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COMPUTING THE RANK OF ELLIPTIC CURVES
OVER NUMBER FIELDS

DENIS SIMON

Abstract

This paper describes an algorithm of 2-descent for computing the
rank of an elliptic curve without 2-torsion, defined over a general
number field. This allows one, in practice, to deal with fields of
degree from 1 to 5.

Introduction

Computing the rank of the Mordell-Weil group of an elliptic cuivedefined overQ has
now become a classical task. This is currently achieved by using 2-descent]jsa@dils
method can provably compute only the 2-Selmer group of the curve. However, in many cas
the Tate—Shafarevich group happens to have no 2-torsion, in whictE€@s¢2E (Q) can

be identified with the 2-Selmer group. From this, we can easily deduce the ra(Kof

Two different strategies are currently used for computing such obects. The first on
called thedirect method, uses the arithmetic of number fields, while the second one, calle
theindirect method, needs only arithmetic@ A discussion of these different methods,
and a comparison between them, can be found in [13}4}. [

Our goal is to describe completelyd&ect 2-descent method for elliptic curves defined
over a number fieldk. A description has already been given for thdirect method over
some specific real quadratic fields (sé&]). We dispense here with any assumption on the
field K, and we give an example of an elliptic curve defined over an imaginary quadrati
field with nontrivial class group. With the help of the package PARI/GP (SBeve have
been able to treat a great number of curves defined over quadratic fields, and some c
larger degree fields (up to degree 5). The commgptprogram is available a®3]. To make
things easier, we shall restrict to elliptic curves without 2-torsion &efhe basis of our
method can be found i], and in R4]. Elliptic curves with 2-torsion have already been
dealt with by N. Bruin (see [2] and [3], or [25] for background information).

The present method is a direct consequence of the arithmetic of invariants of quartics
described by J. Cremona ifi][ The new ingredients introduced in the present work mainly
comprise the solution of Legendre equations over number fields, a method for minimizir
some quartics constructed over general number fields, and the implementation of the wh
method.

We refer readers who are specifically interested in the Selmer groutBipwhich

describes a more general method for computing the Selmer group of the Jacobian o
hyperelliptic curve, or tof4], which performg-descent over elliptic curves.
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Computing the rank of elliptic curves over number fields

1. Description of the method
1.1. Definition of the morphism

Let K be a number field, and Igf be an elliptic curve defined ovét, given by an
equation of the form )
y© = Px),
whereP (x) = x3 + Ax? + Bx + C, with A, B andC e K. The group of points oF with
coordinates irk will be denoted byE (K).

Without loss of generality, we can make the assumptionAhd andC are in the ring
of algebraic integer&x of K. We make the further assumption that the polynonfas
irreducible overk . This is equivalent to saying th&t(K) has no 2-torsion.

Letd be aroot ofP in C. This algebraic integer generates a cubic extensien K (9)
of K. Itis not difficult to prove the following result (see [4]).

Proposition 1.1. The map
b E(K) — L*/L*2
0 —~ 1
x,y) +— x—80

defines a group homomorphism with exact ke@#{K).

Thanks to this homomorphism, it is possible to obtain information about the rank o
E(K). Indeed, if we know the image ¢f, we also know the groug (K)/2E (K ), whose
cardinality is equal to’2 wherer is precisely the rank of/ (K). Note also the following
proposition.

Proposition 1.2. The image o is a subgroup of the kernel of the norm mafp,x from
L*/L* to K*/K*2.

The proof is an immediate consequence of the relaN@ng (x — 6) = P(x) =_y2. In
[18], we find an identification of this kernel with the cohomology grati(K , E(K)[2]).

1.2. Reduction to a finite set

The next two propositions show that iris contained in some easily computable finite
subgroup of the infinite group*/L*2. We use the notatiof for the projection o € L*
in L*/L*2.

Let S be a finite set of places d@f containing the infinite places. Let

L(S,2) = {S e L*/L*2, VP ¢ S, vy(8) = 0 (mod a} :

In order to describe this group, we make use of§hanits of L, denoted by, s, and of
theS-class group GI(L). Recall that Dirichlet'sS-unit theorem (se€lf]) asserts thai ;. s

is a finitely generated Abelian group, whose torsion part contains exactly the roots of uni
in L, and whose free part has raf#¢ — 1. TheS-class group GJI(L) is isomorphic to the
quotient of the ordinary class group(Cl by the subgroup generated by the classes of all
prime ideals inS. In [21], we prove the following result (see also [17]).

