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COMPUTING THE RANK OF ELLIPTIC CURVES
OVER NUMBER FIELDS

DENIS SIMON

Abstract

This paper describes an algorithm of 2-descent for computing the
rank of an elliptic curve without 2-torsion, defined over a general
number field. This allows one, in practice, to deal with fields of
degree from 1 to 5.

Introduction

Computing the rank of the Mordell–Weil group of an elliptic curveE defined overQ has
now become a classical task. This is currently achieved by using 2-descent (see [7]). This
method can provably compute only the 2-Selmer group of the curve. However, in many cases
the Tate–Shafarevich group happens to have no 2-torsion, in which caseE(Q)/2E(Q) can
be identified with the 2-Selmer group. From this, we can easily deduce the rank ofE(Q).

Two different strategies are currently used for computing such obects. The first one,
called thedirect method, uses the arithmetic of number fields, while the second one, called
the indirect method, needs only arithmetic inQ. A discussion of these different methods,
and a comparison between them, can be found in [13] or [24].

Our goal is to describe completely adirect2-descent method for elliptic curves defined
over a number fieldK. A description has already been given for theindirect method over
some specific real quadratic fields (see [11]). We dispense here with any assumption on the
field K, and we give an example of an elliptic curve defined over an imaginary quadratic
field with nontrivial class group. With the help of the package PARI/GP (see [5]), we have
been able to treat a great number of curves defined over quadratic fields, and some over
larger degree fields (up to degree 5). The completegp-program is available at [23]. To make
things easier, we shall restrict to elliptic curves without 2-torsion overK. The basis of our
method can be found in [4], and in [24]. Elliptic curves with 2-torsion have already been
dealt with by N. Bruin (see [2] and [3], or [25] for background information).

The present method is a direct consequence of the arithmetic of invariants of quartics as
described by J. Cremona in [9]. The new ingredients introduced in the present work mainly
comprise the solution of Legendre equations over number fields, a method for minimizing
some quartics constructed over general number fields, and the implementation of the whole
method.

We refer readers who are specifically interested in the Selmer group to [18], which
describes a more general method for computing the Selmer group of the Jacobian of a
hyperelliptic curve, or to [14], which performsp-descent over elliptic curves.
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Computing the rank of elliptic curves over number fields

1. Description of the method

1.1. Definition of the morphism

Let K be a number field, and letE be an elliptic curve defined overK, given by an
equation of the form

y2 = P(x),

whereP(x) = x3 + Ax2 + Bx + C, with A, B andC ∈ K. The group of points ofE with
coordinates inK will be denoted byE(K).

Without loss of generality, we can make the assumption thatA, B andC are in the ring
of algebraic integersZK of K. We make the further assumption that the polynomialP is
irreducible overK. This is equivalent to saying thatE(K) has no 2-torsion.

Let θ be a root ofP in C. This algebraic integer generates a cubic extensionL = K(θ)

of K. It is not difficult to prove the following result (see [4]).

Proposition 1.1. The map

φ : E(K) → L∗/L∗2

0 7→ 1
(x, y) 7→ x − θ

defines a group homomorphism with exact kernel2E(K).

Thanks to this homomorphism, it is possible to obtain information about the rank of
E(K). Indeed, if we know the image ofφ, we also know the groupE(K)/2E(K), whose
cardinality is equal to 2r, wherer is precisely the rank ofE(K). Note also the following
proposition.

Proposition 1.2. The image ofφ is a subgroup of the kernel of the norm mapNL/K from
L∗/L∗2 to K∗/K∗2.

The proof is an immediate consequence of the relationNL/K(x − θ) = P(x) = y2. In
[18], we find an identification of this kernel with the cohomology groupH 1(K, E(K̄)[2]).

1.2. Reduction to a finite set

The next two propositions show that Imφ is contained in some easily computable finite
subgroup of the infinite groupL∗/L∗2. We use the notationδ for the projection ofδ ∈ L∗
in L∗/L∗2.

Let S be a finite set of places ofL containing the infinite places. Let

L(S, 2) =
{
δ ∈ L∗/L∗2, ∀P 6∈ S, vP(δ) ≡ 0 (mod 2)

}
.

