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Abstract. We prove several results concerning the existence of surfaces of section for the
geodesic flows of closed orientable Riemannian surfaces. The surfaces of section � that
we construct are either Birkhoff sections, which means that they intersect every sufficiently
long orbit segment of the geodesic flow, or at least they have some hyperbolic components
in ∂� as limit sets of the orbits of the geodesic flow that do not return to �. In order to prove
these theorems, we provide a study of configurations of simple closed geodesics of closed
orientable Riemannian surfaces, which may have independent interest. Our arguments are
based on the curve shortening flow.
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1. Introduction
Let N be a closed connected 3-manifold and let X be a nowhere vanishing vector field
on N with flow φt : N → N . A surface of section for X is a (not necessarily connected)
immersed compact surface � � N whose boundary ∂� is tangent to X, and whose interior
int(�) is embedded in N \ ∂� and transverse to X. A surface of section allows us to read
part of the dynamics of X as discrete dynamics of the first return map to �. For this
purpose, we consider the first return time function

τ : int(�) → (0, +∞], τ(z) := inf{t > 0 | φt (z) ∈ �}.
Here, as usual, we set inf ∅ = +∞. The function τ is continuous on the whole int(�)

and smooth on the open subsets where it is finite. The surface of section � is called
a Birkhoff section when there exists a finite constant � > 0 such that, for each z ∈ N ,
the orbit segment φ[0,�](z) intersects �. Under this condition, outside ∂� the dynamical
system defined by X is the suspension of the discrete dynamical system defined by the first
return map

ψ : int(�) → int(�), ψ(z) = φτ(z)(z).

Notice that a Birkhoff section � is not necessarily connected, but any connected compo-
nent of � is also a Birkhoff section. By means of a Birkhoff section, statements concerning
two-dimensional discrete dynamics can be translated into corresponding statements for the
dynamics of vector fields in dimension three.

The quest for Birkhoff sections has been a problem of major interest in dynamical
systems since the seminal work of Poincaré [Poi12] and Birkhoff [Bir17]. In the context
of Reeb vector fields on closed 3-manifolds, by a spectacular application of holomorphic
curves techniques, Hofer, Wysocki and Zehnder [HWZ98] established the existence of
Birkhoff sections for all positively curved 3-spheres in the four-dimensional symplectic
vector space, equipped with the canonical contact form. A result of the first and third
author [CM22] proved the existence of Birkhoff sections for all closed contact 3-manifolds
satisfying the Kupka–Smale condition: non-degeneracy of the closed Reeb orbits, and
transversality of the stable and unstable manifolds of the hyperbolic closed Reeb orbits.
In particular, the existence of Birkhoff sections holds for the Reeb vector field of a C∞
generic contact form on any closed 3-manifold and for the geodesic vector field of a C∞
generic Riemannian metric on any closed surface.

An independent work of Colin et al [CDHR24] established the existence of Birkhoff
sections for those Reeb vector fields on any closed 3-manifold whose closed orbits are
non-degenerate and equidistributed (that is, the contact volume form can be approximated,
as a measure, by closed orbits). It is not known whether the equidistribution of the closed
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orbits holds for the geodesic vector field of a C∞ generic Riemannian metric on a closed
surface; indeed, even the fact that, for such a C∞ generic Riemannian metric, the lifts of
the closed geodesics form a dense subset of the unit tangent bundle is an open problem.
Nevertheless, Irie’s equidistribution theorem [Iri21] implies that the equidistribution of
the closed orbits holds for the Reeb vector field of a C∞ generic contact form on any
closed 3-manifold, and together with [CDHR24] this provides an alternative proof of the
C∞ generic existence of Birkhoff sections for closed contact 3-manifolds. We stress that,
on a closed 3-manifold diffeomorphic to the unit tangent bundle of a closed surface, the
Reeb flow of a C∞ generic contact form is not necessarily conjugate (or even orbitally
equivalent) to the geodesic flow of a Riemannian metric.

In this paper, we focus on geodesic flows of closed orientable Riemannian surfaces
(M , g); hereafter, the Riemannian metrics are assumed to be C∞. The unit tangent
bundle SM = {v ∈ T M | ‖v‖g = 1} is equipped with the Liouville contact form λv =
g(v, dπ(v) · ), where π : SM → M is the base projection. The geodesic vector field X
on SM is the associated Reeb vector field, which means that λ(X) ≡ 1 and dλ(X, ·) ≡ 0.
The geodesic flow φt : SM → SM is the associated Reeb flow. Its orbits have the form
φt (γ̇ (0)) = γ̇ (t), where γ : R�M is a geodesic parameterized with unit speed ‖γ̇ ‖g ≡ 1.
The closed geodesics of (M , g) are precisely the base projections of the closed orbits of
the geodesic flow. A closed geodesic is called simple when it is an embedded circle in M.

In this setting, surfaces of section have had important dynamical applications, among
which we mention the following: they played a crucial role in Bangert, Franks and
Hingston’s proof [Ban93, Fra92, Hin93] of the existence of infinitely many closed
geodesics on every Riemannian 2-sphere; and they were employed by Contreras and
Oliveira [CO04] to establish the existence of an elliptic closed geodesic on a C2-generic
Riemannian 2-sphere, by Contreras and Mazzucchelli [CM24] to prove the C2-structural
stability conjecture for Riemannian geodesic flows of closed surfaces and by Knieper and
Schulz [KS24] to characterize Anosov Riemannian geodesic flows of closed surfaces as
the C2-stably transitive ones.

Although the above-mentioned result in [CM22] implies the existence of a Birkhoff
section for ‘most’ geodesic flows of closed Riemannian surfaces, it does not provide any
information concerning the topology of such a Birkhoff section. In contrast, the celebrated
work of Birkhoff [Bir17] provides explicit Birkhoff sections for two classes of geodesic
flows: every positively curved Riemannian 2-sphere admits an embedded Birkhoff section
diffeomorphic to an annulus, and any negatively curved Riemannian surface admits a
Birkhoff section of genus one (see also [Fri83, §3]). This paper is largely inspired by
the work of Birkhoff.

Our first main result provides specific Birkhoff sections for geodesic flows of closed
surfaces that do not admit contractible simple closed geodesics without conjugate points.
We refer the reader to §2.3 for the background on the classical notion of conjugate points.
A simple closed geodesic γ is called a waist when it is a local minimizer of the length
functional over the free loop space. (In the literature, sometimes ‘waist’ refers to a closed
geodesic that is a local length minimizer in the free loop space, but is not necessary a
simple closed geodesic.) We recall that a non-degenerate simple closed geodesic is a waist
if and only if it does not have conjugate points.
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THEOREM A. Let (M , g) be a closed connected orientable Riemannian surface of genus
G ≥ 1 that does not have any contractible simple closed geodesics without conjugate
points. Its geodesic vector field admits a Birkhoff section � � SM , where � is a compact
connected surface of genus one and 8G − 4 boundary components that cover waists.

Theorem A applies, in particular, to Riemannian surfaces without contractible simple
closed geodesics, and we obtain the following corollary.

COROLLARY B. The geodesic vector field of any closed connected orientable Riemannian
surface (M , g) of genus G ≥ 1 admits a Birkhoff section of genus one and 8G − 4
boundary components that cover waists, provided at least one of the following two
conditions is satisfied.
• The Riemannian surface (M , g) has no conjugate points.
• The Gaussian curvature is bounded from above as

max(Kg) ≤ 2π

area(M , g)
.

Proof. If (M , g) has no conjugate points, it does not have contractible closed geodesics
(see, e.g., [GM24, Theorem 3.28]), and Theorem A applies. If, instead, (M , g) contains a
contractible simple closed geodesic γ , then we denote by B � M the open disk such that
∂B = γ , and the Gauss–Bonnet theorem implies that

2π =
∫

B

Kg dmg ≤ max(Kg) area(B, g),

where mg denotes the Riemannian measure. In particular, Kg attains positive values on
B. This proves that, under the curvature bound max(Kg) ≤ 2π/area(M , g), there are no
contractible simple closed geodesics, and Theorem A provides a Birkhoff section, as
claimed.

Any oriented simple closed geodesic γ on an oriented Riemannian surface (M , g)

defines two surfaces of section A(γ̇ ), A(−γ̇ ) ⊂ SM diffeomorphic to annuli, which are
referred to as the Birkhoff annuli of γ (see §4.1). Theorem A was inspired by the following
statement for Riemannian 2-spheres due to Bangert [Ban93, Theorem 2], which, in turn,
generalizes the above-mentioned result of Birkhoff for positively curved Riemannian
2-spheres. Our methods will provide a slightly simpler proof.

THEOREM C. (Bangert) Let (S2, g) be a Riemannian 2-sphere and let γ be a simple
closed geodesic with conjugate points whose complement S2 \ γ does not contain simple
closed geodesics without conjugate points. Then both Birkhoff annuli of γ are Birkhoff
sections.

Remark 1.1. Every Riemannian 2-sphere has at least two simple closed geodesics with
conjugate points. This follows from an addendum to the celebrated theorem of Lusternik
and Schnirelmann [LS29], see [DPMMS22, Theorem 1.3(iii) and Proposition 4.2]).
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Our third theorem is an improvement of the above-mentioned result [CM22] for the
case of geodesic flows. If K is a hyperbolic invariant subset for the geodesic flow, then we
denote, as usual, by Ws(K) and Wu(K) its stable and unstable manifolds, respectively.

THEOREM D. Let (M , g) be a closed connected orientable Riemannian surface satisfying
the following two conditions.
(i) All contractible simple closed geodesics without conjugate points are non-degenerate.

(ii) Any pair of not necessarily distinct contractible waists γ1, γ2 (if they exist) satisfies
the transversality condition Wu(γ̇1) � Ws(γ̇2).

Then the geodesic vector field of (M , g) admits a Birkhoff section.

The Birkhoff section provided by Theorem D is constructed by applying a surgery
procedure due to Fried (see §4.1) to the Birkhoff annuli of a suitable finite collection of
closed geodesics. The topology of such a Birkhoff section depends on the configuration
of the closed geodesics in the collection, which, in turn, depends on the geometry of the
Riemannian surface.

When an orientable Riemannian surface does not satisfy the assumptions of Theo-
rems A, C and D, but still satisfies a mild non-degeneracy condition, we are at least able to
construct a surface of section � whose escaping orbits are asymptotic to certain hyperbolic
components of ∂�.

THEOREM E. Let (M , g) be a closed connected orientable Riemannian surface all of
whose contractible simple closed geodesics without conjugate points are non-degenerate.
Its geodesic vector field admits a surface of section � � SM satisfying the following
properties.

(i) Topology: If M = S2, then � is the disjoint union of the Birkhoff annuli of some
simple closed geodesics. If M has genus G ≥ 1, then � is the disjoint union of the
Birkhoff annuli of some simple closed geodesics and of a compact connected surface
of genus one and 8G − 4 boundary components, all covering non-contractible
waists.

(ii) Completeness: � intersects any orbit φ(−∞,∞)(z) of the geodesic flow.
(iii) Escape set: There exists a possibly empty union of connected components K ⊂ ∂�,

whose base projection π(K) is the union of hyperbolic contractible waists, such that
the complements Ws(K) \ K and Wu(K) \ K are given by

Ws(K) \ K = {z ∈ SM | φ[t ,∞)(z) ∩ � = ∅ for some t ∈ R},
Wu(K) \ K = {z ∈ SM | φ(−∞,t](z) ∩ � = ∅ for some t ∈ R}.

(iv) Return time: There exists � > 0 such that, for each z ∈ SM sufficiently close to
∂� \ K , we have φ(0,�](z) ∩ � �= ∅.

