let x0 G C n paX, and let V be an
arbitrary neighbourhood of x0 in aX. Since C G Ga, C is a neighbourhood of x0

in aX. Then V n C ¥= 0, hence V n C n X ¥= 0. This means that x0 E
cla(C n X), and consequently C n paA" c cla(C n A'). It follows that C = (C
n X) u (C n paA") c cla(C n A1), which completes the proof.

LEMMA 5. Let B be a closed set in X, and let C G Qa. Then cla(B n C) =
(clo B)nC.

PROOF. Clearly c\a(B n C) c (cla B) n C. Let x0 G (cla B) n C n paA".
Since C is a neighbourhood of x0 and x0 G cla 5, we have V n (B r\ C) — (V
n C) n 5 ^ 0 for every neighbourhood V of x0. Thus (cla B ) n C f l paX c
cla(fi n C), and consequently

(cia B) n c = (cia 5 n A" n c ) u (cia i n p / n c )

= (5 n c ) u (cio 5 n paA- n c ) c cla(B n c) .

This completes the proof.

We recall that a closed set A is said to be regular closed if cl int A = A, and
an open set B is said to be regular open if int cl B = B.
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LEMMA 6. Let A be a regular closed subset of X. Then cla A is a regular {closed)
subset of aX.

PROOF. Let x0 & into cla A, and let V be an arbitrary neighbourhood of JC0.

Then V n (aX - cla A) ^ 0 , and hence (X n V) n (aX - A) = (X n F) n
(cdf -clay4) = A ' n [ F n ( a* - cla ^)] ^ 0 . This means that x0 $ int ^ ,
and consequently intv4 c in t a c l o .4 . Taking into account the assumption
cl int A = A, we obtain the inclusion A = cl int A c cla iniA c clo inta cla A.
From this follows the desired inclusion cla A c cla inta cla A.

We recall that a ring of sets is a family which is closed under finite unions and
finite intersections. We note that Qa is a ring on aX.

Let ^ be an arbitrary family of sets. Following [1] we denote by \f% the
family of all finite unions of sets in *$ and by A ^ the family of all finite
intersections of sets in S\ Then V A ^ = A V ^ is the ring generated by *3".

We write cla f for the family {cla F: F G <5], where ^ is an arbitrary family
of subsets of X.

LEMMA 7. Let § be a ring of closed subsets of X contained in Ca n X. Then
c\a § is a ring of closed subsets of aX contained in Qa.

PROOF. By Lemma 4 we have cla § c Qa. Clearly clo § is closed under finite
unions. Let G,, G2 G @, G, = Hx n X, G2 = H2 n X, where / /„ H2 G Ga. Let
x0 G //, n //2 n PaA1. As members of Ca the sets /f, and H2 and hence also
/f, n H2 are neighbourhoods of xQ. Let K be an arbitrary neighbourhood of x0.
Then V n (G, n G2) = (V n //, n #2) n A' =̂  0 , and consequently JC0 G
cla(G, n Gi). We conclude that Hx n //2 = (i/ , n H2 n X) u (# , n /^2 n
P,,^) c cla(G, n Gz), and hence cla G, n cla G2 = ff,nW2 = cla(G, n G )̂. It
follows that cla § is closed under finite intersections, and so is a ring. This
completes the proof.

LEMMA 8. Let X be rim-included in aX, and let % be a ring contained in
Qa n X which is a base for the closed sets on X. Let K be a compact subset of X,
and let B be a closed subset of aX such that K n B = 0 . Then there exists an
F G cla § such that B c F and F n K = 0 .

PROOF. Let x G K. By Lemma 2 there is a Gx G 6a such that x £ Gx,
B c Gx. Since § is a base for the closed sets on X, there is a Hx G 6a such that
/ / , n A" G g, x <2 #x, //,, n X D Gx n * . By Lemma 4, c l a ( ^ n X) = # „
cL/G,, n ^ ) = Gx, and hence 7/x D Gx. Write Fx = oAf - //x. The family
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{ Vx: x G K) is an open covering of K. Let { VXi F^} be a finite sub-cover-
ing, and write F = aX - U"_, V^.= DJ . , A^. Clearly ficF,andfn^ =
0 . Furthermore /f̂  e cla §, and hence by Lemma 7 also F G cla §. This
completes the proof.