Proposition 1.3. There exists an isomorphism

U
L(S,2) ~ =% x Clg(L)[2].
[UL,S
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Computing the rank of elliptic curves over number fields

If we denote byi,(S) the 2-rank of C{(L), we have L(S, 2)| = 2/51+h2(5) Thus, if we
adjoin toS a set ofz(S) prime ideals which generate exactlysCl.)[2], we obtain a new
setS’ such that

L(S,2) ~ L(S',2) ~ Uy g/U% .

Proposition 1.4. Let S be the set of all infinite places &f together with the prime ideals
B of L abovep in K such thatl3| P/(0) andp?| Disc P. We have

Im¢ C L(S,2) NKerN/k.

Remark 1.5. The norminL/K of the numberP’(9) is precisely equal to the discriminant
of the polynomialP. The discriminant of the elliptic curve is equal to 16 times that of the
polynomial. As a consequence of this proposition, it will be enough to consider the prim
ideals whose square divides DiBc Thus, it is not necessary to consider all prime factors
of 2DiscP. See also19] or [20] for a description of these primes in terms of Tamagawa
numbers.

Proof. Let (x, y) be a nontrivial point onE(K). We shall first prove that the valuation
vp(x — 6) is even at all primes not dividing®’(9). Assume first that this valuation is
negative. Sinc# is integral, we have(x — ) = vy (x). The relationy? = x3 + ...
implies that 24 (y) = 3ugp(x), which proves our assertion in this case. Assume now that
v (x — 6) is nonnegative and odd. In the relation

P"(6)
2

all the elements that occur are integrafliatlf we compare the valuations of both sides of
the equality, we see th&t divides the second factor and therefore divide&)).

It now remains to prove that by (x — 6) is odd, thenp? divides DiscP. Since’p
divides P’(9), we know thatp divides DiscP. Assume thap? does not divide Dis@®.
Since we know thaty, (Disc P) > e(B/p) — 1, wheree(/p) is the relative ramification
index, it follows thatp factors asP2p, in L/K, with P> not dividing P'(9) (sincep?
does not divide Dis@). If we seta; = v, (x — 0), we know thatx, is even and that
2vp(y) = vp(NL/k (x —0)) = a1 +azis also even. Itfollows that; = vy (x —6) is even,
as claimed. O

Y =Px) =(x—0) (P’(Q)Jr(x—@) +(X—9)2),

1.3. Legendre equations

All the formulas of this section (1.3) and of the next (1.4) are byproducts of the theor
developed in [9].

What we have just proved allows us to embed the group Into the finite computable
groupL(S, 2) N Ker Nz, k for an explicit finite setS. It now remains to decide whether a
given elemens of L(S, 2)NKer .,k belongs to Imp. Explicitly, such an element belongs
to Im ¢ if and only if it can be written in the form — 6 with x € K, or equivalently if we
canfindz e L* such thadz? = x — 6. After writing 8 = a — b6 + c62 with N x (8) = 12,
andz = u + vd + wh?, we get

8 = 8z% = qo(u, v, w) — q1(u, v, W) + g2(u, v, W)6?,

wheregg, g1 andg; are three quadratic forms in the variahles andw. Their discriminants
are respectivelywy x (02 + A8 + B)8) = C2r2, Np/k (8 + A)8) = (AB — C)r? and
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Nk (8) = r?, whereA, B andC are the coefficients of the polynomi#l defining E.
Since we have assumed that the polynoniias irreducible, the quantitieS andAB — C
cannot vanish. We have to solve simultaneougly= 0 andg; = 1. We first look for a
particular solution of;, = 0. We have:

q2(u, v, w) = cu? + (Azc + Ab — Bc + a)v2
+(A% + A%b — 3A%Bc + A%a — 2ABb + 2ACc + B%c — Ba + Ch)w?
—2(b + Ac)uv + 2(A%c + Ab — Bc + a)uw
+2(—A3c — A%b 4+ 2ABc — Aa + Bb — Co)vw.