In order to describe this group, we make use of theS-units ofL, denoted byUL,S , and of
theS-class group ClS(L). Recall that Dirichlet’sS-unit theorem (see [15]) asserts thatUL,S

is a finitely generated Abelian group, whose torsion part contains exactly the roots of unity
in L, and whose free part has rank|S| − 1. TheS-class group ClS(L) is isomorphic to the
quotient of the ordinary class group Cl(L) by the subgroup generated by the classes of all
prime ideals inS. In [21], we prove the following result (see also [17]).

Proposition 1.3. There exists an isomorphism

L(S, 2) ' UL,S

U2
L,S

× ClS(L)[2].
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Computing the rank of elliptic curves over number fields

If we denote byh2(S) the 2-rank of ClS(L), we have|L(S, 2)| = 2|S|+h2(S). Thus, if we
adjoin toS a set ofh2(S) prime ideals which generate exactly ClS(L)[2], we obtain a new
setS′ such that

L(S, 2) ' L(S′, 2) ' UL,S′/U2
L,S′ .

Proposition 1.4. Let S be the set of all infinite places ofL together with the prime ideals
P of L abovep in K such thatP|P ′(θ) andp2| DiscP . We have

Im φ ⊂ L(S, 2) ∩ KerNL/K.

Remark 1.5. The norm inL/K of the numberP ′(θ) is precisely equal to the discriminant
of the polynomialP . The discriminant of the elliptic curve is equal to 16 times that of the
polynomial. As a consequence of this proposition, it will be enough to consider the prime
ideals whose square divides DiscP . Thus, it is not necessary to consider all prime factors
of 2 DiscP . See also [19] or [20] for a description of these primes in terms of Tamagawa
numbers.

Proof. Let (x, y) be a nontrivial point onE(K). We shall first prove that the valuation
vP(x − θ) is even at all primes not dividingP ′(θ). Assume first that this valuation is
negative. Sinceθ is integral, we havevP(x − θ) = vP(x). The relationy2 = x3 + ...

implies that 2vP(y) = 3vP(x), which proves our assertion in this case. Assume now that
vP(x − θ) is nonnegative and odd. In the relation

y2 = P(x) = (x − θ)

(
P ′(θ) + (x − θ)

P ′′(θ)

2
+ (x − θ)2

)
,

all the elements that occur are integral atP. If we compare the valuations of both sides of
the equality, we see thatP divides the second factor and therefore dividesP ′(θ).

It now remains to prove that ifvP(x − θ) is odd, thenp2 divides DiscP . SinceP
dividesP ′(θ), we know thatp divides DiscP . Assume thatp2 does not divide DiscP .
Since we know thatvp(DiscP) > e(P/p) − 1, wheree(P/p) is the relative ramification
index, it follows thatp factors asP2

1P2 in L/K, with P2 not dividing P ′(θ) (sincep2

does not divide DiscP ). If we setαi = vPi
(x − θ), we know thatα2 is even and that

2vp(y) = vp(NL/K(x − θ)) = α1 +α2 is also even. It follows thatα1 = vP(x − θ) is even,
as claimed.

1.3. Legendre equations

All the formulas of this section (1.3) and of the next (1.4) are byproducts of the theory
developed in [9].

What we have just proved allows us to embed the group Imφ into the finite computable
groupL(S, 2) ∩ KerNL/K for an explicit finite setS. It now remains to decide whether a
given elementδ of L(S, 2)∩KerNL/K belongs to Imφ. Explicitly, such an element belongs
to Imφ if and only if it can be written in the formx − θ with x ∈ K, or equivalently if we
can findz ∈ L∗ such thatδz2 = x −θ . After writing δ = a −bθ +cθ2 with NL/K(δ) = r2,
andz = u + vθ + wθ2, we get

δ′ = δz2 = q0(u, v, w) − q1(u, v, w)θ + q2(u, v, w)θ2,

whereq0,q1 andq2 are three quadratic forms in the variablesu,v andw. Their discriminants
are respectivelyNL/K((θ2 + Aθ + B)δ) = C2r2, NL/K((θ + A)δ) = (AB − C)r2 and
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Computing the rank of elliptic curves over number fields

