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Abstract

Motivated by the notion of Ulam stability, we investigate some inequalities connected with the functional
equation

f (xy) + f (xσ(y)) = 2 f (x) + h(y), x, y ∈ G,
for functions f and h mapping a semigroup (G, ·) into a commutative semigroup (E,+), where the map
σ : G→ G is an endomorphism of G with σ(σ(x)) = x for all x ∈ G. We derive from these results some
characterisations of inner product spaces. We also obtain a description of solutions to the equation and
hyperstability results for the σ-quadratic and σ-Drygas equations.
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1. Introduction
Let (G, ·) be a semigroup and let σ : G → G be an endomorphism of G (that is,
σ(xy) = σ(x)σ(y) for all x, y ∈G) and an involution (that is, σ(σ(x)) = x for all x ∈G).
We consider some inequalities connected with the functional equation

f (xy) + f (xσ(y)) = 2 f (x) + h(y) (1.1)

for functions f and h mapping G into a commutative semigroup (E,+). In this way, we
obtain several results concerning characterisations of inner product spaces, solutions
to (1.1) and hyperstability of the σ-quadratic and σ-Drygas equations.

In the particular situation where h(x) ≡ 2 f (x), (1.1) is just the σ-quadratic equation

f (xy) + f (xσ(y)) = 2 f (x) + 2 f (y) (1.2)

introduced by Stetkær [26], which means that (1.1) is a partially pexiderised version
of (1.2) (see, for example, [1]). Note that (1.2) is a natural generalisation of the well-
known quadratic equation (with G being an abelian group), that is,

f (xy) + f (xy−1) = 2 f (x) + 2 f (y). (1.3)

Therefore, every solution f : G→ E to (1.2) will be called a σ-quadratic function.
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All solutions f : G→ E to (1.2) have been described in [25], in the situation when
G is commutative and E is an abelian group that is uniquely divisible by 2 (that is, for
every x ∈ E there is a unique y ∈ E with x = 2y); each of them has the form

f (x) ≡ L(x, x) + a(x)

with some homomorphism a : G→ E and a symmetric L : G2 → E such that

a(σ(x)) = a(x), x ∈ G, (1.4)
L(xz, y) = L(x, y) + L(z, y), x, y, z ∈ G, (1.5)

L(σ(x), y) = −L(x, y), x, y ∈ G. (1.6)

It is easily seen that, in the case where G is an abelian group and σ(x) ≡ x−1, (1.6)
holds for any L satisfying (1.5) and condition (1.4) yields a(x) ≡ 0.

Next, let us observe that, with h(x) ≡ 0, equation (1.1) takes the form

f (xy) + f (xσ(y)) = 2 f (x), x, y ∈ G. (1.7)

This is a natural generalisation of the Jensen functional equation

f (xy) + f (xy−1) = 2 f (x), x, y ∈ G, (1.8)

which is better known in the equivalent additively written form

f
( 1

2 (x + y)
)

= 1
2 ( f (x) + f (y)).

Under the assumption that G is commutative and E is a 2-cancellative abelian group
(that is, 2x , 0 for every x ∈ E with x , 0), every solution f : G→ E to (1.7) has the
form (see [25])

f (x) = b(x) + c, x ∈ G, (1.9)

with some constant c ∈ E and a homomorphism b : G→ E such that

b(σ(x)) = −b(x), x ∈ G. (1.10)

Clearly, if G is an abelian group and σ(x) ≡ x−1, then we obtain in this way the
description of all solutions to (1.8).

Finally, in the special case where h(y) = f (y) + f (σ(y)) for all y ∈ G, (1.1) takes the
form

f (xy) + f (xσ(y)) = 2 f (x) + f (y) + f (σ(y)). (1.11)

We call it the σ-Drygas functional equation, because a particular form of it (in the
case where G is an abelian group and σ(x) ≡ x−1) is the classical Drygas functional
equation

f (xy) + f (xy−1) = 2 f (x) + f (y) + f (y−1) (1.12)
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introduced in [13] (see also [14, 15, 28]). Generalisations of (1.11) in abelian groups
have been studied by Stetkær in [26, 27].

If E has a neutral element 0, then we say that a function f : G → E is σ-even
provided f (σ(x)) = f (x) for every x ∈ G; a function f : G → E is σ-odd provided
f (σ(x)) + f (x) = 0 for every x ∈ G.