Using the auxiliary variables = Abc 4+ Bc? — ac + b? andg = A%bc + ABc? + Ab? —
Cc? + ab, we make the linear change of variables:

U=cu— b+ Ac)v + (a + Ab + A%c — Bo)w,
V= av— Bw,
W= rw,

so that we obtair-acgz(u, v, w) = Q2(U, V, W) with
02U, V,W)=V2—aqU? - cW?. (1)

Thus, we are reduced to solving the Legendre equadipa- 0. The above is valid only if
ac does not vanish. However,df= 0, there is a trivial solution (there is essentially nothing
to do), and if« = 0, we observe thaV; /x (8)/6 = (r/8)%8 is equivalent tos and has no
term in62, since this term is precisely given by

Whenac # 0, equation {) defines a conic. For such a curve, we know that the Hasse
principle applies: the existence of a solutionknis equivalent to the existence of a local
solution at every place of . In fact, it is only necessary to test the infinite places and the
places dividing 2c. This local solubility is given by the Hilbert symbol.

In the classical situation where we look for rational points on elliptic curves definec
over Q, this leads to Legendre equations with coefficientZinn this case, we have at
our disposal an efficient algorithm to solve this equation (46§ [ This algorithm makes
a crucial use of Euclidean division ¥ For this reason, it is difficult to write down a direct
generalization that is valid over general number fields; in fact, it is seldom even possib
(see [21]). We must proceed in another way.

Let us consider the quadratic extension,/a)/K = F/K.Equation (1) is equivalent to

V + JaU
NF/K T =cC.

Note that the two numbersandc play a symmetrical role. The question is whether or not
¢ is a norm for the extensiofi/ K, and, if this is the case, to find an explicit element of
norme.

Before giving an answer to this question, we need some notation. The extéhsiois
quadratic, and hence cyclic. Denote Gyits Galois group. LeSg be a finite set of primes
of K, and letSy be the set of primes of above those ii§x . By an abuse of notation, we
shall write S for both. As before, we denote lyk s the S-units of K, and byUf s the
S-units of F. If Clg(F) is the S-class group ofF, Clg(F)° is the subgroup of invariant
classes under the action@f and Ck (L) the subgroup of classes of invariant ideals under
this action. We have Gl4%) c Cls(F)° c Clg(F).

With this notation, we have the following proposition.

)
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Proposition 1.6. Let F/K be a cyclic extension of number fields with Galois graup
There exists an isomorphism

Cls(F)¢ _ Npx (F¥)NUg s
Cls(46) — Nk (Ups)
In particular, if S generates the class gro@i(F), we have

Nrjk (F*) NUg s = Nr/g (UF,s).

This is essentially Chevalley’s ambiguous classes theorem; a proof of the statement
given above, and more complete results about norm equations in non-Galois extensic
can be found in [22].

Thanks to this result, we know in which cases fanits that are norms for a cyclic
extension are simply norms ¢Funits (this is not always the case!). Thus, a solution of
equation (2) will be given by af-unit of F, whereS contains all prime factors af, and
generators of the 2-part of @'). Since there is only a finite number §funits modulo
squares, there is only a finite number of potential solutions. If this construction does n
give a solution, then there is no solution at all.

The above discussion either gives one solutiogpte- 0, or proves that it is impossible.
Using this solution, we can construct an elemest L* such that’ = §z2 = a — b6.

1.4. Construction of the quartic

Assume now that is of the formé = a — b6, with a andb algebraic integers ik .
We haveNy, k (8) = r?. We want to find’ with 8’ = § and of the forms’ = x — 6. This is
equivalent to looking for = u + v + w6? € L* such tha’ = § - z° satisfies botly, = 0
andg1 = 1. The previous discussion is no longer applicable, since we are precisely in tt
casec = 0. These equations can be written as follows:

go(u, v, w) = (Ab + a)v?® + (A%b + A%a — 2ABb — Ba + Cb)w?
—2buv + 2(Ab + a)uw + 2(—A%b — Aa + Bb)vw;
g1(u, v, w) = bu®> — Bbv> + (—ABa — A’Bb + ACb + B?b + Ca)w?
+2(ABb 4+ Ba — Cb)vw — 2Bbuw — 2auv.
Here, it is important to note that=£ 0 if 5§ # 1. Indeed, otherwise we would have= a
anda® = Nk (8) = 2, and therefore = § Wc_)uld be a square, which can only occur for
the trivial casel = 1, a contradiction. The case= 1 is, of course, of no interest. We can
thus make the linear change of variables
U = —2b%u + (Ab® + ab)v + (a® + 2Bb® — A%b?)w,
V = _bv + (a + Ab)w7
W= rw,
and we get the identity2go(u, v, w) = W2 — UV. The solutions of;» = 0 are given
by (U, V, W) = (A2/y, u?/y, a/y), where(x, u, y) belongs tok x K x K*. We can
express:, v andw in terms ofy, A andu. The equatioy; = 1 becomes:
4b3y? = )4 — 2(Ab + 3a)2%u? + 8raud + (A%b? — 2Aab — 4Bb® — 3a®)u*
=00, w.
The discriminant of this fourth-degree polynomiabimndy is equal to 32° Disc P.
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Now recall that a quartic has two polynomial invariantand/, of total degree 2 and 3
and weight 4 and 6 respectively, in the coefficients of the quartic, such that the ring ¢
invariants of the quartic is the free polynomial algebra generatddamd.J. For example,
the usual discriminant of the quartic is equal(td® — J2)/27. It is easy to check that
the I and J invariants of Q are related to thd and J invariants of P (considered as
a degree-4 polynomial with zero leading term) by the relatibh@) = 2*»21(P) and
J(Q) = 25637 (P). They are also related to tlag andcg invariants of the elliptic curve by
1(Q) = b%cs andJ (Q) = 2b3cs.

1.5. Minimization of the quartic

In classical 2-descent ovér, we get only quartics with discriminant Digtor 22 Disc P
(see, for example]). This comparison suggests that the faégfcan be removed and the
quartic minimized. Such a minimization can be achieved as follows, using the fact that tt
factorization ofQ mod b is formally given bya*Q = (ai — ru)3ar + 3rp).

(An algorithm for finding sucl andv, valid over general number fields, is given &j)]

Proposition 1.7. Letl, as, r1, u, andv be five integers iZ.g, such that
f = (la+ bar)u — (Ir + br)v # 0.
The quarticdb3y2 = Q(x, 1) can be minimized tdy2 = Q’()/, u’) such that
* O’ has integral coefficients;
 DiscQ’' = 22f12Djsc P;
o 1(Q) =2%f41(P)andJ(Q") = 2°f8J(P).
Proof. Consider the linear change of variables
A =bul + (r +brou/;
w = bv) + (la + ba) .

Its determinantigf. Applied toQ, this linear change of variables defines a new polynomial
which is formally divisible byb3. Letting Q (1, ) = b3Q’ (), 1), we see that our quartic

becomes ) L,
4y? = Q' ).

The discriminant o2’ is now equal to » 12 Disc P, and we obtain the conclusion of the
proposition. Note that thé andJ invariants are also reduced in the same way. O

Remark 1.8. Itis quite common that andb are coprime. In this case, we can firahda;
such thaia + ba; = 1 (an algorithm for finding suchandas, valid over general number
fields, is given in [6]). A suitable change of variables is then

A=0bN + Ur +br)u,
=,
since it givest = 1,v = 0, and henceg = 1.
| do not claim that these choices will always lead t@awith small coefficients, and
a better choice should be sought. B],[J. Cremona describes a very efficient reduction

algorithm for the coefficients of a real quartic; in some sense, it gives the smallest possil
reduction.
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1.6. Solubility of the quartic

Before looking for a solution of the quartic ov&r, we can look at its local solubility.
Since the quartic defines a curve of genus 1, we know that there exist local solutions at
places not dividing 2 Dis@ = 2133 Disc P (see, for example, [11]).

The local solubility at the bad primes is tested by using a classical Hensel lifti(spe [
For the Archimedean real places, this is equivalent to knowing whether the polyriggnial
or Q' can assume non-negative values.

As soon as we know that the quartic is everywhere locally soluble, we can hope to fir
a global point. For this, we can test all valuesxotip to a given height, using more or
less powerful methods. If we are lucky, we find a point on the quartic, from which it is
not difficult to recover a point on the elliptic curve by using the formulas of this paper. If
we do not know where the quartic comes from (for example, if it has been constructed |
another method; see [8]), itis still possible to recover the point on the elliptic curve by usin
a syzygy (see [9]). But since we do not have any bound for the height of a point on tf
quartic, it may happen that the smallest one is too large to be found by such a naive seal
and hence we might miss it. In fact it is not always true that such a point will exist at all.

The set of all§ which lead to everywhere locally soluble quartics forms a subgroup of
L(S, 2)NKer N, : thisis the Selmer grouf?(E/K) (see [18]). Recall the exact sequence

1— E(K)/2E(K) — SXE/K) — III(E/K)[2] — 1.