NL/K(δ) = r2, whereA, B andC are the coefficients of the polynomialP definingE.
Since we have assumed that the polynomialP is irreducible, the quantitiesC andAB − C

cannot vanish. We have to solve simultaneouslyq2 = 0 andq1 = 1. We first look for a
particular solution ofq2 = 0. We have:

q2(u, v, w) = cu2 + (A2c + Ab − Bc + a)v2

+(A4c + A3b − 3A2Bc + A2a − 2ABb + 2ACc + B2c − Ba + Cb)w2

−2(b + Ac)uv + 2(A2c + Ab − Bc + a)uw

+2(−A3c − A2b + 2ABc − Aa + Bb − Cc)vw.

Using the auxiliary variablesα = Abc + Bc2 − ac + b2 andβ = A2bc + ABc2 + Ab2 −
Cc2 + ab, we make the linear change of variables:

U = cu − (b + Ac)v + (a + Ab + A2c − Bc)w,

V = αv − βw,

W = rw,

so that we obtain−αcq2(u, v, w) = Q2(U, V, W) with

Q2(U, V, W) = V 2 − αU2 − cW2. (1)

Thus, we are reduced to solving the Legendre equationQ2 = 0. The above is valid only if
αc does not vanish. However, ifc = 0, there is a trivial solution (there is essentially nothing
to do), and ifα = 0, we observe thatNL/K(δ)/δ = (r/δ)2δ is equivalent toδ and has no
term inθ2, since this term is precisely given byα.

Whenαc 6= 0, equation (1) defines a conic. For such a curve, we know that the Hasse
principle applies: the existence of a solution inK is equivalent to the existence of a local
solution at every place ofK. In fact, it is only necessary to test the infinite places and the
places dividing 2αc. This local solubility is given by the Hilbert symbol.

In the classical situation where we look for rational points on elliptic curves defined
over Q, this leads to Legendre equations with coefficients inZ. In this case, we have at
our disposal an efficient algorithm to solve this equation (see [10]). This algorithm makes
a crucial use of Euclidean division inZ. For this reason, it is difficult to write down a direct
generalization that is valid over general number fields; in fact, it is seldom even possible
(see [21]). We must proceed in another way.

Let us consider the quadratic extensionK(
√

α)/K = F/K. Equation (1) is equivalent to

NF/K

(
V + √

αU

W

)
= c. (2)

Note that the two numbersα andc play a symmetrical role. The question is whether or not
c is a norm for the extensionF/K, and, if this is the case, to find an explicit element of
normc.

Before giving an answer to this question, we need some notation. The extensionF/K is
quadratic, and hence cyclic. Denote byG its Galois group. LetSK be a finite set of primes
of K, and letSF be the set of primes ofF above those inSK . By an abuse of notation, we
shall writeS for both. As before, we denote byUK,S theS-units ofK, and byUF,S the
S-units ofF . If ClS(F ) is theS-class group ofF , ClS(F )G is the subgroup of invariant
classes under the action ofG, and ClS(IG) the subgroup of classes of invariant ideals under
this action. We have ClS(IG) ⊂ ClS(F )G ⊂ ClS(F ).

With this notation, we have the following proposition.
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Computing the rank of elliptic curves over number fields

Proposition 1.6. Let F/K be a cyclic extension of number fields with Galois groupG.
There exists an isomorphism

ClS(F )G

ClS(IG)
' NF/K(F ∗) ∩ UK,S

NF/K(UF,S)
.

In particular, if S generates the class groupCl(F ), we have

NF/K(F ∗) ∩ UK,S = NF/K(UF,S).

This is essentially Chevalley’s ambiguous classes theorem; a proof of the statement as
given above, and more complete results about norm equations in non-Galois extensions,
can be found in [22].