An s-ring f on A' is a ring of regular closed sets which is separating in the
sense that if x & A, A closed, then there are sets Fx, F2 G

 I3r such that x G Fu

A c F2, F, n F2 = 0 (see [1, p. 126], [11, p. 297]). Since an s-ring evidently is a
base for the closed sets, it follows that if an s-ring is contained in Ca n X, then
X is rim-included in aX. A compact space which possesses an j-ring is called
regular Wallman, and is a Wallman compactification of every dense subspace
(see [11, p. 300]).

Let W be an j-ring on S. We define the family 3FO by

<»a = {F nC:Fe<»,C (=Ga,Fn daC = 0 } .

Clearly S^ contains ^ (since C = aX & Ga), and is contained in Ga n A' if 'S is
contained in Ca n Ar. We also note that the elements of ^a are regular closed
sets (since F n C = F n inta C).

PROPOSITION 2. Let <5 be an s-ring contained in Qa n X. Then V$a is an
s-ring contained in Qa n X.

PROOF. Since ^a consists of regular closed sets, the same is true for
easily verified that ¥„ is closed under finite intersections, and consequently
V ^ , = V A ^ , is ^ ring. The ring V^ a is separating since it contains the
separating ring <S. Furthermore fa c fia n X, hence also V ^ , C Ga n X. This
completes the proof.

3. Main results

We now give conditions under which the existence of an j-ring on X implies
the existence of an .s-ring on aX.

THEOREM 1. Let paX be rim-excluded in aX, and let ^ be an s-ring on X
contained in Qa n X. Then c\a(\/'3a) is an s-ring on aX.

PROOF. From Lemma 6, Lemma 7 and Proposition 2 we conclude that
cla(V

<3«) is a ring of regular closed sets on aX. It remains to show that
^ is separating.
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We recall that since Qa n X contains an .s-ring, X is rim-included in aX. As
paX is assumed to be rim-excluded in aX, Qa is a base for the closed sets on aX
(Corollary 1). Let x0 G aX, A closed in aA", x0 £ A. Let V be a set in 0a such
that x0 G V, A n cla V = 0 . By Lemma 8 there is an F e f such that
({JC0} u A) c G, G n 3a V = 0 , where G = clo F. We observe that cla V G fia,
cla(a* - cla F) G 6a, 3acla F = 3O clo(a^ - clo F) = 3aF, F n 3OF = 0 . It
follows that the sets Fx = F n cla V and F 2 = F n cla(aX - cla F) belong to
^a. By using Lemma 5 we get

JC0 e G n cla F = cia F n cla F = c\a{F n cia F ) = d a FV

and

^ C G n cla(a* - cla F) = clo F n cla(a^ - cla V) = cla F2.

Furthermore (cla F, n cla F^ n p,,^ = 0 and F, n F2 = 0 (since F n 3O F =
0) . Thus cla F, n cla F2 = 0 . Finally we evidently have cla F,, cla F2 G cla 9"
C clo(V"5a)- This completes the proof.

We shall discuss some implications of Theorem 1 for the problem of deciding
whether a compactification is regular Wallman.

For the sake of completeness we give a proof of the following easy result.

PROPOSITION 3. If yX < aA', then 6y n X c 0a n X. Hence if X is rim-in-
cluded in a compactification yX, then X is also rim-included in every larger
compactification aX.

PROOF. Let q be the quotient map of aX onto yX. For every O e S y ,
U = ^ ' (0) is open, and U n X = O n X. Let y G 3a U. Then q{y) G dyO c
X, hence.y = q(y) G A\ Thus daU c X, or O n X = U n X G 6a n X. Con-
sequently ©r n X c 0a n A", from which the result follows.

THEOREM 2. Let ^ be an s-ring in Gy n X for some compactification yX. Then
for every larger compactification aX where paX is rim-excluded, cla(V^a) 's an

s-ring on aX.

PROOF. Immediate by Proposition 3 and Theorem 1.

COROLLARY 2. Assume that X has a compactification yX where Qy contains an
s-ring. Then every larger compactification aX for which paX is rim-excluded, is
regular Wallman.
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PROOF. Let % be an j-ring contained in fiy. It is easily verified that § n X is
an j-ring on X. The result now follows from Theorem 2.

REMARK 2. Theorem 2 (and Corollary 2) can only give a positive answer to the
question whether a compactif ication aX is regular Wallman in cases where the
space X is rim-compact and the remainder paX is zero-dimensionally embedded.
For these conditions are clearly contained in the assumptions of the theorem.

We shall say that the space X is totally rim-included in the compactification
aX if every point x G X has a neighbourhood Vx in X such that every regular
open subset of Vx belongs to 0 a n X. Every dense subspace of an extremally
disconnected compact space K is totally rim-included in K. (In an extremally
disconnected space the closure of every open set is open.) A locally compact
space is obviously totally rim-included in every compactification.