For general non-degenerate Reeb flows on closed 3-manifolds, surfaces of section
satisfying properties analogous to (ii), (iii) and (iv) of Theorem E were constructed by
Colin, Dehornoy and Rechtman [CDR23] by applying surgery to certain holomorphic
curves provided by Hutchings’ embedded contact homology [Hut14]. Colin, Dehornoy
and Rechtman further employed such surfaces of section to produce a so-called broken
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book decomposition of the 3-manifold, which is a generalization of the classical notions
of open book decomposition and of Hofer, Wysocki and Zehnder’s finite energy foliations
[HWZ03].

The mentioned works [CDHR24, CDR23, CM22, HWZ03, HWZ98] are ultimately
based on holomorphic curve techniques [HWZ02], and the last three even on embedded
contact homology [Hut14]. In this paper, we do not need any of these techniques and
instead employ the curve shortening flow [Gag90, Gra89]. Our approach allows us to
obtain sharper results for geodesic flows. On the one hand, our theorems require only
the non-existence or the non-degeneracy of contractible simple closed geodesics without
conjugate points, but no conditions on the other closed geodesics. On the other hand, in all
the statements except Theorem D, we obtain surfaces of section all of whose components
have genus at most one, which may be important for future applications. Incidentally,
our arguments require a study of maximal families of pairwise disjoint simple closed
geodesics of closed orientable Riemannian surfaces (Theorems 3.4 and 3.5), which may
have independent interest.

Finally, we remark that, even though we only considered Riemannian geodesic flows,
our results are also valid for geodesic flows of reversible Finsler metrics, by using the
generalization of the curve shortening flow developed by Oaks [Oak94] and further
investigated by Angenent [Ang08] and De Philippis et al [DPMMS22].

1.1. Organization of the paper. In §2, we recall the main properties of the curve
shortening flow, we provide the details of some applications to the existence of simple
closed geodesics that cannot be found in the literature and we recall some features of
conjugate points. In §3, we study configurations of simple closed geodesics on closed
Riemannian surfaces, whose properties will be an essential ingredient for our main
theorems. Finally, in §4, we state and prove Theorems A, C, D and E.

2. Preliminaries
2.1. The curve shortening flow. It is well known that closed geodesics are critical points
of the length and energy functionals, and therefore their existence can be investigated by
means of critical point theory [Kli78]. In this paper, we will be interested in contractible
closed geodesics on surfaces; their critical point theory requires the curve shortening flow
[Gra89], whose main properties we now recall.

Let (M , g) be a closed oriented Riemannian surface. For any smooth embedded circle
γ : S1 ↪→ M , we denote by νγ its positively oriented normal vector field and by kγ the
signed geodesic curvature of γ . Here, S1 = R/Z. We denote by Emb(S1, M) the space of
smooth embedded circles in M endowed with the C∞ topology. The length functional

L(γ ) =
∫

S1
‖γ̇ (t)‖g dt (2.1)

is continuous over this space. Indeed, it is even differentiable, and its critical points are the
simple closed geodesics (that is, the closed geodesics in Emb(S1, M)) with arbitrary time
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reparameterization. The curve shortening flow is a continuous map

U → Emb(S1, M), (s, γ0) �→ 
s(γ0) := γs ,

defined on a maximal open neighborhood U ⊂ [0, ∞) × Emb(S1, M) of {0} ×
Emb(S1, M) by means of the partial differential equation

∂sγs = kγs νγs .

Its main properties are the following.
(i) 
0 = id, and 
s2 ◦ 
s1 = 
s2+s1 for all s1, s2 ≥ 0.

(ii) 
s(γ ◦ θ) = 
s(γ ) ◦ θ for all (s, γ ) ∈ U and θ ∈ Diff(S1).
(iii) (d/ds)L(
s(γ )) ≤ 0 for all (s, γ ) ∈ U , and the equality holds if and only if γ is a

simple closed geodesic (not necessarily parameterized with constant speed).
(iv) For each γ ∈ Emb(S1, M), if sγ ∈ (0, ∞] denotes the supremum of the times s > 0

for which (s, γ ) ∈ U , then sγ is finite if and only if 
s(γ ) converges to a constant
as s → sγ .

We refer the reader to [DPMMS22, Gra89] and to the references therein for the proofs of
these facts. For each � > 0 and ε > 0, we consider the open subsets

Emb(S1, M)<� := {γ ∈ Emb(S1, M) | L(γ ) < �},
W(�, ε) := {γ ∈ Emb(S1, M) | |L(γ ) − �| < ε2, ‖kγ ‖L∞ < ε}.

The intersection

K� :=
⋂
ε>0

W(�, ε)

is precisely the subspace of those embedded circles that are reparameterizations of simple
closed geodesics of length � > 0. Moreover, we have K� = ∅ if and only if W(�, ε) = ∅

for ε > 0 sufficiently small.
In order to employ the curve shortening flow in the critical point theory of the length

functional, the following property is crucial. Its proof can be extracted from Grayson’s
[Gra89], and the details can also be found in [DPMMS22, Theorem 1.2(iv)].
(v) For each � > 0 and ε > 0, there exists δ ∈ (0, �) and a continuous function τ :

Emb(S1, M)<�+δ → [0, ∞) such that, for each γ ∈ Emb(S1, M)<�+δ , we have
τ(γ ) < sγ and


s(γ ) ∈ Emb(S1, M)<�−δ ∪ W(�, ε) for all s ∈ [τ(γ ), sγ ).

A path-connected subset U ⊆ M is weakly convex when, for any pair of distinct points
x, y ∈ U that can be joined by an absolutely continuous curve contained in U of length
strictly less than the injectivity radius inj(M , g), the shortest geodesic segment joining x
and y is entirely contained in U. One of the crucial properties of the curve shortening flow
is that it preserves the embeddedness of loops. This was first proved by Gage [Gag90, §3]
as a consequence of a suitable maximum principle. The same arguments actually imply
the following analogous property.
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(vi) The curve shortening flow preserves any weakly convex open subset U ⊆ M: that
is, for any smooth embedded circle γ in U and for any s ∈ (0, sγ ), the embedded
circle 
s(γ ) is still contained in U.

The following is a rather straightforward consequence of the properties of the curve
shortening flow.

LEMMA 2.1. Let U ⊆ M be a weakly convex open subset that is not simply connected and
let C ⊂ Emb(S1, U) be a connected component containing loops that are non-contractible
in U. Then, there exists a sequence γn ∈ C converging in the C2-topology to a simple closed
geodesic γ contained in U of length

L(γ ) = inf
ζ∈C

L(ζ ) > 0.

Remark 2.2. The simple closed geodesic γ may not be a waist (see the definition in §2.2)
if it intersects the boundary ∂U .

Proof of Lemma 2.1. We claim that

� := inf
ζ∈C

L(ζ ) ≥ 2 inj(M , g) > 0.

Indeed, assume by contradiction that L(ζ ) < 2 inj(M , g) for some ζ ∈ C. This implies that
ζ can be written as

ζ(t) = expζ(0)(V (t))

for some smooth function V : S1 → Tζ(0)M . We define the smooth homotopy

ζr : S1 → M , ζr(t) := expζ(0)(rV (t)), r ∈ [0, 1],

which satisfies ζ0 ≡ ζ(0) and ζ1 = ζ . Since the open subset U is weakly convex, each ζr

is contained in U. Therefore, ζ is contractible in U, which is a contradiction.
We claim that

W(�, ε) ∩ C �= ∅ for all ε > 0.

Indeed, assume that W(�, ε) ∩ C = ∅ for some ε > 0. Consider the constant δ > 0 and
the continuous function τ : Emb(S1, M)<�+δ → (0, ∞) provided by property (v). For
each ζ0 ∈ C of length L(ζ0) < � + δ, property (vi) guarantees that ζs := 
s(ζ0) ∈ C for
all s > 0 for which it is well defined. Property (v) then implies that L(ζτ(ζ )) < � − δ,
which contradicts the definition of �.

We choose an arbitrary γn ∈ W(�, 1/n) parameterized with constant speed. Up to
extracting a subsequence, we have that γn(0) → x and γ̇n(0) → v for some (x, v) ∈ T M

with ‖v‖ = �. The curve γ : S1 → M , γ (t) := expx(tv) is a closed geodesic of length �,
and γn → γ in the C1 topology. Since ‖kγn − kγ ‖L∞ ≤ 1/n, actually, γn → γ in the C2

topology. Finally, since the closed geodesic γ is the C2 limit of embedded circles on an
orientable surface, γ is a simple closed geodesic.

We denote by SM = {v ∈ T M | ‖v‖g = 1} the unit tangent bundle, by π : SM → M

the base projection and by φt : SM → SM the geodesic flow, which is defined by
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φt (γ̇ (0)) = γ̇ (t), where γ : R � M is a geodesic parameterized with unit speed ‖γ̇ ‖g ≡ 1.
In §3, we will need the following property of weakly convex sets.

LEMMA 2.3. If U ⊆ M is a weakly convex subset and K ⊂ SM is a subset invariant under
the geodesic flow (that is, φt (K) = K for all t ∈ R), then any path-connected component
of U \ π(K) is weakly convex.

Proof. Let V ⊂ U \ π(K) be a path-connected component and consider two arbitrary
distinct points x1, x2 ∈ V that can be joined by an absolutely continuous curve ζ contained
in V of length strictly less than the injectivity radius inj(M , g). Since U is weakly convex,
the shortest geodesic segment γ joining x1 and x2 is contained in U. We assume, by
contradiction, that γ ∩ π(K) �= ∅, and choose a point v ∈ K such that x := π(v) ∈ γ .
Let B ⊂ M be the Riemannian open ball of radius inj(M , g) centered at x and let
η ⊂ π(K) ∩ B be the maximal geodesic segment passing through x tangent to v. Notice
that η separates B and intersects γ only in x. In particular, x1 and x2 lie in distinct connected
components of B \ η. This is not possible, since the curve ζ joining x1 and x2 is contained
in B \ π(K) ⊂ B \ η; indeed, any absolutely continuous curve joining x1 and x2 and not
entirely contained in B must have length larger than or equal to inj(M , g).

2.2. Types of closed geodesics. Let γ be a closed geodesic of length � > 0 in the closed
oriented Riemannian surface (M , g). We parameterize γ with unit speed, so that it is a
curve of the form

γ : R/�Z → M , γ (t) = π ◦ φt (v),

where v ∈ SM and the length � is the minimal period of γ . The Floquet multipliers of
γ are the eigenvalues of the linearized Poincaré map dφ�(v)|V , where V is the vector
subspace

V := {w ∈ TvSM | g(v, dπ(v)w) = 0}.
Since the linearized Poincaré map preserves a symplectic structure on the plane V, the
Floquet multipliers are of the form σ , σ−1 ∈ U ∪ R \ {0}, where U denotes the unit circle
in the complex plane. The closed geodesic γ is called non-degenerate when σ �= 1 and
hyperbolic when σ ∈ R \ {1, −1}. (A closed geodesic γ of length � and Floquet multiplier
σ = ei2π/k for some integer k ≥ 2 is non-degenerate. However, the kth iterate of γ is
degenerate. In this paper, we will not need to consider iterates of closed geodesics.)

We recall that a simple closed geodesic γ : S1 ↪→ M is called a waist when any
absolutely continuous curve ζ : S1 → M that is sufficiently C0-close to γ satisfies L(ζ ) ≥
L(γ ); here L is the length functional (2.1).