It is easily seen that σ-even solutions of (1.11) are σ-quadratic functions while σ-
odd solutions satisfy (1.7) and therefore have the form (1.9). This means that under
the assumption that E is a group uniquely divisible by 2, for every solution f : G→ E
of (1.11), there exist a constant c ∈ E, homomorphisms a, b : G→ E and a function
L : G2 → E such that (1.4), (1.5), (1.6) and (1.10) are valid and

f (x) = L(x, x) + a(x) + b(x) + c, x ∈ G. (1.13)

As E is assumed here to be uniquely divisible by 2, a simple verification shows that
such an f satisfies (1.11) if and only if c = 0; therefore, the general solution to (1.11)
(with E uniquely divisible by 2) has the form

f (x) = L(x, x) + a(x) + b(x), x ∈ G. (1.14)

Plainly, if c , 0, then functions of the form (1.13) are the only solutions of the
functional equation

f (xy) + f (xσ(y)) + 2c = 2 f (x) + f (y) + f (σ(y)). (1.15)

If G has a neutral element denoted by e, then this equation can be written in the form

f (xy) + f (xσ(y)) + 2 f (e) = 2 f (x) + f (y) + f (σ(y)). (1.16)

So, formula (1.13) (with any c) depicts all solutions f : G → E of (1.16), that is, to
(1.1) with

h(x) ≡ f (x) + f (σ(x)) − 2 f (e).

If E is 2-cancellative, then we can also say that a solution f : G→ E to (1.16) satisfies
(1.11) if and only if f (e) = 0.

Clearly, if G is an abelian group and σ(x) ≡ x−1, then (1.13) becomes

f (x) = L(x, x) + b(x) + c, x ∈ G, (1.17)

because a(x) ≡ 0, as we have observed above. So, (1.17) depicts all solutions of the
equation

f (xy) + f (xy−1) + 2 f (e) = 2 f (x) + f (y) + f (y−1).

Functions f : G→ E of the form (1.17) (when G is an abelian group andσ(x) ≡ x−1)
are called polynomial functions of order at most 2 (see [22, 29]) and they are the only
solutions of the Fréchet equation

∆3
t f (z) = 0, t, z ∈ G, (1.18)
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where ∆ denotes the Fréchet difference operator given by

∆y f (x) = ∆1
y f (x) := f (xy) − f (x), x, y ∈ G,

and recurrently

∆xn+1,xn,...,x1 := ∆xn+1 ◦ ∆xn,...,x1 , x1, . . . , xn+1 ∈ G, n ∈ N,

∆n+1
t := ∆t ◦ ∆n

t , t, z ∈ G, n ∈ N.

It is known that (when G is commutative and under suitable assumptions on the
divisibility of E), for a given n ∈ N, the two functional equations

∆xn,...,x1 f (z) = 0, x1, . . . , xn, z ∈ G,

∆n
t f (z) = 0, t, z ∈ G,

have the same solutions f : G→ E (see [12]), which are called polynomial functions
in [22] (polynomials in [29]) of order at most n − 1. Functions f : G→ E of the form
(1.17) are the only solutions of (1.18).

By analogy we can say that every solution f : G → E of equation (1.16) is a σ-
polynomial of order at most 2.

Throughout this paper, R+ stands for the set of nonnegative real numbers, N stands
for the set of positive integers and YX denotes the family of all functions mapping a
nonempty set X into a nonempty set Y . Unless explicitly stated otherwise, we assume
that (E,+) is a commutative semigroup, d is a metric in E that is invariant (that is,
d(x + z, y + z) = d(x, y) for x, y, z ∈ E), (G, ·) is a semigroup and σ : G → G is an
endomorphism and involution.

2. The main result

The following theorem is the main result of this paper. It has been motivated by the
issue of Ulam stability, which concerns approximate solutions of functional equations.
Very roughly, this form of stability means that a function satisfying an equation
approximately (in some sense) must be near an exact solution to the equation. It
has been studied in connection with a question of Ulam from 1940 about approximate
homomorphisms of groups (for more details, see [9, 16–18, 20, 21]). The next theorem
deals with approximate solutions of the functional equation (1.1).