We note that according to Proposition 3, if X is totally rim-included in some
compactification, then X is also totally rim-included in every larger compactifi-
cation.

LEMMA 9. Let X have a compactification yX such that X is totally rim-included
in yX. If X possesses an s-ring, then X possesses an s-ring contained in Qy n X.

PROOF. Let § be an j-ring on X, and define <3 = § n (Cy n X). Evidently ®i
is a ring contained in Sy n X consisting of regular closed sets. It remains to
show that <? is separating.

Let x0 G X, x0 £ A, A closed in X. There is a set V in 0y such that x0 G V
and cly V n A = 0 , and such that every regular open subset of V n X belongs
to 0y n X. The set B = yX — V belongs to &y. Since § is an J-ring, there are
sets Fx and F2 in § such that x0 G Ft, B n X c F2, F{ n F2 = 0 . Now X - F2

is a regular open subset of V n X, hence X — F2 e 6y n X, and so F2 e Qy n
X. Similarly int Fx is a regular open subset of V n X, hence int F, G ©Y n Jf.
Let int F, = 0 n A', O G 0y. Then cly O G Sy, and (cly O) n X = c\(O n * )
(since X is dense in yX). Thus F, = cl int F, = (cly 0 ) n X G (2y n A". It
follows that F,, F2 G @ n (Cy n X) = <•?, which shows that 3F is separating.

This completes the proof.

From Lemma 9 and Theorem 2 we immediately obtain the following
corollary.

COROLLARY 3. Assume that X has a compactification yX such that X is totally
rim-included in yX. If X possesses an s-ring, then every compactification aX where
<xX is larger than yX and paX is rim-excluded in OLX, is regular Wallman.
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We shall here briefly discuss the situation for locally compact spaces. Let OJX
denote the one-point compactification. Every compactification aX is larger than
uX. We have already noted that X is totally rim-included in uX, in fact, in every
compactification aX. If paX is zero-dimensional, then paX is also rim-excluded
in aX. So Corollary 3 contains the following result of Baayen and van Mill ([1,
Theorems 2 and 3]), the proof of which gave rise to some of the main ideas of
this paper:

THEOREM 3. Let X be a locally compact space which possesses an s-ring. Then
every compactification aX where paX is zero-dimensional, is regular Wallman.

4. Some applications

It may be of interest to discuss some intrinsic conditions on the space X which
insure that X is totally rim-included in some compactification (or in some class
of compactifications).

We recall that the Freudenthal compactification <j>X of a rim-compact space
may be obtained as the Wallman compactification corresponding to the normal
base <3l consisting of all finite intersections of regular closed sets with compact
boundaries (see, for example, [2, p. 108-112]). Every compactification with
zero-dimensionally embedded remainder may be obtained as the Wallman
compactification corresponding to a normal base & contained in 61 and having
the property: A G & implies X — intA G. &. Every normal base of this kind
contained in 61 (on a rim-compact space) gives rise to a Wallman compactifica-
tion aX with zero-dimensionally embedded remainder. More precisely the basic
sets A * on aX corresponding to sets A in 6£ have their boundaries in X, which
means that & c Qa n X, or & = {X - A: A G &} c 0a n X. (See [3, p. 65-
66].) Now in addition assume that & contains a base 63 such that every regular
closed set which contains a set in 63 belongs to 63. Then the family 63 = {X —
B: B G 63 } is a base for the open sets, and every regular open subset of a set in
63 belongs to 63. It follows from the remarks above that 63 c 0a n X, which
means that X is totally rim-included in aX. From Corollary 3 and the fact that
paX is zero-dimensionally embedded in aX, we may thus conclude:

PROPOSITION 4. Let IS- be a normal base on the rim-compact space X, contained
in 61. Assume that & has the property: A e & implies X - intA G 6E. Further
assume that & contains a base 6J such that every regular closed set containing a
set in ® belongs to %. Then aX is regular Wallman if X possesses an s-ring.
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We shall say that X is totally rim-compact if for every x G X there is a
neighbourhood Vx such that the boundary of every regular open subset of Vx is
compact. Evidently every locally compact space and every extremally dis-
connected space is totally rim-compact.

If X is totally rim-compact, then the normal base 61 clearly satisfies the
conditions of Proposition 4. Thus we may state the following corollary.

COROLLARY 4. If a totally rim-compact space has an s-ring, then the Freu-
denthal compactification <j>X is regular Wallman.