Remark 2.4. Let γ : S1 ↪→ M be a waist, let W ⊂ M be a sufficiently small open
neighborhood of γ and let W be the space of absolutely continuous curves ζ : S1 → W

homotopic to γ within W. One can easily prove that any ζ ∈ W has length L(ζ ) ≥ L(γ ).
Moreover, the equality L(ζ ) = L(γ ) holds if and only if ζ becomes itself a waist after
being reparameterized with constant speed ‖ζ̇‖g ≡ L(ζ ). If γ is a non-degenerate waist,
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then any ζ ∈ W satisfying the equality L(ζ ) = L(γ ) must be geometrically equivalent to
γ : that is, ζ ◦ θ = γ for some homeomorphism θ : S1 → S1.

Later, we employ waists to infer the existence of other simple closed geodesics,
according to the following lemma. For closed geodesics that are possibly self-intersecting,
the analogous lemma is well known (see, e.g., [Ban93]).

LEMMA 2.5. Let (M , g) be an oriented Riemannian surface.
(i) If A ⊂ M is a compact annulus bounded by two waists, then int(A) contains a

non-contractible simple closed geodesic.
(ii) If D is a compact disk bounded by a waist, then int(D) contains a simple closed

geodesic.

Proof. Let A ⊂ M be a compact annulus bounded by the waists γ0, γ1, with L(γ1) ≤
L(γ0). Let W ⊂ A \ γ1 be a sufficiently small open neighborhood of γ0. If W \ γ0 contains
a simple closed geodesic, such a closed geodesic must be C0-close to γ0 and in, particular,
be non-contractible in A, and the proof is complete. Now, assume that W \ γ0 does not
contain any simple closed geodesic. In particular, every absolutely continuous curve γ :
S1 → W homotopic to γ0 within W and not geometrically equivalent to γ0 satisfies the
strict inequality L(γ ) > L(γ0) (see Remark 2.4). Up to shrinking W, there exists ρ > 0
such that any smooth curve γ : S1 ↪→ W homotopic to γ0 within W and that intersects
∂W \ γ0 has length L(γ ) ≥ L(γ0) + ρ. We now detect a simple closed geodesic in int(A)

by means of a minmax procedure, as follows. Let

� := inf
F

max
r∈[0,1]

L(ζr), (2.2)

where the infimum ranges over the family F of continuous homotopies of smooth
embedded loops ζr : S1 ↪→ A, r ∈ [0, 1] such that ζ0 = γ0, ζ1 = γ1, and ζr ⊂ int(A)

for all r ∈ (0, 1). Notice that, for any such homotopy (ζr )r∈[0,1], there exists a minimal
r0 ∈ (0, 1] such that the curve ζr intersects ∂W \ γ0; therefore,

L(ζr0) ≥ L(γ0) + ρ.

This readily implies that

� ≥ L(γ0) + ρ > L(γ0).

We claim that � is the length of a non-contractible simple closed geodesic in A, which must
actually be contained in int(A) since L(γ1) ≤ L(γ0) < � − ρ. Let us assume that this is not
the case. In particular, for ε > 0 small enough, no embedded loop γ ∈ W(�, ε) is entirely
contained in A and non-contractible therein. We apply property (v) of the curve shortening
flow, which provides δ > 0 and a suitable continuous function τ : Emb(S1, M)<�+δ →
(0, ∞). Let (ζr )r∈[0,1] be a homotopy in F that is optimal up to δ, which means that

max
r∈[0,1]

L(ζr) < � + δ.

We push the homotopy by means of the curve shortening flow, defining

ηr := 
τ(ζr )(ζr ), r ∈ [0, 1].
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Property (v) implies that ηr ∈ Emb(S1, M)<�−δ ∪ W(�, ε) for each r ∈ [0, 1]. Since the
compact annulus A is bounded by simple closed geodesics, int(A) is weakly convex.
Property (vi) implies that ηr ⊂ int(A) for each r ∈ (0, 1). Since ζ0 = γ0 and ζ1 = γ1

are simple closed geodesics, we have η0 = γ0 and η1 = γ1. Therefore, the homotopy
(ηr)r∈[0,1] belongs to F . Since no curve γ ∈ W(�, ε) is entirely contained in A and
non-contractible therein, we conclude that ηr ∈ Emb(S1, M)<�−δ for each r ∈ [0, 1],
which contradicts the definition of the minmax value �.

The case of a compact disk D ⊂ M bounded by a waist γ is analogous, except that,
in the definition of the minmax (2.2), the infimum ranges over the family of continuous
homotopies of smooth embedded loops ζr : S1 ↪→ D, r ∈ [0, 1], such that ζ0 = γ , ζr ⊂
int(D) for all r ∈ (0, 1] and L(ζ1) < L(γ ).

2.3. Conjugate points. Let us recall the classical notion of conjugate points. If
γ : R → M is an (open or closed) geodesic parameterized with unit speed, the points
γ (t1), γ (t2) are conjugate along γ |[t1,t2] when

ker d(π ◦ φt2−t1(γ̇ (t1)))|ker(dπ(γ̇ (t1))) �= {0}.
On orientable Riemannian surfaces, simple closed geodesics with conjugate points

are not waists, and they actually satisfy the following lemma due to Bangert [Ban93,
Lemma 2].

LEMMA 2.6. Let (M , g) be an orientable Riemannian surface and let γ : S1 ↪→ M be a
simple closed geodesic with conjugate points. Then, for any open neighborhood U ⊂ M of
γ , any connected component V ⊂ U \ γ contains a smooth embedded circle ζ : S1 ↪→ V

homotopic to γ within U such that L(ζ ) < L(γ ).

On an orientable Riemannian surface, a non-degenerate simple closed geodesic is a
waist if and only if it does not have conjugate points (see, e.g., [DPMMS22, Lemma 4.1(iii)
and Proposition 4.2(iii, vii)]). Moreover, a non-degenerate waist γ is hyperbolic (see, e.g.,
[Kli95, Theorem 3.4.2]), and the corresponding orbit γ̇ of the geodesic flow φt has a stable
manifold

Ws(γ̇ ) = {z ∈ SM | ω(z) = γ̇ },
which is an injectively immersed surface in SM . Here, ω(z) denotes the ω-limit of z: that
is,

ω(z) =
⋂
t>0

φ[t ,∞)(z).

LEMMA 2.7. Let (M , g) be an orientable closed Riemannian surface and let γ be a
non-degenerate waist. For any sufficiently small neighborhood V ⊂ SM of γ̇ , if W ⊂
V ∩ Ws(γ̇ ) is the path-connected component containing γ̇ , then the base projection
π |W : W → M is a diffeomorphism onto a neighborhood of γ . In particular, for each
z ∈ Ws(γ̇ ) \ γ̇ with associated geodesic ζ(t) := π ◦ φt (z), there exists t ∈ R such that
ζ |[t ,∞) does not intersect γ .
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Remark 2.8. Since Wu(γ̇ ) = −Ws(−γ̇ ), the analogous statement holds for the unstable
manifold.

Proof of Lemma 2.7. Since γ is hyperbolic, the closed orbit γ̇ has a Floquet multiplier
σ ∈ (−1, 1). We parameterize γ with unit speed, and denote by � > 0 its length, so that
γ̇ (t) = γ̇ (t + �). We consider the stable line bundle Es over γ̇ , which is given by

Es(γ̇ (t)) = ker(dφ�(γ̇ (t)) − σ id).

The stable bundle is invariant under the linearized geodesic flow: that is,

dφt (γ̇ (0))Es(γ̇ (0)) = Es(γ̇ (t)).

If we had Es(γ̇ (t)) = ker(dπ(γ̇ (t))) for some t ∈ R/�Z, the endpoints of the geodesic
segment γ |[t ,t+�] would be conjugate. Therefore, since γ has no conjugate points, we infer
that

Es(γ̇ (t)) ∩ ker(dπ(γ̇ (t))) = {0} for all t ∈ R/�Z.

This, together with the fact that

Tγ̇ (t)W
s(γ̇ ) = span{γ̇ (t)} ⊕ Es(γ̇ (t)) for all t ∈ R/�Z,

readily implies that the local stable manifold of γ̇ is a graph over the base manifold M.
Namely, for any sufficiently small neighborhood V ⊂ SM of the closed orbit γ̇ , if W ⊂
V ∩ Ws(γ̇ ) is the path-connected component containing γ̇ , then the base projection π |W :
W → M is a diffeomorphism onto a neighborhood of γ . For each z ∈ Ws(γ̇ ) \ γ̇ , for all
t > 0 large enough, we have φt (z) ∈ W \ γ̇ , and therefore π ◦ φt (z) ∈ π(W) \ γ .

We recall the following elementary property of geodesics with conjugate points on
surfaces (see, e.g., [DPMMS22, Lemma 5.9] for a proof).

LEMMA 2.9. Let (M , g) be a Riemannian surface and let γ : [−T , T ] → M be a
geodesic arc such that, for some [t1, t2] ⊂ (−T , T ), the points γ (t1) and γ (t2) are
conjugate along γ |[t1,t2]. There exists an open neighborhood V ⊂ SM of γ̇ (0) such that,
for each z ∈ V , the geodesic ζ(t) := π ◦ φt (z) intersects γ for some t ∈ [−T , T ].

This lemma has the following immediate consequence for simple closed geodesics with
conjugate points.

COROLLARY 2.10. Let (M , g) be an orientable Riemannian surface and let γ be a simple
closed geodesic with conjugate points.
(i) There exists T > 0 and an open neighborhood V ⊂ SM of the lift γ̇ such that,

for each z ∈ V , the geodesic ζ(t) := π ◦ φt (z) intersects γ for some positive time
t ∈ (0, T ] and for some negative time t ∈ [−T , 0).

(ii) There exists T > 0 and an open neighborhood U ⊂ M of γ such that, for each
z ∈ SU , the geodesic ζ(t) := π ◦ φt (z) intersects γ for some t ∈ [−T , T ].
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3. Contractible simple closed geodesics on surfaces
Let (M , g) be a closed Riemannian surface with geodesic flow φt : SM → SM . If
K ⊂ SM is a hyperbolic compact invariant subset for the geodesic flow, then its stable
manifold is defined by

Ws(K) = {z ∈ SM | ω(z) ⊆ K},
where ω(z) denotes the ω-limit of z. The unstable manifold Wu(K) is defined analogously
by employing the α-limit instead of the ω-limit, or, equivalently,

Wu(K) = −Ws(−K).

In this paper, we consider invariant compact sets K of the form

K =
n⋃

i=1

(γ̇i ∪ −γ̇i ),

where γ1, . . . , γn are hyperbolic closed geodesics of (M , g). In this case, the stable and
unstable manifolds of K decompose as the disjoint unions of the stable and unstable
manifolds of the closed orbits ±γ̇i : that is,

Ws(K) =
n⋃

i=1

(Ws(γ̇i) ∪ Ws(−γ̇i )), Wu(K) =
n⋃

i=1

(Wu(γ̇i) ∪ Wu(−γ̇i )).

Let V ⊂ SM be an open subset. We define the forward trapped set trap+(V ) and the
backward trapped set trap−(V ) by

trap±(V ) = {z ∈ SM | φ±t (z) ∈ V for all t > 0 large enough}.
Notice that

trap−(V ) = −trap+(−V ). (3.1)

In §2.1, we introduced the notion of weak convexity for an open subset of a closed
orientable Riemannian surface (M , g). In this section, we consider open disks B ⊂ M

satisfying the following, stronger, convexity assumption.

Assumption 3.1. The open disk B ⊂ M is weakly convex, and there exist δ > 0, T > 0
and an open neighborhood N ⊂ B of ∂B such that every smooth curve γ : [−T , T ] → M

parameterized with unit speed ‖γ̇ ‖g ≡ 1, with curvature bound ‖kγ ‖L∞ ≤ δ and such that
γ (0) ∈ N , is not entirely contained in B.