Thanks to this result, we know in which cases theS-units that are norms for a cyclic
extension are simply norms ofS-units (this is not always the case!). Thus, a solution of
equation (2) will be given by anS-unit of F , whereS contains all prime factors ofc, and
generators of the 2-part of Cl(F ). Since there is only a finite number ofS-units modulo
squares, there is only a finite number of potential solutions. If this construction does not
give a solution, then there is no solution at all.

The above discussion either gives one solution toq2 = 0, or proves that it is impossible.
Using this solution, we can construct an elementz ∈ L∗ such thatδ′ = δz2 = a − bθ .

1.4. Construction of the quartic

Assume now thatδ is of the formδ = a − bθ , with a andb algebraic integers inZK .
We haveNL/K(δ) = r2. We want to findδ′ with δ′ = δ and of the formδ′ = x − θ . This is
equivalent to looking forz = u+ vθ +wθ2 ∈ L∗ such thatδ′ = δ · z2 satisfies bothq2 = 0
andq1 = 1. The previous discussion is no longer applicable, since we are precisely in the
casec = 0. These equations can be written as follows:

q2(u, v, w) = (Ab + a)v2 + (A3b + A2a − 2ABb − Ba + Cb)w2

−2buv + 2(Ab + a)uw + 2(−A2b − Aa + Bb)vw;
q1(u, v, w) = bu2 − Bbv2 + (−ABa − A2Bb + ACb + B2b + Ca)w2

+2(ABb + Ba − Cb)vw − 2Bbuw − 2auv.

Here, it is important to note thatb 6= 0 if δ 6= 1. Indeed, otherwise we would haveδ = a

anda3 = NL/K(δ) = r2, and thereforea = δ would be a square, which can only occur for
the trivial caseδ = 1, a contradiction. The caseδ = 1 is, of course, of no interest. We can
thus make the linear change of variables

U = −2b2u + (Ab2 + ab)v + (a2 + 2Bb2 − A2b2)w,

V = −bv + (a + Ab)w,

W = rw,

and we get the identityb2q2(u, v, w) = W2 − UV . The solutions ofq2 = 0 are given
by (U, V, W) = (λ2/y, µ2/y, λµ/y), where(λ, µ, y) belongs toK × K × K∗. We can
expressu, v andw in terms ofy, λ andµ. The equationq1 = 1 becomes:

4b3y2 = λ4 − 2(Ab + 3a)λ2µ2 + 8rλµ3 + (A2b2 − 2Aab − 4Bb2 − 3a2)µ4

= Q(λ, µ).

The discriminant of this fourth-degree polynomial inλ andµ is equal to 212b6 DiscP .
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Computing the rank of elliptic curves over number fields

Now recall that a quartic has two polynomial invariantsI andJ , of total degree 2 and 3
and weight 4 and 6 respectively, in the coefficients of the quartic, such that the ring of
invariants of the quartic is the free polynomial algebra generated byI andJ . For example,
the usual discriminant of the quartic is equal to(4I3 − J 2)/27. It is easy to check that
the I and J invariants ofQ are related to theI and J invariants ofP (considered as
a degree-4 polynomial with zero leading term) by the relationsI (Q) = 24b2I (P ) and
J (Q) = 26b3J (P ). They are also related to thec4 andc6 invariants of the elliptic curve by
I (Q) = b2c4 andJ (Q) = 2b3c6.

1.5. Minimization of the quartic

In classical 2-descent overQ, we get only quartics with discriminant DiscP or 212 DiscP

(see, for example, [7]). This comparison suggests that the factorb6 can be removed and the
quartic minimized. Such a minimization can be achieved as follows, using the fact that the
factorization ofQ mod b is formally given bya4Q = (aλ − rµ)3(aλ + 3rµ).

(An algorithm for finding suchu andv, valid over general number fields, is given in [6]).

Proposition 1.7. Let l, a1, r1, u, andv be five integers inZK , such that

f = (la + ba1)u − (lr + br1)v 6= 0.

The quartic4b3y2 = Q(λ, µ) can be minimized to4y2 = Q′(λ′, µ′) such that

• Q′ has integral coefficients;

• DiscQ′ = 212f 12 DiscP ;

• I (Q′) = 24f 4I (P ) andJ (Q′) = 26f 6J (P ).