We shall now discuss certain classes of totally rim-compact spaces in some
detail.

We shall first describe a (rather special) type of space which is totally
rim-compact but neither locally compact nor extremally disconnected. Let X be
a space where all points are open, except for one point x0. Assume that there is a
set Ao c X — {xQ} such that neither {x0} u Ao nor X — Ao is open. Further
assume that for every neighbourhood V of x0 there is a neighbourhood W of x0

such that V — W is infinite. In this situation we easily verify that X is totally
rim-compact (every neighbourhood of x0 has empty boundary), not locally
compact (every neighbourhood V of x0 contains a closed subset V — W which is
not compact), and not extremally disconnected (the closure of the open set Ao is
{x0} u AQ, which is not open).

A space which satisfies the conditions described is the Appert space (see [9, p.
117-118]):

EXAMPLE 5. Let X = N (the set of positive integers). For every n G N let
v{n, E) denote the number of integers in the set E which is less than or equal to
n. Every integer 2, 3, 4, . . . is an open set, and the neighbourhoods of 1 are the
sets E containing 1 for which limn_>0O v(n, E)/n = 1. This space is easily seen to
have the properties required.

We shall next indicate a more general method for obtaining totally rim-com-
pact spaces which are neither locally compact nor extremally disconnected.

Let D be a subset of a topological space X. We define the D-discrete
modification XD of X as the topological space having the same points as X, with
all points of X — D having their original neighbourhoods and all points of D
being open. XD is easily seen to be a completely regular Hausdorff space when X
is.
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PROPOSITION 5. Let D be a subset of the space X such that X — D is a closed
nowhere dense subset which is locally compact as a subspace. Then XD is totally
rim-compact.

If in the subspace D of X the set of non-isolated points is dense, then XD is not
locally compact.

If there is a point in X — D which is a boundary point for an open set in X, then
XD is not extremally disconnected.

PROOF. Let clp and dD denote closure and boundary in the space XD.
Let V be a neighbourhood of a point x G X — D such that cl V r\ (X — D)

is compact. Let W be an arbitrary subset of V. Then clearly dD W c cl V n (X
— D), hence dDW is compact (in the topology induced from XD, or from A').
Thus XD is totally rim-compact.

Assume that the set of non-isolated points of the subspace D of X is dense in
D. Let x G X — D, and let U be an arbitrary neighbourhood of x. Then
U n D ¥= 0 since X — D is nowhere dense in X. Let y G U be non-isolated in
D, and let V be a neighbourhood of y such that cl V c D. Clearly cl V is
infinite, hence not compact in XD. Thus every neighbourhood of x contains a
closed non-compact subset. It follows that XD is not locally compact.

Assume that the point x0 G X — D is a boundary point of some open set G in
X. Then x0 is also a boundary point of G in XD. It follows that clB G is not
open, and so XD is not extremally disconnected.

This completes the proof.

EXAMPLE 6. Instances of the situation described above are easily obtained in
the spaces R". Let for example: i) X = R', X — D — the Cantor set C, or ii)
X = C u Q [Q denotes the rationals], X - D = C, or iii) X = R2, X - D =
the diagonal A = {(x,y) G R2: x = y}, or: iv) X = R2, X - D = Z X Z [Z
denotes the integers], or: v) X = Q X Q, X - D = Z X Z, or vi) X = (Q X
Q) U A, X - D = A, or vii) x = R3, X - D = R2 X {0}.

In these cases, all the conditions of Proposition 5 are easily seen to be
satisfied.

We shall show that the Freudenthal compactification of some totally rim-
compact spaces obtained by the procedure described above, is regular Walhnan.
Some of the spaces indicated in Example 6 are among those considered in the
following proposition.

PROPOSITION 6. Let X be a locally compact metric space and let D be any subset
such that X — D is nowhere dense and the distance between two arbitrary points of
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X — D is at least 1. Then the D-modified space XD is totally rim-compact, and its
Freudenthal compactification is regular Wallman.

PROOF. It follows from Proposition 5 that XD is totally rim-compact.
Let ^ be the family consisting of all finite subsets of D, of the complements of

all such sets, of all sets V — F, where V is a closed disc in X with center at some
point of X — D and radius less than \, and F is a finite subset of D, and of the
complements of all such sets. The family A ^ and hence also the family
is easily seen to consist of regular closed sets in XD. (Actually the sets in
are open-closed.) Furthermore ^ and hence V A ^ is clearly separating. Thus
V A ? is an j-ring on XD. It follows from Corollary 4 that <j>XD is regular
Wallman.
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