Example 3.2. Assumption 3.1 is satisfied when B ⊂ M is a convex geodesic polygon,
which means an open disk whose boundary ∂B, seen as a piecewise smooth immersed
submanifold of M, is a piecewise geodesic circle with at least one corner and all the inner
angles at the corners of ∂B are less than π . This definition allows B to be a fundamental
domain of M defined as the complement of a suitable collection of finitely many simple
closed geodesics (Figure 1).

Example 3.3. Corollary 2.10(ii) readily implies that Assumption 3.1 is satisfied when
B ⊂ M is an open disk whose boundary is a simple closed geodesic with conjugate points.

The following two theorems are the main results of this section.
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FIGURE 1. An open convex geodesic polygon B that is the complement of two simple closed geodesics of a
2-torus of revolution.

THEOREM 3.4. Let (M , g) be a closed orientable Riemannian surface and let B ⊂ M be
an open disk satisfying Assumption 3.1. If B does not contain any simple closed geodesic
without conjugate points, then trap+(SB) = trap−(SB) = ∅.

Proof. Equation (3.1) implies that trap+(SB) = −trap−(SB). Let us assume that
trap+(SB) �= ∅ and consider an arbitrary point z ∈ trap+(SB). Assumption 3.1 implies
that

π(ω(z)) ⊂ B \ N for all z ∈ trap+(SB).

By Lemma 2.3, the connected component U ⊂ B \ π(ω(z)) containing N \ ∂B is weakly
convex. Let C ⊂ Emb(S1, U) be a connected component containing loops that are
non-contractible in U. By Lemma 2.1, there exists a sequence γn ∈ C that converges in
the C2 topology to a simple closed geodesic γ ⊂ U of length

L(γ ) = inf
ζ∈C

L(ζ ). (3.2)

Notice that γn ⊂ U \ N for all n large enough, as, otherwise, γn would intersect ∂B

according to Assumption 3.1. Therefore, γ is contained in B. This, together with
Lemma 2.6 and equation (3.2), implies that γ has no conjugate points.

THEOREM 3.5. Let (M , g) be a closed orientable Riemannian surface and let B ⊂ M

be an open disk satisfying Assumption 3.1 that contains at least one closed geodesic but
no degenerate simple closed geodesics without conjugate points. Then there exists a finite
even number of pairwise disjoint simple closed geodesics γ1, . . . , γ2k ⊂ B satisfying the
following properties.
(i) γi+1 ⊂ Bγi

, where Bγi
⊂ B are the open disks with boundary ∂Bγi

= γi .
(ii) For each i odd, γi is a waist.
(iii) For each i even, γi has conjugate points.
(iv) Let U := B \ (γ1 ∪ · · · ∪ γ2k). The trapped sets of SU are given by

trap+(SU) = Ws(K) \ K , trap−(SU) = Wu(K) \ K ,

where

K :=
⋃
i odd

(γ̇i ∪ −γ̇i ).
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FIGURE 2. The geodesic triangle T (v, r).

(v) No complete geodesic (that is, a geodesic parameterized with constant speed and
defined for all times) is entirely contained in U.

We prove Theorem 3.5 after some preliminaries.

LEMMA 3.6. Let (M , g) be a closed oriented Riemannian surface. There exists a constant
a0 > 0 such that, for each embedded compact annulus A ⊂ M with area(A, g) ≤ a0 and
whose boundary ∂A is the union of two simple closed geodesics γ1, γ2,

2
9L(γ1) ≤ L(γ2) ≤ 9

2L(γ1).

Proof. We denote by J the complex structure of the oriented Riemannian surface (M , g):
that is, for all tangent vectors v ∈ SxM , we have that v, Jv is an oriented orthonormal
basis of TxM . For each r ∈ (0, inj(M , g)/2), x ∈ M and v ∈ SxM , we denote by T (v, r)

the unique geodesic triangle with vertices x, expx(rJ v), expx(−(r/2)v) (see Figure 2).
We consider the continuous function

a : (0, inj(M , g)/4) → (0, ∞), a(r) = min
v∈SM

area(T (v, r), g).

We fix r ∈ (0, inj(M , g)/4) to be small enough so that, for each x ∈ M and v ∈ SxM with
corresponding geodesic γv(t) := expx(tv), the smooth map

[0, r] × [0, r] → M , (t , s) �→ expγv(t)
(sJ γ̇v(t)) (3.3)

is an embedding. The positive constant of the lemma will be a0 := a(r).
Consider two simple closed geodesics γ1, γ2 bounding a compact annulus A ⊂ M such

that area(A, g) ≤ a(r). We choose two points x0 ∈ γ1 and y0 ∈ γ2 such that

dg(x0, y0) = min{dg(x, y) | x ∈ γ1, y ∈ γ2}. (3.4)

We set �1 := L(γ1), �2 := L(γ2), and we consider the unit-speed parameterizations

γ1 : R/�1Z ↪→ M , γ2 : R/�2Z ↪→ M

such that γ1(0) = x0, γ2(0) = y0 and J γ̇1(0) points inside the annulus A while J γ̇2(0)

points outside the annulus A. Notice that

dg(x0, y0) < r .

Otherwise, we would have T (γ̇1(0), r) ⊂ A, which would give the contradiction

a(r) ≥ area(A, g) > area(T (γ̇1(0), r)) ≥ a(r).
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FIGURE 3. The geodesic triangle T = T (γ̇1(t0), r) contained in A.

FIGURE 4. The geodesic triangle T ′.

For each t ∈ R/�1Z, we consider the geodesic arc

ζt : [0, r] → M , ζt (s) = expγ1(t)
(s J γ̇1(t)).

The geodesic γ2 intersects ζ0((0, r)) at y0 = γ2(0). Notice that all intersections between
γ2 and the geodesic arcs ζt must be transverse (otherwise, some ζt would be contained
in γ2, which would contradict the fact that γ2 and γ1 are disjoint). Therefore, by the
implicit function theorem, there exists a maximal time t0 ∈ (0, �1] and a smooth monotone
increasing function σ : [0, t0] → R such that σ(0) = 0 and, for all t ∈ [0, t0], γ2 intersects
ζt ((0, r]) transversely at γ2(σ (t)). We denote by ρ : [0, t0] → (0, r] the smooth function
such that ζt (ρ(t)) = γ2(σ (t)) for all t ∈ [0, t0]. Notice that

ζt |[0,ρ(t)) ∩ γ2 = ∅ for all t ∈ [0, t0]. (3.5)

We claim that t0 = �1. Indeed, if t0 < �1, we would have γ2(σ (t0)) = ζt0(r). Therefore
T (γ̇1(t0), r) ⊂ A (Figure 3), which would give the contradiction

area(A, g) > area(T (γ̇1(t0), r)) ≥ a(r) ≥ area(A, g).

Next, we claim that σ(�1) ≤ �2. Indeed, assume by contradiction that σ(�1) > �2, so
that there exists t1 ∈ (0, �1) such that σ(t1) = �2. Suitable segments of the geodesics γ1,
ζt1 and ζ0 bound a triangle T ′ ⊂ A, as in Figure 4. By (3.5), γ2 does not intersect the
interior of T ′. Since the maps (3.3) are embeddings, the geodesic segments ζt and ζt ′ are
disjoint whenever |t − t ′| < r . Therefore, for each t ∈ (t1, �1), the geodesic segment ζt

must intersect ζ�1 = ζ0, but, when t > �1 − r , this contradicts the embeddedness of the
maps (3.3).
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FIGURE 5. The point γ2(0) intersecting the geodesic arc ζ�1 |[0,ρ(�1)).

Finally, we claim that σ(�1) = �2. Indeed, assume by contradiction that the strict
inequality σ(�1) < �2 holds, so that we have distinct values ρ(0) �= ρ(�1). Since γ2(0) =
ζ0(ρ(0)) and γ2(σ (�1)) = ζ0(ρ(�1)), equation (3.4) implies that ρ(0) < ρ(�1). Namely,
γ2(0) lies in ζ0|[0,ρ(�1)) = ζ�1 |[0,ρ(�1)) (Figure 5), which contradicts (3.5).

We can now estimate the length of γ2 as follows. Notice that

�1 ≥ 2 inj(M , g) > 8r .

Let k ≥ 9 be the integer such that

�1

k
< r ≤ �1

k − 1
.

Notice that each restriction γ2|[σ(t),σ(t+�1/k)] is contained in the open Riemannian ball
Bg(γ1(t), 2r), which has diameter less than inj(M , g). Therefore,

L(γ2|[σ(t),σ(t+�1/k)]) = dg(γ2(σ (t)), γ2(σ (t + �1/k))) < 4r for all t ∈ [0, �1].

We infer that

�2 =
k−1∑
h=0

dg

(
γ2

(
σ(�1

h

k

))
, γ2

(
σ

(
�1

h + 1
k

)))
< 4rk < 4�1

k

k − 1
≤ 9

2
�1.

Switching the roles of γ1 and γ2, we obtain the other inequality �1 ≤ 9
2�2.

We now consider an open disk B ⊂ M satisfying Assumption 3.1. For any smooth
embedded circle γ ⊂ B, we denote by Bγ ⊂ B its filling, namely, the open disk with
boundary ∂Bγ = γ .

LEMMA 3.7. If B contains closed geodesics, then it contains a simple closed geodesic γ

without conjugate points and whose filling Bγ contains any other closed geodesic in B.

Proof. We consider the compact subset

K :=
⋃
γ

γ̇ ,
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where the union ranges over all closed geodesics γ contained in B. The subset K is invariant
under the geodesic flow (that is, φt (K) = K for all t ∈ R), and therefore its projection
π(K) is contained in the compact subset B \ N , where N ⊂ B is the open subset of
∂B given by Assumption 3.1. By Lemma 2.3, the connected component U ⊂ B \ π(K)

intersecting N is weakly convex. Since U is not simply connected, there exists a connected
component C ⊂ Emb(S1, U) consisting of loops that are non-contractible in U and whose
fillings contain π(K). By Lemma 2.1, there exists a sequence γn ∈ C that converges in the
C2 topology to a simple closed geodesic γ ⊆ U of length

L(γ ) = inf
ζ∈C

L(ζ ) (3.6)

and whose filling Bγ contains π(K) \ γ . We now conclude as in the proof of Theorem 3.4.
We must have γn ⊂ U \ N for all n large enough, as, otherwise, γn would intersect
∂B according to Assumption 3.1. Therefore, γ is contained in B. This, together with
Lemma 2.6 and equation (3.6), implies that γ has no conjugate points.

From now on, we assume that B contains closed geodesics and that all simple closed
geodesics without conjugate points that are entirely contained in B are non-degenerate (and
therefore they are hyperbolic waists). The open ball B may contain infinitely many simple
closed geodesics. Nevertheless, we have the following statement.

LEMMA 3.8. Any collection of pairwise disjoint simple closed geodesics contained in B is
finite.

Proof. Let G be a collection of pairwise disjoint simple closed geodesics contained in
the open ball B. Let G′ ⊆ G be a maximal subcollection of simple closed geodesics such
that Bγ1 ∩ Bγ2 = ∅ for all distinct γ1, γ2 ∈ G′: namely, for each ζ ∈ G \ G′, we have Bζ ∩
Bγ �= ∅ for some γ ∈ G′. The Gauss–Bonnet formula implies that

2π =
∫

Bγ

Kg dmg ≤ max(Kg) area(Bγ , g) for all γ ∈ G,

where mg is the Riemannian measure and Kg the Gaussian curvature of (M , g). Therefore,
G′ is a finite collection of cardinality

k := #G′ ≤ max(Kg) area(B, g)

2π
.

We define U ⊂ B to be the complement of the simple closed geodesics in G′, that is,

U := B \
⋃

γ∈G′
γ .