Since the groupglI(E/K)[2] of elements of order 2 in the Tate—Shafarevich group is not
always trivial, this implies the well-known fact that the local-global Hasse principle doe:
not hold for genus 1 curves; in other words, the existence of local solutions does not img
the existence of a global one (ovE).

Remark 1.9. As has been pointed out to me by J. Cremona and M. Stoll, it is not necessa
to have the explicit equation of the quartic in order to know its local solubility. Indeed, we
can use a criterion of Siksek (given ibd]) to test the local solubility directly on the system
g2 = 0,91 = 1. Using the notation of [16], it is necessary only to test the local solubility
at the primes dividing 2 0d(¢2, g1 — 1) = r1?Disc P. The main advantage of this idea is
that it allows one to compute the Selmer group directly, and we save the time needed
solving all the Legendre equations that lead to non-soluble quartics.

2. Examples

Using the PARI/GP package (see [5]), we have implemented this algorithm and comput
the Mordell-Weil groups of various elliptic curves for several number fields with degree
ranging from 1 to 5, and having priori any class number. However, this requires a large
amount of work for large degrees (we have to compute class groups and units in degree
fields), and for such degrees, the computation was possible only for a few well-chos
examples. The completp-program is available at [23].

2.1. A complete example

For the quadratic case, the computations are quite fast (less than one second for
easy cases). The following example consists of an elliptic curve defined over an imagine
guadratic field with nontrivial class number (as opposed to the situation in [11]).
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Let K = Q(e), with 2 — ¢ + 4 = 0. This is the imaginary quadratic field of discrimi-
nant—15. Its class group is of order 2.
Consider the elliptic curvé given by the equation

yZ:P(x):xg—i—ex—l.

The discriminant of? is equal to 12 — 11, and is not divisible by the square of a nontrivial

ideal in K. The field L is generated by such thatP(0) = 0 or, equivalently, such that

0=1-6+40%—20°+ 0%+ 65. The class group of is of order 2, and is generated by

the prime ideai3; above 2 such théﬁg = (1-6)Zy,andNy gk (1—0) = . The units of

L are generated by-1,6 and—2 + €6 + 62, with respective relative norms1, 1 and 1.
Following PropositiorL.4, we sefs = {oo1, 002, co3} U {P3>2}. For this choice, the group

L(S, 2)is generated by-1,0, —2+ 6 +62, and 1— 0. Since we have computed the norms

of these elements, linear algebra o¥%g2Z tells us that the group (S, 2) N Ker Ny /k is

of order 4, and is generated by the classe$ ahd—2 + ¢6 + 6. From this, we already

know that the rank of (K) is at most equal to 2. We have

L(S.2) NKer N, x = {1,9,—2+89 F621— (e +2)0 +892}.

Lets = 81 = 6. Sinces has no coefficient i#?, we are already at the final step of the
method, and we have to findi-rational point on the quartic

—4y? = 24 4 8apd — dept.

We check that this quartic has no local solutiorpat(below 3,), and hence no global
solution.

Lets = 8 = —2 + £6 + 02. Here, we have = 1, and hence the Legendre equation
V2 - qU? = ¢W? s satisfied by(U, V, W) = (0, 1,1). From this, we find the solution
(u, v, w) = (g, 2—0, 2) for go = 0, which givess’ = §(u + v + wb?)? = (1 —0), with
Nk (8) = 4. We then have to find & -rational point on the quartic

483y2 =4 - 68)»2,u2 + 8(e — 4)Au3 + (9¢ 4 28)1*.

Once again, we check that this quartic has no local solutigrn,aand hence no global
solution.

Lets = 83 = 1 — (¢ + 2)0 + 02 Here, we haver = £2, and thus the Legendre
equationV2 — «U? = ¢W? has the solutioU, V, W) = (1, &, 0). From this, we find the
solution (u, v, w) = (—=5+ &, —2, 0) for g» = 0, which givess’ = §(u + v6 + wh?)2 =
(294 3¢) — (104 14¢)0, with Ny /x (8') = (93— 41¢)2. We then have to find & -rational
point on the quartic

410+ 14¢)3y? = A% — 6(29+ 3¢)22u? + 8(93— 4le)au + (5201+ 283¢) .