Proof. Consider the linear change of variables

λ = buλ′ + (lr + br1)µ
′;

µ = bvλ′ + (la + ba1)µ
′.

Its determinant isbf . Applied toQ, this linear change of variables defines a new polynomial
which is formally divisible byb3. LettingQ(λ, µ) = b3Q′(λ′, µ′), we see that our quartic
becomes

4y2 = Q′(λ′, µ′).

The discriminant ofQ′ is now equal to 212f 12 DiscP , and we obtain the conclusion of the
proposition. Note that theI andJ invariants are also reduced in the same way.

Remark 1.8. It is quite common thata andb are coprime. In this case, we can findl anda1
such thatla + ba1 = 1 (an algorithm for finding suchl anda1, valid over general number
fields, is given in [6]). A suitable change of variables is then

λ = bλ′ + (lr + br1)µ
′,

µ = µ′,

since it givesu = 1, v = 0, and hencef = 1.

I do not claim that these choices will always lead to aQ′ with small coefficients, and
a better choice should be sought. In [8], J. Cremona describes a very efficient reduction
algorithm for the coefficients of a real quartic; in some sense, it gives the smallest possible
reduction.
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1.6. Solubility of the quartic

Before looking for a solution of the quartic overK, we can look at its local solubility.
Since the quartic defines a curve of genus 1, we know that there exist local solutions at all
places not dividing 2 DiscQ = 213b3 DiscP (see, for example, [11]).

The local solubility at the bad primes is tested by using a classical Hensel lift (see [11]).
For the Archimedean real places, this is equivalent to knowing whether the polynomialbQ

or Q′ can assume non-negative values.
As soon as we know that the quartic is everywhere locally soluble, we can hope to find

a global point. For this, we can test all values ofx up to a given height, using more or
less powerful methods. If we are lucky, we find a point on the quartic, from which it is
not difficult to recover a point on the elliptic curve by using the formulas of this paper. If
we do not know where the quartic comes from (for example, if it has been constructed by
another method; see [8]), it is still possible to recover the point on the elliptic curve by using
a syzygy (see [9]). But since we do not have any bound for the height of a point on the
quartic, it may happen that the smallest one is too large to be found by such a naive search,
and hence we might miss it. In fact it is not always true that such a point will exist at all.

The set of allδ which lead to everywhere locally soluble quartics forms a subgroup of
L(S, 2)∩KerNL/K : this is the Selmer groupS2(E/K) (see [18]). Recall the exact sequence

1 → E(K)/2E(K) → S2(E/K) → X(E/K)[2] → 1.

Since the groupX(E/K)[2] of elements of order 2 in the Tate–Shafarevich group is not
always trivial, this implies the well-known fact that the local-global Hasse principle does
not hold for genus 1 curves; in other words, the existence of local solutions does not imply
the existence of a global one (overK).

Remark 1.9. As has been pointed out to me by J. Cremona and M. Stoll, it is not necessary
to have the explicit equation of the quartic in order to know its local solubility. Indeed, we
can use a criterion of Siksek (given in [16]) to test the local solubility directly on the system
q2 = 0, q1 = 1. Using the notation of [16], it is necessary only to test the local solubility
at the primes dividing 2 or∂(q2, q1 − 1) = r12 DiscP . The main advantage of this idea is
that it allows one to compute the Selmer group directly, and we save the time needed for
solving all the Legendre equations that lead to non-soluble quartics.

2. Examples

Using the PARI/GP package (see [5]), we have implemented this algorithm and computed
the Mordell–Weil groups of various elliptic curves for several number fields with degrees
ranging from 1 to 5, and havinga priori any class number. However, this requires a large
amount of work for large degrees (we have to compute class groups and units in degree-15
fields), and for such degrees, the computation was possible only for a few well-chosen
examples. The completegp-program is available at [23].

2.1. A complete example

For the quadratic case, the computations are quite fast (less than one second for the
easy cases). The following example consists of an elliptic curve defined over an imaginary
quadratic field with nontrivial class number (as opposed to the situation in [11]).
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Let K = Q(ε), with ε2 − ε + 4 = 0. This is the imaginary quadratic field of discrimi-
nant−15. Its class group is of order 2.