We consider the family π0(Emb(S1, U)) of path-connected components of the space of
embedded loops in U. Notice that π0(Emb(S1, U)) is infinite when k ≥ 3. Nevertheless,
since G is a collection of pairwise disjoint simple closed geodesics, there are only finitely
many homotopy classes h ∈ π0(Emb(S1, U)) containing elements of G \ G′. For every
such homotopy class h, let Gh be the subcollection of those γ ∈ G \ G′ contained in
h. For each pair of distinct γ1, γ2 ∈ Gh, we denote by Aγ1,γ2 ⊂ B the compact annulus
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with boundary ∂Aγ1,γ2 = γ1 ∪ γ2. Consider the constant a0 > 0 provided by Lemma 3.6.
Since area(U , g) < ∞, there exist finitely many γh,1, . . . , γh,nh

∈ Gh such that, for each
γ ∈ Gh \ {γh,1, . . . , γh,nh

}, we have area(Aγ ,γh,i , g) ≤ a0 for some i. We consider the finite
subcollection G′′ ⊂ G that comprises G′ and all the elements γh,j . Summing up, we have
shown that, for each γ ∈ G \ G′′, there exists ζ ∈ G′′ such that area(Aγ ,ζ ) ≤ a0. This,
together with Lemma 3.6, implies that

� := sup
γ∈G

L(γ ) ≤ maxγ∈G′′ 9
2L(γ ) < ∞.

Let K ⊂ W 1,2(S1, M) be the subspace of closed geodesics γ : S1 → M of length
L(γ ) ≤ � parameterized with constant speed. As a consequence of the Palais–Smale
condition for the geodesic energy functional [Kli78, Theorem 1.4.7], K is compact in the
W 1,2 topology.

Assume, by contradiction, that there exist an infinite sequence γn ∈ G ⊂ K. Up to
extracting a subsequence, γn converges to a simple closed geodesic γ in the W 1,2 topology.
A priori, γ is contained in the closure B, but Lemma 3.7 guarantees that γ is actually
contained in the open ball B. Since the γn are pairwise disjoint, they are also disjoint
from their limit γ . This, together with Corollary 2.10(ii), implies that γ is without
conjugate points, and therefore it must be non-degenerate by our assumption. This gives a
contradiction, since a non-degenerate closed geodesic γ cannot be the W 1,2-limit of closed
geodesics that are disjoint from γ .

Proof of Theorem 3.5. Let γ1, . . . , γn be a maximal sequence of pairwise disjoint
simple closed geodesics contained in the open ball B such that γi+1 ⊂ Bγi

for each
i = 1, . . . , n − 1. Lemma 3.8 implies that such a sequence must be finite. The maximality
of this sequence implies that every other simple closed geodesic γ contained in B and
not intersecting any γi must have filling Bγ contained in the complement U := B \ (γ1 ∪
· · · ∪ γn). Notice that the first simple closed geodesic γ1 must be the waist provided by
Lemma 3.7, whose filling Bγ1 contains any other closed geodesic contained in B. We recall
that, by our assumption on B, any simple closed geodesic contained in B that is not a waist
must have conjugate points.

For each i ∈ {1, . . . , n − 1}, γi or γi+1 must be a waist. Indeed, if none of them
were waists, Lemma 2.6 would imply that the open annulus Ai := Bγi

\ Bγi+1 contains
a non-contractible embedded circle ζ0 with length L(ζ0) < min{L(γi), L(γi+1)}, and
Lemma 2.1 would imply that there exists a non-contractible closed geodesic ζ ⊂ Ai such
that L(ζ ) ≤ L(ζ0); these inequalities would imply that ζ is contained in Ai , which would
contradict the maximality of the sequence γ1, . . . , γn. Moreover, γi and γi+1 cannot both
be waists. Otherwise Lemma 2.5(i) would imply that the open annulus Ai contains a
non-contractible simple closed geodesic ζ , which would contradict the maximality of the
sequence γ1, . . . , γn. Finally, the last simple closed geodesic γn of the sequence cannot
be a waist, as, otherwise, Lemma 2.5(ii) would imply that its filling Bγ contains another
simple closed geodesic, which would again contradict the maximality of the sequence
γ1, . . . , γn. Summing up, we have proved that n is even, and that γi is a waist if i is odd,
whereas γi has conjugate points if i is even.
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We denote by K = {γ1, γ3, . . . , γn−1} the collection of waists in the sequence
γ1, . . . , γn, and we set

K :=
⋃
γ∈K

(γ̇ ∪ −γ̇ ).

Lemma 2.7 implies that

Ws(K) \ K ⊆ trap+(SU).

Conversely, consider an arbitrary point z ∈ trap+(SU), so that φt (z) ∈ SU for all t > 0
large enough. We shall prove that the ω-limit ω(z) is either γ̇ or −γ̇ for some γ ∈ K,
which will imply the opposite inclusion

trap+(SU) ⊆ Ws(K) \ K .

Let π : SM → M be the base projection. Since z ∈ trap+(SU), there exists a connected
component W ⊂ U such that φt (z) ∈ SW for all t > 0 large enough, and therefore
π(ω(z)) ⊂ W . We have three possible cases.

Case 1: W = Bγn . Since γn has conjugate points, Corollary 2.10(ii) implies that the
geodesic π ◦ φt (z) does not enter a sufficiently small neighborhood of ∂Bγn for all t > 0
large enough. Therefore, π(ω(z)) is contained in the open disk Bγn . Since ω(z) is compact,
so is its projection π(ω(z)). Lemma 2.3 implies that any path-connected component of
the open set Bγn \ π(ω(z)) is weakly convex, and Lemma 2.6 implies that Bγn \ π(ω(z))

contains a non-contractible embedded loop ζ0 with length L(ζ0) < L(γn). We can now
apply Lemma 2.1, which provides a sequence of non-contractible smooth embedded
circles in Bγn \ π(ω(z)) converging in the C2 topology to a simple closed geodesic
ζ ⊂ Bγn \ π(ω(z)) with length L(ζ ) ≤ L(ζ0) < L(γn). These inequalities readily imply
that ζ is contained in the open disk Bγn , which contradicts the maximality of the sequence
γ1, . . . , γn. This proves that case 1 cannot occur.

Case 2: W = B \ Bγ1 . Since B satisfies Assumption 3.1, the geodesic π ◦ φt (z) does
not enter a sufficiently small neighborhood of ∂B for all t > 0 large enough, as, otherwise,
it would intersect ∂B for t > 0 arbitrarily large. Therefore, the compact set π(ω(z)) is
contained in W \ ∂B. Let V ⊂ W \ π(ω(z)) be the connected component whose boundary
∂V contains ∂B. By Lemma 2.3, V is weakly convex. Lemma 2.1 provides a sequence
of non-contractible smooth embedded loops ζk ⊂ V converging in the C2 topology to
a simple closed geodesic ζ ⊂ V . Notice that ζ cannot intersect ∂B, as, otherwise, ζk

would intersect ∂B as well for k large enough, according to Assumption 3.1. Therefore,
Lemma 3.7 implies that ζ = γ1, and we have V = B \ Bγ1 and π(ω(z)) = γ1. Since ω(z)

is connected and invariant under the geodesic flow, we infer that either ω(z) = γ̇1 or
ω(z) = −γ̇1.

Case 3: W = Bγi
\ Bγi+1 for some i ∈ {1, . . . , n − 1}. Let us assume that i is odd, so

that γi is a waist and γi+1 has conjugate points (the case of i even is analogous). Since
γi+1 has conjugate points, Corollary 2.10(ii) implies that there exists a neighborhood
of γi+1 that does not intersect π(ω(z)). If π(ω(z)) intersects the interior W, then we
can apply Lemma 2.1, as in case 1, and infer the existence of a simple closed geodesic
ζ ⊂ W , which contradicts the maximality of the sequence γ1, . . . , γn. This proves that

https://doi.org/10.1017/etds.2024.86 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.86


1718 G. Contreras et al

π(ω(z)) ⊆ γi . Since ω(z) is connected and invariant under the geodesic flow, we infer
that either ω(z) = γ̇i or ω(z) = −γ̇i .

Summing up, we have proved that

trap+(SU) = Ws(K) \ K .

Since trap−(SU) = −trap+(SU) and Wu(K) = −Ws(K), we also have

trap−(SU) = Wu(K) \ K .

It remains to show that no complete geodesic is entirely contained in U. Assume,
by contradiction, that this does not hold, so that there exists a point z ∈ SU such
that φt (z) ∈ SU for all t ∈ R. In particular, z ∈ trap+(SU) ∩ trap−(SU), and therefore
z ∈ Wu(γ̇ ∪ −γ̇ ) ∩ Ws(γ̇ ∪ −γ̇ ) \ (γ̇ ∪ −γ̇ ) for some waist γ ∈ K. Let W ⊂ U be the
connected component such that φt (z) ∈ SW for all t ∈ R. The waist γ is a connected
component of ∂W , and therefore we must have either W = B \ Bγ1 or W = Bγi

\ Bγi+1

for some i ∈ {1, . . . , n − 1}. The compact subset

C :=
⋃
t∈R

φt (z) ⊆ γ̇ ∪ −γ̇ ∪
⋃
t∈R

φt (z)

is invariant under the geodesic flow, and therefore any path-connected component of
W \ π(C) is weakly convex according to Lemma 2.3. The end of the argument is entirely
analogous to the one in cases 2 and 3 above. There exists a neighborhood of ∂W \ γ that
does not intersect π(C). Since π(C) intersects the open set W, with a suitable application
of Lemma 2.1, we infer the existence of a simple closed geodesic in W, which contradicts
the maximality of the sequence γ1, . . . , γn.

4. Construction of surfaces of section
4.1. Fried surgery of Birkhoff annuli. The surfaces of section provided by our main
theorems will be obtained by performing surgeries à la Fried [Fri83] on a suitable
collection of Birkhoff annuli of closed geodesics. In this subsection, we briefly recall this
procedure.

Let (M , g) be an oriented Riemannian surface and let J be its associated complex
structure: that is, v, Jv is an oriented orthonormal basis of TxM for all tangent vectors v ∈
SxM . Let γ : R/�Z → M be a closed geodesic parameterized with unit speed ‖γ̇ ‖g ≡ 1.
The Birkhoff annulus of γ is the immersed compact annulus in SM given by

A(γ̇ ) := {v ∈ Sγ (t)M | t ∈ R/�Z, g(J γ̇ (t), v) ≥ 0}.
Its boundary ∂A(γ̇ ) = γ̇ ∪ −γ̇ is embedded, whereas its interior int(A(γ̇ )) is immersed
and transverse to the geodesic vector field X on SM .

Now assume that γ is simple. In this case, A(γ̇ ) is embedded; therefore, it is a surface
of section for X. By considering the opposite orientation on γ , we obtain a second Birkhoff
annulus A(−γ̇ ) such that

int(A(γ̇ )) ∩ int(A(−γ̇ )) = ∅, ∂A(γ̇ ) = ∂A(−γ̇ ) = γ̇ ∪ −γ̇ .
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FIGURE 6. The four Birkhoff annuli A+
1 , A−

1 , A+
2 , A−

2 of the simple closed geodesics γ1, γ2. The central vertical
line of double points is the fiber SxM of a point x ∈ γ1 ∩ γ2. The geodesic vector field should be thought as

horizontal and makes a full turn as we move through the line of double points.

For any pair of distinct simple closed geodesics γ1, γ2 of (M , g) that intersect each
other, the Birkhoff annuli A±

i := A(±γ̇i ) intersect as in Figure 6. We see their union

ϒ := A+
1 ∪ A−

1 ∪ A+
2 ∪ A−

2

as a non-injectively immersed surface with boundary

∂ϒ = γ̇1 ∪ −γ̇1 ∪ γ̇2 ∪ −γ̇2.