Theorem 2.1. Let ε : G × G → R+ be a function such that there exists a sequence
(un)n∈N in G satisfying one of the following two conditions.

lim inf
n→∞

ε(x, yun) = lim inf
n→∞

ε(x, yσ(un)) = 0, x, y ∈ G, (2.1)

lim inf
n→∞

ε(unx, y) = 0, x, y ∈ G. (2.2)

Suppose that f , h : G→ E satisfy the inequality

d( f (xy) + f (xσ(y)), 2 f (x) + h(y)) ≤ ε(x, y), x, y ∈ G. (2.3)

Then the following two statements are valid.
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(a) If (2.1) holds and G has a neutral element e, then f is a solution of the functional
equation (1.16).

(b) If (2.2) holds, then h is a solution of (1.2).

We provide a proof of the theorem in the last part of the paper. First, we will
present some comments and (in the next two sections) show several consequences of
Theorem 2.1.

Remark 2.2. Let ε : G ×G→ R+ be a function such that there exist α ∈G and p ∈ [0,1)
satisfying

ε(x, yα) ≤ pε(x, y), ε(x, yσ(α)) ≤ pε(x, y), x, y ∈ G.

Then, by induction,

ε(x, yαn) ≤ pnε(x, y), ε(x, yσ(αn)) ≤ pnε(x, y)

for every x, y ∈ G and n ∈ N. So, ε satisfies (2.1) with un = αn for n ∈ N.
Analogously, if there are α ∈ G and r ∈ [0, 1) with

ε(αx, y) ≤ rε(x, y), x, y ∈ G,

then (2.2) holds also with the sequence un = αn for n ∈ N.
Another example of suitable functions ε : G ×G→ R+ satisfying conditions (2.1)

and (2.2) is provided in Corollary 3.1 and Remark 3.2.

Remark 2.3. We give two very simple natural examples of endomorphisms σ : G→G
which are involutions, in the field of complex numbers C.

First, if G is any multiplicative or additive subsemigroup of C with z ∈ G for each
z ∈ G, then we can take σ(z) ≡ z. Second, if G = {z ∈ C :<z ≥ 0,=z ≥ 0} or G = C
with the operation being the usual addition of complex numbers, then we can take
σ(a + ib) ≡ b + ia; if G = C, then we also can take σ(a + ib) ≡ −(b + ia).

There are many other more involved examples of endomorphisms which are also
involutions (see, for example, [7]).

3. Some consequences

The next corollary generalises the well-known parallelogram law characterisation
of inner product spaces due to Jordan and von Neumann [19], stating that a normed
space X is an inner product space if and only if

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X. (3.1)

For more information and various related results, we refer to [2, 3].

Corollary 3.1. Let X be a normed space, σ0 : X → X be an additive involution and
ψ : X2 → R+ be such that there is a sequence (un)n∈N in X with limn→∞ ‖un‖ =∞ and

lim inf
n→∞

ψ(un + x, z) = 0, x, z ∈ X. (3.2)

Further, suppose that one of the following two conditions is valid.

https://doi.org/10.1017/S0004972717001137 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717001137


464 Iz. EL-Fassi and J. Brzdęk [6]

(i) There exist s > 0 and h : X → R with∣∣∣ ‖x + y‖2 + ‖x + σ0(y)‖2 − 2‖x‖2 − h(y)
∣∣∣ ≤ ψ(x, y)

for x, y ∈ X, ‖x‖ > s, ‖x + y‖ > s.

(ii) There exist s > 0 and f : X → R with∣∣∣ f (x + y) + f (x + σ0(y)) − 2 f (x) − ‖y‖2
∣∣∣ ≤ ψ(x, y)

for x, y ∈ X, ‖x‖ > s, ‖x + y‖ > s.

Then X is an inner product space.

Proof. Let Bs := {x ∈ X : ‖x‖ ≤ s} and ε : X × X → R+ be given by

ε(x, y) := ψ(x, y), x ∈ X \ Bs, y ∈ X, x + y < Bs,

and, for x, y ∈ X such that x ∈ Bs or x + y ∈ Bs,

ε(x, y) :=


∣∣∣ ‖x + y‖2 + ‖x + σ0(y)‖2 − 2‖x‖2 − h(y)

∣∣∣ if (i) holds,∣∣∣ f (x + y) + f (x + σ0(y)) − 2 f (x) − ‖y‖2
∣∣∣ if (ii) holds.