Consider the elliptic curveE given by the equation

y2 = P(x) = x3 + εx − 1.

The discriminant ofP is equal to 12ε −11, and is not divisible by the square of a nontrivial
ideal inK. The fieldL is generated byθ such thatP(θ) = 0 or, equivalently, such that
0 = 1 − θ + 4θ2 − 2θ3 + θ4 + θ6. The class group ofL is of order 2, and is generated by
the prime idealP2 above 2 such thatP2

2 = (1− θ)ZL, andNL/K(1− θ) = ε. The units of
L are generated by−1, θ and−2 + εθ + θ2, with respective relative norms−1, 1 and 1.

Following Proposition1.4, we setS = {∞1, ∞2, ∞3}∪{P2}. For this choice, the group
L(S, 2) is generated by−1,θ , −2+εθ +θ2, and 1−θ . Since we have computed the norms
of these elements, linear algebra overZ/2Z tells us that the groupL(S, 2) ∩ KerNL/K is
of order 4, and is generated by the classes ofθ and−2 + εθ + θ2. From this, we already
know that the rank ofE(K) is at most equal to 2. We have

L(S, 2) ∩ KerNL/K =
{
1, θ,−2 + εθ + θ2, 1 − (ε + 2)θ + εθ2

}
.

Let δ = δ1 = θ . Sinceδ has no coefficient inθ2, we are already at the final step of the
method, and we have to find aK-rational point on the quartic

−4y2 = λ4 + 8λµ3 − 4εµ4.

We check that this quartic has no local solution atp2 (belowP2), and hence no global
solution.

Let δ = δ2 = −2 + εθ + θ2. Here, we havec = 1, and hence the Legendre equation
V 2 − αU2 = cW2 is satisfied by(U, V, W) = (0, 1,1). From this, we find the solution
(u, v, w) = (ε, 2− θ, 2) for q2 = 0, which givesδ′ = δ(u + vθ + wθ2)2 = ε(1− θ), with
NL/K(δ′) = ε4. We then have to find aK-rational point on the quartic

4ε3y2 = λ4 − 6ελ2µ2 + 8(ε − 4)λµ3 + (9ε + 28)µ4.

Once again, we check that this quartic has no local solution atp2, and hence no global
solution.

Let δ = δ3 = 1 − (ε + 2)θ + εθ2. Here, we haveα = ε2, and thus the Legendre
equationV 2 − αU2 = cW2 has the solution(U, V, W) = (1, ε,0). From this, we find the
solution(u, v, w) = (−5 + ε, −2, 0) for q2 = 0, which givesδ′ = δ(u + vθ + wθ2)2 =
(29+ 3ε)− (10+ 14ε)θ , with NL/K(δ′) = (93− 41ε)2. We then have to find aK-rational
point on the quartic

4(10+ 14ε)3y2 = λ4 − 6(29+ 3ε)λ2µ2 + 8(93− 41ε)λµ3 + (5201+ 283ε)µ4.

This quartic is minimized by the linear change of variablesλ = bλ′ + (lr + br1)µ
′ and

µ′ = µ with l = (29/4)ε + 4 andr1 = −48+ 19ε. Thus, the quartic is equivalent to

4y2 = (14ε + 10)λ′4 + (−12ε + 68)λ′3µ′ − 24ελ′2µ′2 + (2ε − 16)λ′µ′3 + εµ′4.

By a naive search, we find the solutionλ = ε, µ = 2 andy = 4−2ε, which gives the point(
−ε

3
+ 1,

ε

9
+ 4

9

)
∈ E(K).