Notice that, for any � > max{L(γ1), L(γ2)}, there exists an open neighborhood N ⊂ ϒ of
∂ϒ such that, for each z ∈ N , the orbit segment φ(0,�](z) intersects ϒ .

We apply the following surgery procedures, due to Fried, in order to resolve the
self-intersections with interior points of ϒ , and we produce a surface of section � ⊂ SM

with the same boundary ∂� = ∂ϒ . Away from an arbitrarily small neighborhood U of the
subspace of self-intersections of int(ϒ) with ϒ , we set � ∩ (SM \ U) := ϒ ∩ (SM \ U).
Along the lines of double points in int(ϒ), we resolve the self-intersections and obtain �

as in Figure 7. Finally, near the intersections int(ϒ) ∩ ∂ϒ , the surface � is obtained as in
Figure 8. Up to choosing the neighborhood U where the surgery takes place to be small
enough, for each z ∈ ϒ , the orbit segment φ(−1,1)(z) intersects �; analogously, for each
z ∈ �, the orbit segment φ(−1,1)(z) intersects ϒ .

If a closed geodesic γ is not simple, one can apply Fried surgeries to resolve the
self-intersections of its Birkhoff annulus A(γ̇ ) and produce a surface of section. More
generally, one can apply Fried surgeries to produce a surface of section out of the Birkhoff
annuli of any finite collection of closed geodesics.
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FIGURE 7. Fried surgery to resolve the double points in int(ϒ).

FIGURE 8. Fried surgery to resolve the lines of double points near the boundary point z ∈ ∂ϒ .

4.2. Complete system of closed geodesics. Let (M , g) be a closed connected oriented
Riemannian surface with unit tangent bundle π : SM → M and geodesic flow φt : SM →
SM . We introduce the following notion, which we will employ in the next subsection.

Definition 4.1. A complete system of closed geodesics G is a non-empty finite collection
of closed geodesics of (M , g), together with a (possibly empty) subcollection K ⊂ G,
satisfying the following properties. We set

K :=
⋃
γ∈K

(γ̇ ∪ −γ̇ ), R :=
⋃

γ∈G\K
(γ̇ ∪ −γ̇ ), U := M \

⋃
γ∈G

γ .

(i) Every γ ∈ K is a non-degenerate contractible waist disjoint from all the other closed
geodesics in G \ {γ }. In particular, K is a hyperbolic invariant subset for the geodesic
flow.

(ii) No complete orbit φ(−∞,∞)(z) is entirely contained in SU , and the trapped sets of
SU are given by

trap+(SU) = Ws(K) \ K , trap−(SU) = Wu(K) \ K .

For this reason, we briefly call K the limit subcollection of G and K the limit set.
(iii) The invariant subset R admits an open neighborhood N ⊂ SM and a positive

number � > 0 such that, for each z ∈ N , the orbit segment φ(0,�](z) is not contained
in SU .

We stress that the closed geodesics in G \ K are not necessarily simple and can have
mutual intersections as well. A complete system of closed geodesics with empty limit
subcollection will produce a Birkhoff section. For this purpose, we need the following
lemma.
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LEMMA 4.2. If the limit subcollection K is empty, then there is a constant �′ > 0 such that
every geodesic segment of length �′ intersects some geodesic in G.

Proof. We denote by ϒ the union of the Birkhoff annuli of the closed geodesics in G,
that is,

ϒ :=
⋃
γ∈G

(A(γ̇ ) ∪ A(−γ̇ )).

Since K=∅, we have empty trapped sets trap±(SU) =∅. Therefore, for each z ∈ SM \ ϒ ,
there exists �z > 1 such that the orbit segment φ[1,�z−1](z) intersects int(ϒ) transversely.
The transversality guarantees that there exists an open neighborhood Nz ⊂ SM of z such
that, for each z′ ∈ Nz, the orbit segment φ[0,�z](z

′) intersects int(ϒ). Now consider the
constant � > 0 and the open neighborhood N of R given by property (iii) above. Since SM

is compact, there exist finitely many points z1, . . . , zn ∈ SM such that N ∪ Nz1 ∪ · · · ∪
Nzn = SM . For �′ := max{�, �z1 , . . . , �zn}, we conclude that, for each z ∈ SM , the orbit
segment φ[0,�′](z) intersects ϒ . Namely, every geodesic segment of length �′ intersects
some geodesic in G.

The arguments of Contreras and Mazzucchelli’s [CM22, §4] allow us to produce, out
of a suitable complete system of closed geodesics with non-empty limit subcollection, a
new such complete system with strictly smaller limit subcollection. The setting of [CM22,
§4] employs Colin, Dehornoy and Rechtman’s broken book decompositions [CDR23],
but it turns out that the arguments go through in our simpler setting as well. We include
the details in the rest of this section, for the reader’s convenience. We begin with the
following preliminary lemma due to Colin, Dehornoy and Rechtman [CDR23, Lemma
4.9], which is based on an argument originally due to Hofer, Wysocki and Zehnder
[HWZ03, Proposition 7.5].

LEMMA 4.3. If the limit set K is non-empty and satisfies the transversality condition

Wu(K) � Ws(K),

then there exists γ ∈ K such that W ∩ Ws(γ̇ ) �= ∅ for each path-connected component
W ⊆ Wu(γ̇ ) \ γ̇ . Namely, the closed orbit γ̇ has homoclinics in all path-connected
components of Wu(γ̇ ) \ γ̇ .

Proof. We first show that, for each γ ∈ K and for each connected component W ⊆
Wu(γ̇ ) \ γ̇ , there exists a heteroclinic

W ∩ Ws(K) �= ∅. (4.1)

We prove this by contradiction, assuming that W ∩ Ws(K) = ∅.
The path-connected component W is an immersed cylinder in SM with one end equal

to γ̇ . Let S ⊂ W be an embedded essential circle that is C1-close to γ̇ and transverse to
the geodesic vector field, so that its base projection π(S) does not intersect γ (Lemma 2.7)
nor any other closed geodesic in the collection G. We consider the union of the Birkhoff
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annuli

ϒ ′ :=
⋃

ζ∈G\{γ }
(A(ζ̇ ) ∪ A(−ζ̇ ))

and an open neighborhood V ⊂ SM of ϒ ′ such that V ∩ φ(−∞,0](S) = ∅. We apply Fried
surgery, as explained in §4.1, to resolve the self-intersection points of ϒ ′ with its interior
(if there are any) and produce surfaces of section �′ ⊂ V such that

φ(−1,1)(z) ∩ �′ �= ∅ for all z ∈ ϒ ′. (4.2)

We set

ϒ = ϒ ′ ∪ A(γ̇ ) ∪ A(−γ̇ ), � = �′ ∪ A(γ̇ ) ∪ A(−γ̇ ).

For each z ∈ S, we have φ(−∞,0](z) ⊂ SU , whereas φ(−∞,∞)(z) is not entirely contained
in SU and thus intersects ϒ . This, together with (4.2), implies that there exists a minimal
tz > 0 such that the orbit t �→ φt (z) intersects � transversely for t = tz. This transversality,
together with the compactness of the circle S, implies that the function z �→ tz is smooth
on S, and we obtain an embedded circle

S0 := {φtz(z) | z ∈ S} ⊂ W ∩ �.

We consider the first return time

τ : int(�) → (0, +∞], τ(z) := inf{t > 0 | φt (z) ∈ �},
which is smooth on the open subset �0 := τ−1(0, ∞). The first return map

ψ : �0 → int(�), ψ(z) = φτ(z)(z)

is a diffeomorphism onto its image that preserves the area form dλ|int(�), where λ is the
Liouville contact form of SM .

Since S0 ∩ Ws(K) = ∅, we have S0 ∩ trap+(SU) = ∅, and therefore ψn(S0) ⊂ �0 for
all n ≥ 0. We obtained an infinite sequence Sn := ψn(S0) of pairwise disjoint embedded
circles in the interior of the surface of section �. Since the unstable manifold Wu(γ̇ )

is an immersed surface tangent to the geodesic vector field, the 2-form dλ|W vanishes
identically. If Sn bounds a disk Bn ⊂ int(�), then we denote by An ⊂ W the compact
annulus with boundary ∂An = γ̇ ∪ Sn, and Stokes’ theorem implies that

area(Bn, dλ) =
∫

Bn

dλ =
∫

An∪Bn

dλ =
∫

γ̇

λ = L(γ ),

where L(γ ) > 0 is the length of the simple closed geodesic γ . In particular, if Sn1 , Sn2

bound disks Bn1 , Bn2 ⊂ int(�) for some distinct n1, n2 ≥ 0, we have Bn1 ∩ Bn2 = ∅.
This, together with the finiteness of the area

area(int(�), dλ) =
∫

�

dλ =
∫

∂�

λ,

readily implies that there exist at most finitely many n ≥ 0 such that Sn is contractible
in int(�). Therefore, since the embedded circles Sn are pairwise disjoint, there exist
distinct n1, n2 ≥ 0 and an embedded compact annulus A ⊂ int(�) with boundary
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∂A = Sn1 ∪ Sn2 . Let A′ ⊂ W be the embedded compact annulus with boundary
∂A′ = Sn1 ∪ Sn2 , so that the union A ∪ A′ is a piecewise smooth embedded torus in
SM . By Stokes theorem,

∫
A

dλ =
∫

A∪A′
dλ = 0,

which contradicts the fact that dλ|A is an area form. This proves the existence of
heteroclinics (4.1).

Our transversality assumption on the heteroclinics, together with the shadowing
lemma from hyperbolic dynamics [FH19, Theorem 5.3.3], implies that, for all
γ1, γ2, γ3 ∈ K and for each path-connected component W ⊂ Wu(γ̇1) \ γ̇1, if there
are heteroclinics W ∩ Ws(γ̇2) �= ∅ and Wu(γ̇2) ∩ Ws(γ̇3) �= ∅, then there are also
heteroclinics W ∩ Ws(γ̇3) �= ∅.

For each γ ∈ K, we fix arbitrary path-connected components W±γ̇ ⊂ Wu(±γ̇ ) \ ±γ̇ .
We have already proved that every such path-connected component must contain a
heteroclinic to K. Therefore, there exists a sequence of oriented waists γi ∈ K with
heteroclinics Wγ̇i

∩ Ws(γ̇i+1) �= ∅. The same waist may appear at different times with
opposite orientations in the sequence. Nevertheless, since the collection G is finite,
there exists n ≤ 2 #G + 1 such that γ1 = γn as oriented waists. This implies that Wγ̇1 ∩
Ws(γ̇1) �= ∅.

LEMMA 4.4. If the limit set K is non-empty and satisfies the transversality condition

Wu(K) � Ws(K),

then there exists γ ∈ K and another complete system of closed geodesics with limit
subcollection contained in K \ {γ }.

Proof. By Lemma 4.3, there exists γ ∈ K whose associated periodic orbit γ̇ has homo-
clinics in all path-connected components of Wu(γ̇ ) \ γ̇ . Since γ is a non-degenerate
waist, Lemma 2.7 implies that there exists a tubular neighborhood A ⊂ M of γ and
an open neighborhood V ⊂ SM of γ̇ such that, if we denote by W ⊂ V ∩ Wu(γ̇ ) the
path-connected component containing γ̇ , the restriction of the base projection π |W :
W → A is a diffeomorphism. An analogous statement holds for the stable manifold
Ws(γ̇ ). Therefore, for any homoclinic point z ∈ Wu(γ̇ ) ∩ Ws(γ̇ ) \ γ̇ , the corresponding
geodesic ζ(t) := π ◦ φt (z) is contained in A \ γ provided |t | is large enough.