This quartic is minimized by the linear change of variables: b." + (Ir + br1)u’ and
w = pwithl = (29/4¢e + 4 andr; = —48+ 19¢. Thus, the quartic is equivalent to

4y? = (14e + 1001/ + (=128 + 683w — 24622 1/% + (26 — 16N /> + e,

By a naive search, we find the solution= ¢, © = 2 andy = 4 — 2¢, which gives the point

e84 € E(K)
37799 '

We have therefore proved that K ) has rank 1, and that the grolii(E / K)[2] is trivial.
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Table 1: Quadratic examples

N a1 ap as as as #52 r #lII[2] P

K = Q(W-3); 2_g+1=0

19 0 -—¢ 1 —1+e¢ 0 2 1 1 (1,0
19 0 —¢ 1 9— 9 -15 2 1 1 (2e,—1+¢)
19 0 —& 14 769-769: -8470 2 1 1 (50, 11t
19 0 -—¢ 1 —-31-99¢ 74—-498: 2 1 1 (—4-3g2—5¢)
19 0 -—¢ 1  99+3ls —424+498: 2 1 1  (3—3e5+10)

K=QW=%; £2+1=0
1348: 0 1-¢ & —e 0 2 1 1 (0,0
K=QW-8); e2+2=0

13+8¢ 0 —-1+¢ 1 1—¢ £ 1 O 1

13+8: 0 —1+e¢ 1 11-1le -274+3¢ 1 0 1

1348 0 -1+ 1 —9439% -210-3% 1 0 1

1348 0 1-¢ 1 2—2¢ 1 1 0 1

K =Q(/—19); 2 —¢+5=0
2¢e e 1—c¢ 1 -1 0 1 O 1
2e g 1—c¢ 1 9—5¢ —24 — 2¢ 1 O 1
2% & 1-e& 1 -31-15 -60-54 1 0 1

—34+46: 0 1 1 20 -32 4 0 4

—34+6: 0 1 1 —4390 ~113432 4 0 4

—3+6: 0 -1 1 -2 2 4 2 1 2, 1)

(1+ 4e,15— 125)
K =Q(/=43); de? — e +11=0
13+¢ 0 —& 1+¢ -2 1-¢ 2 1 1 (-1,-2)
K =QW—67); 2 —¢+17=0
3e e 1l+4¢ £ -1-—3¢ 16— 5¢ 2 1 1 (—e,—4)

2.2. Acollection of quadratic examples

In [12], we find a collection of elliptic curves defined over imaginary quadratic fields
with class number 1. Using the theorylfunctions, J. Cremona and E. Whitley computed
the analytic rank and some other data associated with these elliptic curves. In each case,
2-descent method is able to prove the observations that they made from their computatic
We present the results in Takle

The number fielK is given by the square root of its discriminant, and by the minimal
polynomial of its generatog. We use here the standard notation for elliptic curves: its
Weierstrass model is given by + a1xy + azy = x2 + axx? + asx + ag, and its conductor
is N. The result of the 2-descent is given by the quantiti§$ ¢the order of the Selmer
group),r (the rank), #11[2] (the order of the 2-part of the Tate—Shafarevich group) and a
set of independent points on the curve.
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Remark 2.1. A word has to be said about the two curves with nontrivial Tate—Shafarevict
group. These curves are in fact defined oett is well known that

rank(E (@ (\/—_19>)> = rank(E(Q))+ rank(E(_lg)(Q)> ,

whereE (=19 js the twist ofE by —19. From this, it is not difficult to prove that the rank must
be equal to 0 ove@(+/—19). On the other hand, our 2-descent produces three nontrivia
everywhere locally soluble quartics, which certainly represent nontrivial elements in th
Tate—Shafarevich group. To be more precise, we give these three quartics for the first cur

y2 = —103x* — 160x> — 134> — 56x+ 5

y2 = (27e — 56)x* 4 (20e — 36)x> + (—48e + 22)x? + (—4e +32x + (¢ + 7)

y? = (50¢ — 229)x* 4 (76¢ + 612 x> + (—306s — 782 x?

+(236¢+ 520)x + (—53¢ — 134).

2.3. A degree-fexample

Consider the number fiel##f = Q(e), with ¢ — ¢3 — ¢2 + ¢ + 1 = 0. This field has
a single real embedding, and its discriminant is equal to 1609. Using 2-descent, we he
computed that the curve

E: y2 =x34¢
has rank 1, and that the grolii(E/K)[2] is trivial. The point(c* — ¢, & + 1) has infinite

orderinE(K). We do not go into the cumbersome details here; the interested reader shot
run thegp-program available at [23].
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