Then it is easily seen that (2.2) holds for (G, ·) = (X,+), (E,+) = (R,+) and σ := σ0.
Hence, if (i) holds, then (2.3) is valid for f (x) ≡ ‖x‖2 and Theorem 2.1 implies

that the function f is a solution of (1.11). Thus, condition (1.14) holds with some
homomorphisms a, b : G→ E and a function L : G2 → E such that (1.4), (1.5), (1.6)
and (1.10) are satisfied. Since f is even, we must have a(x) + b(x) ≡ 0. Consequently,
f (x) = L(x, x) for x ∈ X, which yields (3.1).

If (ii) holds, then (2.3) is valid with h(x) = ‖x‖2 for x ∈ X, which means that h is a
solution to (1.2) (again in view of Theorem 2.1) and consequently f (x) ≡ L(x, x) + a(x)
with some homomorphism a : G → E and a symmetric L : G2 → E such that (1.4)–
(1.6) are valid. As before, a(x) ≡ 0 (because f is even), which yields (3.1).

So, in either case we have obtained the statement. �

Remark 3.2. Let X be a normed space and let k ∈ N, βi, γi : X → R+, si, vi ∈ (0,∞),
pi, ri, ti ∈ (−∞, 0), Ai,Di ≥ 0, Ci > 0 for i = 1, . . . , k and

ψ(w, z) :=
k∑

i=1

(Ai‖z + w‖pi + Di(γi(z) + Ci‖w‖si )ti + βi(z)‖w‖ri )vi ,

for z ∈ X,w ∈ X \ {0}, z , −w,

ψ(0, z) := 0, ψ(z,−z) := 0 for z ∈ X.

Then it is easily seen that (3.2) holds for every sequence (un)n∈N in X with

lim
n→∞
‖un‖ =∞.

Theorem 2.1 also yields the next corollary, which describes the solutions to the
functional equation (1.1).
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Corollary 3.3. Assume that G is commutative and has a neutral element e, and E is a
group uniquely divisible by 2. Functions f , h : G→ E satisfy equation (1.1) if and only
if there exist a constant c ∈ E, homomorphisms a, b : G→ E and a symmetric function
L : G2 → E such that (1.4), (1.5), (1.6) and (1.10) are valid and

f (x) = L(x, x) + a(x) + b(x) + c, x ∈ G, (3.3)
h(x) = 2L(x, x) + 2a(x), x ∈ G. (3.4)

Proof. Let f , h : G → E satisfy equation (1.1). According to Theorem 2.1 with
ε(x, y) ≡ 0 and d being the discrete metric in E, f is a solution of (1.16). Further,
in view of the description of solutions to (1.16) provided in the introduction, there
exist c ∈ E, homomorphisms a, b : S → E and a symmetric function L : G2 → E such
that (1.4), (1.5), (1.6), (1.10) and (3.3) are valid.

Now, simple calculations show that (1.1) holds for x, y ∈ G, with such an f , if and
only if h is of the form (3.4); this also means that the converse implication is true. �

Remark 3.4. It is easily seen that Corollary 3.3 yields at once descriptions of solutions
to the equations discussed in the introduction. Namely, equation (1.1) becomes (1.2)
when h = 2 f , which (in view of (3.3) and (3.4)) is the case if b(x) ≡ 0 and c = 0 and
then we get f (x) = L(x, x) + a(x) for x ∈ G with symmetric L and homomorphic a
satisfying (1.4)–(1.6). Next, (1.2) with σ(x) ≡ x−1 is equation (1.3); note that (1.4)
implies that a(x) ≡ 0, which means that f (x) ≡ L(x, x) with any symmetric L satisfying
(1.5) ((1.5) implies (1.6) for such σ).

If we take h(x) ≡ 0 in (1.1), then we obtain (1.7). Clearly, h(x) ≡ 0 in (3.4) means
that L(x, x) + a(x) ≡ 0 and, consequently, by (3.3), f (x) = b(x) + c for every x ∈ G
(with (1.10) fulfilled). Equation (1.8) is (1.7) with σ(x) ≡ x−1 and then (1.10) holds
for each homomorphism b : G→ E.

Equation (1.1) with h(x) ≡ f (x) + f (σ(x)) has the form (1.11). In this case (1.4),
(1.6), (1.10), (3.3) and (3.4) yield c = 0, which means that every solution f : G→ E to
(1.11) is depicted by (1.14). For (1.12) (that is, σ(x) ≡ x−1), (1.4) gives a(x) ≡ 0.