The complement A \ γ is the disjoint union of two open annuli A1 and A2, and therefore
W \ γ̇ is the disjoint union of the open annuli W1 := π |−1

W (A1) and W2 := π |−1
W (A2). Our

assumption on γ implies that both W1 and W2 intersect the stable manifold Ws(γ̇ ), and
we fix homoclinic points zi ∈ Wi ∩ Ws(γ̇ ) such that, if we denote by ζi(t) := π ◦ φt (z)

the associated geodesics, we have ζi(t) ∈ Ai for all t ≤ 0. We have two possible cases.
Case 1: There exists i ∈ {1, 2} such that ζi(t) ∈ A3−i for all t > 0 large enough. For

each δ > 0, there exist arbitrarily large a, b > 0 such that the points φ−a(zi) and φb(zi)

are δ-close (where the distance on SM is the one induced by the Riemannian metric g).
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We consider the orbit segment

�δ : [−a, b] → SM , �δ(t) = φt (zi),

and we extend it as a discontinuous periodic curve of period τ := a + b.
Case 2: For all i ∈ {1, 2}, we have ζi(t) ∈ Ai for all t > 0 large enough. For each δ > 0,

there exist arbitrarily large a1, b1, a2, b2 > 0 such that the points φ−ai
(zi) and φbi

(zi) are
δ-close. We consider the orbit segments

�δ,i : [−ai , bi] → SM , �δ,i (t) = φt (zi),

and we define �δ to be the discontinuous periodic curve of period τ := a1 + b1 + a2 + b2

obtained by extending periodically the concatenation of �δ,1 and �δ,2.
In both cases, for each δ > 0, we obtained a periodic δ-pseudo orbit �δ of the geodesic

flow with arbitrarily large minimal period. Moreover, the projection π ◦ �δ makes a δ-jump
from A1 to A2. The shadowing lemma from hyperbolic dynamics [FH19, Theorem 5.3.3]
implies that, for each ε > 0, there exist δ > 0 and z ∈ SM such that the orbit t �→ φt (z)

is periodic and pointwise ε-close to �δ up to a time reparameterization with Lipschitz
constant ε. Up to choosing ε > 0 small enough, the corresponding closed geodesic ζ(t) :=
π ◦ φt (z) must intersect γ transversely.

Let K′ be the subcollection of those simple closed geodesics η ∈ K that intersect ζ ,
which is non-empty since it contains γ . The collection G ∪ {ζ } is a complete system of
closed geodesics with limit subcollection K \ K′.

4.3. Proof of Theorems A, C, D and E. We first single out a suitable family of
non-contractible waists, which is always available in every closed orientable Riemannian
surface of positive genus.

LEMMA 4.5. On any closed orientable Riemannian surface (M , g) of genus G ≥ 1, there
exist waists γ1, . . . , γ2G such that:

(i) γi ∩ γi+1 is a singleton for all i ∈ {1, . . . , 2G − 1};
(ii) γi ∩ γj = ∅ if |i − j | ≥ 2;
(iii) M \ (γ1 ∪ · · · ∪ γ2G) is simply connected;
(iv) every γi is a waist.

Proof. We first consider non-contractible embedded loops ζ1, . . . , ζ2G ⊂ M such that
ζi ∩ ζi+1 is a singleton for all i ∈ {1, . . . , 2G − 1}, ζi ∩ ζj = ∅ if |i − j | ≥ 2, and
M \ (ζ1 ∪ · · · ∪ ζ2G) is simply connected (Figure 9). We denote by Ci ⊂ Emb(S1, M)

the connected component containing ζi . Notice that the Ci are pairwise distinct and the
embedded loops ζ1, . . . , ζ2G are in minimal position: that is,

#(ηi ∩ ηj ) ≥ #(ζi ∩ ζj ) for all i < j , ηi ∈ Ci , ηj ∈ Cj .

By Lemma 2.1, for each i = 1, . . . , 2G, there exists a waist γi ∈ Ci such that

L(γi) = min
γ∈Ci

L(γ ). (4.3)
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FIGURE 9. The embedded loops ζ1, . . . , ζ2G.

We recall that a geodesic bigon is a compact disk D ⊂ M whose boundary is the union
of two geodesic arcs. For each i < j , there is no geodesic bigon bounded by an arc in
αi ⊂ γi and an arc αj ⊂ γj . Indeed, if there were such a geodesic bigon with L(αi) ≤
L(αj ), we could further shrink the simple closed geodesics γj and obtain a shorter
embedded loop in the same homotopy class Cj , which would contradict (4.3). By the
bigon criterium [FM12, Proposition 1.7], the waists γ1, . . . , γ2G are in minimal position.
Therefore,

#(γi ∩ γj ) = #(ζi ∩ ζj ) for all i < j .

To prove that B := M \ (γ1 ∪ · · · ∪ γ2G) is simply connected, we cut open the surface
M at the simple closed geodesics γ2, γ4, . . . , γ2G, and we thus obtain a compact surface
M ′ of genus zero with 2G boundary components. Each waist γ2i , with i = 1, . . . , G,
corresponds to two boundary components γ +

2i , γ −
2i ⊂ ∂M ′. Each waist γ2i+1, with i =

1, . . . , G − 1, splits into two embedded arcs γ +
2i+1, γ −

2i+1; the arc γ ±
2i+1 joins the boundary

components γ ±
2i and γ ±

2i+2. Finally, the waist γ1 corresponds to an embedded arc γ +
1

joining the boundary components γ +
2 and γ −

2 . We now cut open M ′ along the embedded
arcs γ ±

2i+1 and obtain a compact disk M ′′. The interior int(M ′′) is diffeomorphic to B.

By means of Fried surgery, we produce a connected surface of section out of the union
of the Birkhoff annuli of the waists given by Lemma 4.5.

LEMMA 4.6. Let γ1, . . . , γ2G be the waists provided by Lemma 4.5 and consider the
union of the associated Birkhoff annuli

ϒ :=
2G⋃
i=1

(A(γ̇i) ∪ A(−γ̇i )). (4.4)

For each open neighborhood V ⊂ SM of ϒ , there exists a surface of section

ι : � � V

with the following properties.
(i) � is a compact connected surface of genus one and 8G − 4 boundary components.

(ii) The restriction

ι|∂� : ∂� →
2G⋃
i=1

(γ̇i ∪ −γ̇i )
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is a double cover. The preimages ι−1(γ̇i) and ι−1(−γ̇i ) are connected if i ∈ {1, 2G},
and they have two connected components each if G > 1 and 2 ≤ i ≤ 2G − 1.

(iii) There exist � > 0 such that, for each z ∈ SM sufficiently close to ∂�, we have
φ[−�,0)(z) ∩ � �= ∅ and φ(0,�](z) ∩ � �= ∅.

(iv) For each z ∈ ϒ , we have φ(−1,1)(z) ∩ � �= ∅, and, for each z′ ∈ �, we have
φ(−1,1)(z

′) ∩ ϒ �= ∅.

Proof. We see ϒ as a non-injectively immersed surface in SM with boundary and interior

∂ϒ =
2G⋃
i=1

(γ̇i ∪ −γ̇i ), int(ϒ) =
2G⋃
i=1

(int(A+
i ) ∪ int(A−

i )),

where A±
i := A(±γ̇i ). We set �0 := max{L(γ1), . . . , L(γ2G)}. Since γi intersects γi−1

and γi+1 for all 2 ≤ i ≤ 2G − 1, we have φ[2,�0+2](z) ∩ int(ϒ) �= ∅ for all z ∈ ∂ϒ .
Therefore, there exists an open neighborhood N ⊂ SM of ∂ϒ such that

φ[1,�0+3](z) ∩ int(ϒ) �= ∅ for all z ∈ N . (4.5)

Let V ⊂ SM be an open neighborhood of ϒ . We apply Fried surgeries in an arbitrarily
small neighborhood of the self-intersection points of ϒ , as explained in §4.1, and obtain a
surface of section ι : � � V with the same boundary ∂� = ∂ϒ and satisfying point (iv)
in the statement of the lemma. This, together with (4.5), implies point (iii) for � := �0 + 4.

We claim that the interior int(�) is path connected. Indeed, near the point in int(A+
1 ) ∩

∂A+
2 ∩ ∂A−

2 , Fried surgery glues together the intersecting annuli A+
1 , A−

2 and A+
2 in the

same connected component of int(�), as is clear from Figures 6 and 8; analogously,
near the point in int(A−

1 ) ∩ ∂A+
2 ∩ ∂A−

2 , Fried surgery glues together the intersecting
annuli A−

1 , A−
2 and A+

2 . Therefore, the surgery sends the four annuli A+
1 , A−

1 , A+
2 and

A−
2 to the same path-connected component of int(�). Assume, by induction, that Fried

surgery sends the annuli A+
1 , A−

1 , . . . , A+
i , A−

i to the same path-connected component
W ⊂ int(�). Near the point in A+

i ∩ ∂A+
i+1 ∩ ∂A−

i+1, Fried surgery glues together the
intersecting annuli A+

i , A−
i+1 and A+

i+1. Therefore, the surgery sends A−
i+1 and A+

i+1 to
the connected component W as well, and we conclude that W = int(�).

We now determine the number of connected components of the boundary ∂� and
how they cover the closed orbits ±γ̇i . The simple closed geodesic γ1 intersects γ2 in
one point, but does not intersect any of the other simple closed geodesics γ3, . . . , γ2G;
therefore, γ̇1 intersects the interior of the Birkhoff annulus int(A+

2 ) in one point, but does
not intersect any of the other Birkhoff annuli A±

i . Analogously, −γ̇1 intersects int(A−
2 ) in

one point but none of the other A±
i . Therefore, there is a unique connected component of

∂� that covers γ̇1, and such a connected component winds around γ̇1 twice; analogously,
there is a unique connected component of ∂� that covers −γ̇1, and such a connected
component winds around −γ̇1 twice (Figure 10). The same conclusions hold for γ2G. For
each i ∈ {2, . . . , 2G − 1}, γi intersects γi−1 and γi+1 in one point each, but does not
intersect any other γj ; therefore, γ̇i intersects the interiors of the Birkhoff annuli int(A−

i−1)

and int(A+
i+1) in one point each, but does not intersect any of the other Birkhoff annuli

A±
j ; analogously, −γ̇i intersects A+

i−1 and A−
i+1 in one point each, but does not intersect
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FIGURE 10. The surface � near the boundary component −γ̇1.

FIGURE 11. The surface � near the boundary component −γ̇i , for 2 ≤ i ≤ 2G − 1. Notice that there are two
open annuli in int(�) having boundary on −γ̇i .

any other A±
j . Therefore, there are two connected components of ∂� that are mapped

diffeomorphically to γ̇i and two other connected components of ∂� that are mapped
diffeomorphically to −γ̇i (Figure 11). All together, ∂� has 8G − 4 boundary components.

Since int(�) is transverse to the geodesic vector field X, � is orientable. Indeed, the
Liouville contact form λ of SM induces an area form dλ|int(�). To compute the genus of
�, we first triangulate every Birkhoff annulus A±

i with 6 vertices, 14 edges and 8 faces.
We choose such triangulations so that, along the intersections A+

i ∩ A−
i , A±

i ∩ A±
i+1 and

A±
i ∩ A∓

i+1, the vertices and edges of A±
i and A±

i+1 match as in Figure 12. All together,
ϒ is triangulated with 24 G vertices, 56 G edges and 32 G faces (once again, we stress
that ϒ must be seen as an immersed compact surface with boundary, and therefore distinct
Birkhoff annuli do not share vertices, edges or faces). The same number of edges and faces
can be used to triangulate � as well; however, the triangulation of ϒ provides one extra
vertex for each of the points xi , yi , wi , zi depicted in Figure 12, where i = 1, . . . , 2G − 1,
and therefore we need to throw away 8 G − 4 vertices. All together, � is triangulated with
16 G + 4 vertices, 56 G edges and 32 G faces, and therefore has Euler characteristic

χ(�) = 16 G + 4 − 56 G + 32 G = −8 G + 4.