We have therefore proved thatE(K) has rank 1, and that the groupX(E/K)[2] is trivial.
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Table 1: Quadratic examples

N a1 a2 a3 a4 a5 #S2 r #X[2] P

K = Q(
√−3); ε2 − ε + 1 = 0

19 0 −ε 1 −1 + ε 0 2 1 1 (1,0)

19 0 −ε 1 9− 9ε −15 2 1 1 (2ε, −1 + ε)

19 0 −ε 14 769− 769ε −8470 2 1 1 (801
49 ε, −171+ε

343 )

19 0 −ε 1 −31− 99ε 74− 498ε 2 1 1 (−4 − 3ε,2 − ε)

19 0 −ε 1 99+ 31ε −424+ 498ε 2 1 1 (3 − 3ε,5 + 10ε)

K = Q(
√−4); ε2 + 1 = 0

13+ 8ε 0 1− ε ε −ε 0 2 1 1 (0, 0)

K = Q(
√−8); ε2 + 2 = 0

13+ 8ε 0 −1 + ε 1 1− ε ε 1 0 1

13+ 8ε 0 −1 + ε 1 11− 11ε −27+ 3ε 1 0 1

13+ 8ε 0 −1 + ε 1 −9 + 39ε −210− 39ε 1 0 1

13+ 8ε 0 1− ε 1 2− 2ε 1 1 0 1

K = Q(
√−19); ε2 − ε + 5 = 0

2ε ε 1 − ε 1 −1 0 1 0 1

2ε ε 1 − ε 1 9− 5ε −24− 2ε 1 0 1

2ε ε 1 − ε 1 −31− 15ε −60− 54ε 1 0 1

−3 + 6ε 0 1 1 20 −32 4 0 4

−3 + 6ε 0 1 1 −4390 −113432 4 0 4

−3 + 6ε 0 −1 1 −2 2 4 2 1 (2, 1)

(1 + 4ε, 15− 12ε)

K = Q(
√−43); dε2 − ε + 11 = 0

13+ ε 0 −ε 1 + ε −2 1− ε 2 1 1 (−1,−2)

K = Q(
√−67); ε2 − ε + 17 = 0

3ε ε 1 + ε ε −1 − 3ε 16− 5ε 2 1 1 (−ε, −4)

2.2. A collection of quadratic examples

In [12], we find a collection of elliptic curves defined over imaginary quadratic fields
with class number 1. Using the theory ofL functions, J. Cremona and E. Whitley computed
the analytic rank and some other data associated with these elliptic curves. In each case, our
2-descent method is able to prove the observations that they made from their computations.
We present the results in Table1.

The number fieldK is given by the square root of its discriminant, and by the minimal
polynomial of its generatorε. We use here the standard notation for elliptic curves: its
Weierstrass model is given byy2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, and its conductor
is N . The result of the 2-descent is given by the quantities #S2 (the order of the Selmer
group),r (the rank), #X[2] (the order of the 2-part of the Tate–Shafarevich group) and a
set of independent points on the curve.
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Remark 2.1. A word has to be said about the two curves with nontrivial Tate–Shafarevich
group. These curves are in fact defined overQ. It is well known that

rank
(
E

(
Q

(√−19
)))

= rank(E(Q))+ rank
(
E(−19)(Q)

)
,

whereE(−19) is the twist ofE by−19. From this, it is not difficult to prove that the rank must
be equal to 0 overQ(

√−19). On the other hand, our 2-descent produces three nontrivial
everywhere locally soluble quartics, which certainly represent nontrivial elements in the
Tate–Shafarevich group. To be more precise, we give these three quartics for the first curve:

y2 = −103x4 − 160x3 − 134x2 − 56x + 5

y2 = (27ε− 56)x4 + (20ε − 36)x3 + (−48ε+ 22)x2 + (−4ε + 32)x + (ε + 7)

y2 = (50ε − 229)x4 + (76ε+ 612)x3 + (−306ε− 782)x2

+(236ε+ 520)x + (−53ε− 134).

2.3. A degree-5example

Consider the number fieldK = Q(ε), with ε5 − ε3 − ε2 + ε + 1 = 0. This field has
a single real embedding, and its discriminant is equal to 1609. Using 2-descent, we have
computed that the curve

E : y2 = x3 + ε

has rank 1, and that the groupX(E/K)[2] is trivial. The point(ε4 − ε, ε + 1) has infinite
order inE(K). We do not go into the cumbersome details here; the interested reader should
run thegp-program available at [23].
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