Finally, if h(x) ≡ f (x) + f (σ(x)) − 2 f (e) in (1.1), then we obtain (1.16) (or (1.15)),
which has solutions described by (3.3); again with a(x) ≡ 0 when σ(x) ≡ x−1.

4. Hyperstability results

One of the notions connected with the issue of Ulam stability is that of
hyperstability. The following definition describes the main ideas for equations in
several variables (for more details, see [11]).

Definition 4.1. Let X be a nonempty set, (Y, d) be a metric space, ε : Xn → R+ (with
n ∈ N) be an arbitrary function and let F1, F2 be two operators mapping a nonempty
setD ⊂ YX into YXn

. We say that the equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), x1, . . . , xn ∈ X, (4.1)
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is ε-hyperstable provided every ϕ0 ∈ D, which satisfies

d(F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)) ≤ ε(x1, . . . , xn), x1, . . . , xn ∈ X,

satisfies equation (4.1).

The following two corollaries are special cases of Theorem 2.1 and describe
hyperstability results for equations (1.2) and (1.11). They complement several recent
results in [4–6, 8, 23, 24, 30], where stability of particular forms of the functional
equation

m∑
i=1

Ai f
( n∑

j=1

aixi

)
+ A = 0 (4.2)

has been studied for functions f mapping a linear space X over K ∈ {R,C} into a linear
space Y over F ∈ {R,C} with fixed m, n ∈ N, A ∈ Y and A1, . . . , Am ∈ F, a1, . . . , an ∈ K.
Clearly, if σ(x) ≡ x−1, equation (1.2) can be considered to be a special case of (4.2)
(when G = X and E = Y), but this is not true for an arbitrary homomorphic involution
σ. The results on the stability of (1.2) in [8] are in somewhat similar settings to this
paper (but with the function ε being constant); however, no hyperstability outcomes
have been provided there.

Corollary 4.2. Let ε : G ×G→ R+ be a function such that (2.1) holds with a sequence
(un)n∈N in G. If G has a neutral element e and f : G→ E satisfies the inequality

d( f (xy) + f (xσ(y)) + 2 f (e), 2 f (x) + f (y) + f (σ(y))) ≤ ε(x, y), x, y ∈ G,

then f is a solution of (1.16).

Proof. Taking h(x) ≡ f (x) + f (σ(x)) in Theorem 2.1 gives the desired result. �

Corollary 4.3. Let E be 2-cancellative and ε : G ×G→ R+ be a function such that
(2.2) holds with a sequence (un)n∈N in G. If f : G→ E satisfies the inequality

d( f (xy) + f (xσ(y)), 2 f (x) + 2 f (y)) ≤ ε(x, y), x, y ∈ G, (4.3)

then f is a solution of equation (1.2).

Proof. Taking h(x) ≡ 2 f (x) in Theorem 2.1, we deduce that h is a solution to (1.2),
whence so is f by 2-cancellativity of E. �

Following observations in [10], on the stability of some inhomogeneous functional
equations, we present two hyperstability results for the inhomogeneous versions of
(1.2) and (1.16).

Corollary 4.4. Let (E,+) be a commutative group, F : G ×G→ E and ε : G2 → R+

satisfy (2.2) with a sequence (un)n∈N in G. Let f : G→ E be a function such that

d( f (xy) + f (xσ(y)), 2 f (x) + 2 f (y) + F(x, y)) ≤ ε(x, y), x, y ∈ G.

Assume that the functional equation

f (xy) + f (xσ(y)) = 2 f (x) + 2 f (y) + F(x, y) (4.4)

admits a solution f0 : G→ E. Then f is a solution of (4.4).
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Proof. Let f1(x) := f (x) − f0(x) for x ∈ G. Then

d( f1(xy) + f1(xσ(y)), 2 f1(x) + 2 f1(y))
= d( f (xy) + f (xσ(y)) − ( f0(xy) + f0(xσ(y))),

2 f (x) + 2 f (y) + F(x, y) − (2 f0(x) + 2 f0(y) + F(x, y)))
≤ d( f (xy) + f (xσ(y)), 2 f (x) + 2 f (y) + F(x, y))

+ d(−( f0(xy) + f0(xσ(y))),−(2 f0(x) + 2 f0(y) + F(x, y)))
= d( f (xy) + f (xσ(y)), 2 f (x) + 2 f (y) + F(x, y)) ≤ ε(x, y), x, y ∈ G.