Since

−8 G + 4 = χ(�) = 2 − 2 genus(�) − #π0(∂�) = 2 − 2 genus(�) − 8 G + 4,

we conclude that � has genus one.

In the following, we shall employ the notion of a complete system of closed geodesics,
which we introduced in Definition 4.1. Theorem A is a consequence of the following
statement.
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FIGURE 12. Triangulation of A+
i ∪ A−

i ∪ A+
i+1 ∪ A−

i+1.

THEOREM 4.7. Let (M , g) be a closed oriented Riemannian surface of positive genus,
let γ1, . . . , γ2G be the waists provided by Lemma 4.5 and let � be the surface of section
provided by Lemma 4.6. If the open disk M \ (γ1 ∪ · · · ∪ γ2G) does not contain any simple
closed geodesic without conjugate points, then � is a Birkhoff section.

Proof. With the terminology of Example 3.2, the open disk B := M \ (γ1 ∪ · · · ∪ γ2G)

is a convex geodesic polygon and, in particular, satisfies Assumption 3.1. Since B does not
contain any simple closed geodesic without conjugate points, Theorem 3.4 implies that we
have empty trapped sets trap+(SB) = trap−(SB) = ∅. Therefore, the collection of waists
{γ1, . . . , γ2G} is a complete system of closed geodesics with empty limit subcollection.
Let ϒ be the union of the Birkhoff annuli of the waists γ1, . . . , γ2G, as in (4.4). By Lemma
4.2, there exists � > 0 such that, for each z ∈ SM , the orbit segment φ[0,�](z) intersects
ϒ . This, together with Lemma 4.6(iv), implies that, for each z ∈ SM , the orbit segment
φ(0,�+2)(z) intersects �. Therefore, � is a Birkhoff section.

The proof of Theorem C is analogous. We rewrite the statement for the reader’s
convenience.

THEOREM C. Let (S2, g) be a Riemannian 2-sphere and let γ be a simple closed geodesic
with conjugate points whose complement S2 \ γ does not contain simple closed geodesics
without conjugate points. Then both Birkhoff annuli A(γ̇ ) and A(−γ̇ ) are Birkhoff
sections.

Proof. Both connected components B1 and B2 of the complement S2 \ γ satisfy the con-
vexity Assumption 3.1. Since B1 and B2 do not contain any simple closed geodesic without
conjugate points, Theorem 3.4 implies that we have empty trapped sets trap±(S(B1 ∪
B2)) = ∅. Therefore, {γ } is a complete system of closed geodesics with empty limit
subcollection. By Lemma 4.2, there exists � > 0 such that any geodesic segment of length
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� intersects γ . This implies that both Birkhoff annuli A(γ̇ ) and A(−γ̇ ) are Birkhoff
sections.

We recall that a consequence of the Lusternik–Schnirelmann theorem is that every Rie-
mannian 2-sphere admits a simple closed geodesic with conjugate points (see Remark 1.1).

LEMMA 4.8. Let (M , g) be a closed connected oriented Riemannian surface all of whose
contractible simple closed geodesics without conjugate points are non-degenerate. If
M �= S2, we consider the collection of waists G′ = {γ1, . . . , γ2G} given by Lemma 4.5; if,
instead, M = S2, we set G′ = {γ }, where γ is any simple closed geodesic with conjugate
points. There exists a possibly empty finite collection G′′ of contractible simple closed
geodesics that are pairwise disjoint and disjoint from all the closed geodesics in G ′ such
that G := G′ ∪ G′′ is a complete system of closed geodesics whose limit subcollection K is
given by the waists in G′′.

Proof. First, assume that M has genus G ≥ 1, so that G′ = {γ1, . . . , γ2G}. The com-
plement B \ (γ1 ∪ · · · ∪ γ2G) satisfies the convexity Assumption 3.1. Since every closed
geodesic γ ∈ G′ intersects some other closed geodesic in G′, if we fix � > L(γ ), for every
z ∈ SM sufficiently close to γ̇ ∪ −γ̇ , then the orbit segment φ(0,�](z) is not contained
in SB. If B does not contain simple closed geodesics, then Theorem 3.4 implies that
trap±(SB) = ∅, and therefore G′ is a complete system of closed geodesics with empty
limit subcollection K = ∅. Now assume that B contains at least a closed geodesic. By
Theorem 3.5, B contains a finite collection of pairwise disjoint simple closed geodesics G′′
such that:
• no complete geodesic is entirely contained in

U := B \
⋃

ζ∈G′′
ζ ;

• if we denote by K the subcollection of the waists in G′′, and we set

K :=
⋃
γ∈K

(γ̇ ∪ −γ̇ ),

the trapped sets of SU are given by

trap+(SU) = Ws(K) \ K , trap−(SU) = Wu(K) \ K .

Since every γ ∈ G′′ \ K has conjugate points, Corollary 2.10 implies that there exists � > 0
such that, for every z ∈ SM sufficiently close to γ̇ ∪ −γ̇ , the orbit segment φ(0,�](z) is not
contained in SU . This proves that the union G := G′ ∪ G′′ is a complete system of closed
geodesics with limit subcollection K.

Now assume that M = S2 so that the collection G′ consists in just one simple closed
geodesic γ with conjugate points. Let B1 and B2 be the connected components of
the complement S2 \ γ . Since γ has conjugate points, each Bi satisfies the convexity
Assumption 3.1. Corollary 2.10 implies that there exists � > 0 such that, for every z ∈ SM

sufficiently close to γ̇ ∪ −γ̇ , the orbit segment φ(0,�](z) is not contained in S(B1 ∪
B2). If S2 \ γ does not contain any simple closed geodesic, then Theorem 3.4 implies
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that trap±(sb : 1) ∪ trap±(sb : 2) = ∅, and therefore G′ is a complete system of closed
geodesics with empty limit subcollection K = ∅. If S2 \ γ contains closed geodesics, then
we argue as in the previous paragraph in both B1 and B2, and we find another collection
G′′ of pairwise disjoint simple closed geodesics in B1 ∪ B2 that, together with G′, form a
complete system of closed geodesics G := G′ ∪ G′′ whose limit subcollection K is given
by the waists in G′′.

We now have all the ingredients to prove Theorem D, which we restate for the reader’s
convenience.

THEOREM D. Let (M , g) be a closed connected orientable Riemannian surface satisfying
the following two conditions.
(i) All contractible simple closed geodesics without conjugate points are non-degenerate.

(ii) Any pair of not necessarily distinct contractible waists γ1, γ2(if it exists) satisfies the
transversality condition Wu(γ̇1) � Ws(γ̇2).

Then the geodesic vector field of (M , g) admits a Birkhoff section.

Proof. Lemma 4.8 provides a complete system of closed geodesics. If its limit subcol-
lection is non-empty, by applying Lemma 4.4 a finite number of times, we end up with
another complete system of closed geodesics G with empty limit subcollection. We denote
by ϒ the union of the Birkhoff annuli of the closed geodesics in G, that is,

ϒ :=
⋃
γ∈G

(A(γ̇ ) ∪ A(−γ̇ )).

By Lemma 4.2, there exists � > 0 such that, for each z ∈ SM , the orbit segment φ(0,�](z)

intersects ϒ . We apply Fried surgery to resolve the self-intersection of ϒ (if there is any),
and we end up with a surface of section � � SM such that, for each z ∈ ϒ , the orbit
segment φ(−1,1)(z) intersects �. Therefore, for each z ∈ SM , the orbit segment φ(0,�+2)(z)

intersects �, and we conclude that � is a Birkhoff section.

Finally, Theorem E is a consequence of the following statement.

THEOREM 4.9. Let (M , g) be a closed connected orientable surface. If M has genus
G ≥ 1, then we consider the collection of waists G′ = {γ1, . . . , γ2G} given by Lemma
4.5 and the surface of section �′ � SM provided by Lemma 4.6, which has genus one
and 8G − 4 boundary components, all covering the closed geodesics in G′; if, instead,
M = S2, then we set G′ = {γ0}, where γ0 is any simple closed geodesic with conjugate
points, and we set �′ := A(γ̇0) ∪ A(−γ̇0). Assume that the complement

B := M \
⋃

γ∈G′
γ

contains at least a closed geodesic and no degenerate simple closed geodesics without
conjugate points. Then there exists a finite collection G′′ of simple closed geodesics that are
pairwise disjoint and disjoint from the closed geodesics in G′ with the following properties.
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(i) Every orbit of the geodesic flow intersects �′ ∪ �′′, where

�′′ :=
⋃

γ∈G′′
(A(γ̇ ) ∪ A(−γ̇ )) ⊂ SM \ �′.

(ii) We denote by K the subcollection of waists in G′, and

K :=
⋃
γ∈K

(γ̇ ∪ −γ̇ ).

The trapped sets of SM \ (�′ ∪ �′′) are given by

trap+(SM \ (�′ ∪ �′′)) = Ws(K) \ K ,

trap−(SM \ (�′ ∪ �′′)) = Wu(K) \ K .

(iii) There exists � > 0 such that, for each z ∈ SM sufficiently close to the boundary
components ∂�′ ∪ ∂�′′ \ K , we have φ(0,�](z) ∩ (�′ ∪ �′′) �= ∅.

Proof. Lemma 4.8 provides a (possibly empty) finite collection G′′ of contractible simple
closed geodesics that are pairwise disjoint and disjoint from all the closed geodesics in G ′
such that G := G′ ∪ G′′ is a complete system of closed geodesics whose limit subcollection
K is given by the waists in G′′. We set

ϒ ′ :=
⋃

γ∈G′
(A(γ̇ ) ∪ A(−γ̇ )), �′′ :=

⋃
γ∈G′′

(A(γ̇ ) ∪ A(−γ̇ )).

If M = S2, then we have set �′ := ϒ ′. If, instead, M �= S2, then we require the surface of
section �′ provided by Lemma 4.5 to be contained in a sufficiently small neighborhood of
ϒ ′ so that �′ ∩ �′′ = ∅, and by Lemma 4.6(iv),

φ(−1,1)(z) ∩ �′ �= ∅ for all z ∈ ϒ ′, φ(−1,1)(z
′) ∩ ϒ ′ �= ∅ for all z′ ∈ �′.

We set

K :=
⋃
γ∈K

(γ̇ ∪ −γ̇ ), R :=
⋃

γ∈G′∪G′′\K
(γ̇ ∪ −γ̇ ) = ∂�′ ∪ ∂�′′ \ K .

By properties (ii) in Definition 4.1, every complete orbit φ(−∞,∞)(z) intersects �′ ∪ �′′,
and

trap+(SM \ (�′ ∪ �′′)) = trap+(SM \ (ϒ ′ ∪ �′′)) = Ws(K) \ K ,

trap−(SM \ (�′ ∪ �′′)) = trap−(SM \ (ϒ ′ ∪ �′′)) = Wu(K) \ K .

Moreover, by properties (iii) in Definition 4.1, there exist � > 0 and an open neighborhood
N ⊂ SM of R such that

φ(0,�](z) ∩ (ϒ ′ ∪ �′′) �= ∅ for all z ∈ N .

If we take a sufficiently small open neighborhood N ′ ⊂ N of R, then we also have

φ(0,�+1](z) ∩ (�′ ∪ �′′) �= ∅ for all z ∈ N ′.
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