Consequently, statement (b) of Theorem 2.1 is valid with f replaced by f1. Therefore,

f (xy) + f (xσ(y)) − 2 f (x) − 2 f (y) − F(x, y)
= f1(xy) + f1(xσ(y)) − 2 f1(x) − 2 f1(y) + f0(xy)

+ f0(xσ(y)) − 2 f0(x) − 2 f0(y) − F(x, y) = 0, x, y ∈ G. �

Analogously we can prove the following result.

Corollary 4.5. Let (E, +) be a commutative group, F : G × G → E, ε : G2 → R+

satisfy (2.1) with a sequence (un)n∈N in G and G have a neutral element e. Let
f : G→ E be a function such that

d( f (xy) + f (xσ(y)) + 2 f (e), 2 f (x) + f (y) + f (σ(y)) + F(x, y)) ≤ ε(x, y), x, y ∈ G.

Assume that the functional equation

f (xy) + f (xσ(y)) + 2 f (e) = 2 f (x) + f (y) + f (σ(y)) + F(x, y) (4.5)

admits a solution f0 : G→ E. Then f is a solution of (4.5).

5. Proof of Theorem 2.1
First, note that

d(x1 + x2, y1 + y2) ≤ d(x1 + x2, x2 + y1) + d(x2 + y1, y1 + y2)
= d(x1, y1) + d(x2, y2), x1, x2, y1, y2 ∈ E.

Hence, by induction, for n ∈ N and xi, yi ∈ E, i = 1, . . . , n,

d(x1 + · · · + xn, y1 + · · · + yn) ≤ d(x1, y1) + · · · + d(xn, yn). (5.1)

Let f , h : G→ E be functions satisfying (2.3). Write

D(x, y) = d( f (xy) + f (xσ(y)), 2 f (x) + h(y)), x, y ∈ G,

D1(x, y) = d(2 f (xy) + 2 f (xσ(y)) + 4 f (e), 4 f (x) + 2 f (y) + 2 f (σ(y))), x, y ∈ G,

D2(x, y) = d(h(xy) + h(xσ(y)), 2h(x) + 2h(y)), x, y ∈ G,

and

w1(x, y, z) = 2h(z) + f (xyz) + f (xyσ(z)) + f (xσ(y)z) + f (xσ(y)σ(z))
+ h(yz) + h(yσ(z)) + f (yz)
+ f (σ(y)σ(z)) + f (yσ(z)) + f (σ(y)z), x, y, z ∈ G,

https://doi.org/10.1017/S0004972717001137 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717001137


468 Iz. EL-Fassi and J. Brzdęk [10]

w2(x, y, z) = f (zxy) + f (zσ(x)σ(y)) + f (zxσ(y)) + f (zσ(x)y)
+ 4 f (z) + 2 f (zx) + 2 f (zσ(x)), x, y, z ∈ G.

Then

D1(x, y) = d(2 f (xy) + 2 f (xσ(y)) + 4 f (e) + w1(x, y, z),
4 f (x) + 2 f (y) + 2 f (σ(y)) + w1(x, y, z)) (5.2)

and

D2(x, y) = d(h(xy) + h(xσ(y)) + w2(x, y, z), 2h(x) + 2h(y) + w2(x, y, z)) (5.3)

for every x, y, z ∈ G, because d is invariant. Consequently, (5.1) and (5.2) yield

D1(x, y) ≤ d(2 f (xy) + h(z), f (xyz) + f (xyσ(z)))
+ d(2 f (xσ(y)) + h(z), f (xσ(y)z) + f (xσ(y)σ(z)))
+ d( f (xyz) + f (xσ(yz)), 2 f (x) + h(yz))
+ d( f (xyσ(z)) + f (xσ(yσ(z))), 2 f (x) + h(yσ(z)))
+ d(h(yz) + 2 f (e), f (yz) + f (σ(yz)))
+ d(h(yσ(z)) + 2 f (e), f (yσ(z)) + f (σ(y)z))
+ d( f (yz) + f (yσ(z)), 2 f (y) + h(z))
+ d( f (σ(y)z) + f (σ(y)σ(z)), 2 f (σ(y)) + h(z))

= D(xy, z) + D(xσ(y), z) + D(x, yz) + D(x, yσ(z))
+ D(e, yz) + D(e, yσ(z)) + D(y, z) + D(σ(y), z) (5.4)

for all x, y, z ∈ G. Analogously, by (5.1) and (5.3),

D2(x, y) ≤ d(2 f (z) + h(xy), f (zxy) + f (zσ(xy)))
+ d(2 f (z) + h(xσ(y)), f (zxσ(y)) + f (zσ(x)y))
+ d( f (zxy) + f (zxσ(y)), 2 f (zx) + h(y))
+ d( f (zσ(x)y) + f (zσ(x)σ(y)), 2 f (zσ(x)) + h(y))
+ d(2 f (zx) + 2 f (zσ(x)), 4 f (z) + 2h(x))

≤ D(z, xy) + D(z, xσ(y)) + D(zx, y) + D(zσ(x), y) + 2D(z, x) (5.5)

for all x, y, z ∈ G.
Suppose that there exists a sequence (un)n∈N in G satisfying condition (2.1).

Replacing y by yun in (2.3),
D(x, yun) ≤ ε(x, yun)

for all x, y ∈ G and n ∈ N. Also, replacing y by yσ(un) in (2.3),

D(x, yσ(un)) ≤ ε(x, yσ(un)), x, y ∈ G.

Thus,

lim inf
n→∞

D(x, yun) = lim inf
n→∞

D(x, yσ(un)) = 0, x, y ∈ G. (5.6)
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Let x, y, t ∈ G be fixed. Replacing z by tun in (5.4),

D1(x, y) ≤ D(xy, tun) + D(xσ(y), tun) + D(x, ytun) + D(x, yσ(tun))
+ D(e, ytun) + D(e, yσ(tun)) + D(y, tun) + D(σ(y), tun), n ∈ N. (5.7)

Now, taking the limit as n→∞ and applying (5.6), we deduce from (5.7) that

D1(x, y) = 0, x, y ∈ G.

That is, f is a solution of equation (1.11).
Now, suppose that there exists a sequence (un)n∈N in G satisfying condition (2.2).

Replacing x by unx in (2.3),

D(unx, y) ≤ ε(unx, y), x, y ∈ G, n ∈ N.

So, by (2.2),

lim inf
n→∞

D(unx, y) = 0, x, y ∈ G. (5.8)

Let x, y, s ∈ G be fixed. Replacing z by uns in (5.5), for n ∈ N,

D2(x, y) = D(uns, xy) + D(uns, xσ(y)) + D(unsx, y) + D(unsσ(x), y) + 2D(uns, x).
(5.9)

Letting n→∞ and using (5.8), we derive from (5.9) that

D2(x, y) = 0, x, y ∈ G.

That is, h is a solution of equation (1.2). This completes the proof.
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[4] A. Bahyrycz and J. Olko, ‘On stability of the general linear equation’, Aequationes Math. 89

(2015), 1461–1476.
[5] A. Bahyrycz and M. Piszczek, ‘Hyperstability of the Jensen functional equation’, Acta Math.

Hungar. 142 (2014), 353–365.
[6] A. Bahyrycz and M. Piszczek, ‘On approximately (p, q)-Wright affine functions and inner product

spaces’, Acta Math. Sci. 36B(2) (2016), 593–601.
[7] K. Baron, ‘On additive involutions and Hamel bases’, Aequationes Math. 87 (2014), 159–163.
[8] B. Bouikhalene, E. Elqorachi and A. Redouani, ‘Hyers–Ulam stability of the generalized

quadratic functional equation in amenable semigroups’, J. Inequal. Pure Appl. Math. 8 (2007),
Article ID 56, 18 pages.
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[23] M. Piszczek, ‘Remark on hyperstability of the general linear equation’, Aequationes Math. 88
(2014), 163–168.

[24] M. Piszczek, ‘Hyperstability of the general linear functional equation’, Bull. Korean Math. Soc.
52 (2015), 1827–1838.

[25] P. Sinopoulos, ‘Functional equations on semigroups’, Aequationes Math. 59 (2000), 255–261.
[26] H. Stetkær, ‘Functional equations on abelian groups with involution’, Aequationes Math. 54

(1997), 144–172.
[27] H. Stetkær, ‘Functional equations on abelian groups with involution II’, Aequationes Math. 55

(1998), 227–240.
[28] Gy. Szabo, ‘Some functional equations related to quadratic functions’, Glas. Mat. 38 (1983),

107–118.
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