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Abstract
This paper considers the large N limit of Wilson loops for the two-dimensional Euclidean Yang–Mills measure on
all orientable compact surfaces of genus larger or equal to 1, with a structure group given by a classical compact
matrix Lie group. Our main theorem shows the convergence of all Wilson loops in probability, given that it holds
true on a restricted class of loops, obtained as a modification of geodesic paths. Combined with the result of [20],
a corollary is the convergence of all Wilson loops on the torus. Unlike the sphere case, we show that the limiting
object is remarkably expressed thanks to the master field on the plane defined in [3, 39], and we conjecture that
this phenomenon is also valid for all surfaces of higher genus. We prove that this conjecture holds true whenever
it does for the restricted class of loops of the main theorem. Our result on the torus justifies the introduction of an
interpolation between free and classical convolution of probability measures, defined with the free unitary Brownian
motion but differing from t-freeness of [5] that was defined in terms of the liberation process of Voiculescu [67].
In contrast to [20], our main tool is a fine use of Makeenko–Migdal equations, proving uniqueness of their solution
under suitable assumptions, and generalising the arguments of [21, 33].
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1. Introduction

The two-dimensional Yang–Mills measure is a probability model originating from Euclidean quantum
field theory in the setting of pure gauge theory. It describes a generalised random connection on a
principle bundle over a two-dimensional manifold, with a compact Lie group as structure group, making
rigorous the path integral over connections for the so-called Yang–Mills action. Different equivalent
mathematical definitions have been given in two dimensions and are due to [31, 23, 56, 32, 1, 2, 42],
or more recently1 to [10, 15]. The work of [71] brought to light many special features of the Yang–
Mills measure in two dimensions, including its partial integrability, used as a way to perform exact
volume computations for the Atiyah–Bott–Goldman measure [4, 27] on the space of flat connections
[46, 8, 57].

When a compact Lie group G and a surface Σ are given, the Yang–Mills measure can be mathemat-
ically understood as a random matrix model which assigns to any loop2 of the surface a random matrix
so that concatenation and reversion of loops are compatible with the group operations. In [39], it is
shown that it gives rise to a random homomorphism from the group of rectifiable reduced loops of the
surface to the chosen group 𝐺.

We consider here a closed, connected, orientable surface Σ of genus 𝑔 ≥ 1 and a group G belonging
to a series of classical compact matrix groups. We are primarily interested in the traces of these matrices,
called Wilson loops, when the rank of G goes to infinity. We ask whether Wilson loops converge in
probability under the Yang–Mills measure, towards a deterministic function.

Let us try to give a brief historical account of this problem. In physics, a motivation for the focus on
Wilson loops is due to K. Wilson’s work [69] related to quarks confinement. The idea of studying the
large rank regime in gauge theories, known as large N limit, was first initiated by t’Hooft [65] on QCD.
This lead to many articles in theoretical physics in the 1980’s studying the question in two dimensions,
a partial list being [36, 37, 49, 51, 70, 29, 28, 30]. In mathematics, this problem was advertised by I.
Singer in [62], where the candidate limit of Wilson loops was called master field, following the physics

1See [14] for a review of the stochastic quantisation approach and [60] for a review focusing on its application to large N limit
problems. See also [11] for recent progress in three dimensions for the Yang-Mills measure coupled to Higgs fields

2with enough regularity
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literature. The case of the plane and the sphere have been respectively proved in [72, 3, 43] and3 [21].
The case of general compact surfaces has been first investigated by [33], where loops contained in
topological discs can be considered under small area constraints and when the convergence is assumed
for simple loops. The study of similar questions in the plane for analogs of the Yang–Mills measure has
been treated in [9]. In higher dimension, an analog4 of this question for a lattice model has also been
considered [12]. Very recently and independently from the current work, it was shown in [47, 48] that
under the Atiyah–Bott–Goldman measure, which can be understood as the weak limit of the Yang–Mills
measure when the area of the surface vanishes, the expectation of Wilson loops converges and has a 1

𝑁
expansion when the group belongs to the series of special unitary matrices and the surface is closed,
orientable and of genus 𝑔 ≥ 2. For further details and references on the motivations of this problem, we
refer to [20, Sec. 1] and [44, Sec. 2.5.].

In this article, we give a complete answer in the case of the torus and a conjecture and a partial result
for all surfaces with genus 𝑔 ≥ 2. It is the sequel of [20] where we have shown the convergence for
a large5 but incomplete class of loops. Let us recall that in the case of the plane, the master field can
be described thanks to free probability and more specifically in terms of free unitary Brownian motion
[3, 39]. The case of the sphere involves a different noncommutative stochastic process called the free
unitary Brownian bridge [21]. In contrast, for the torus, we show that after lifting loops to the universal
cover, the master field is also described by the planar master field, and we conjecture that the same
holds true for any surface of higher genus. In the torus case, the master field provides an interpolation
parametrised by the total area of the torus, between the free and the classical convolution of two Haar
unitaries built with the free unitary Brownian motion, which differs from the t-freeness introduced by
[5] using the liberation process of [67].

One of the main technical contributions of this article is to strengthen the stability of Wilson
loops convergence under homotopy equivalences established in [21, 33] considering all topologies, and
removing the small area constraint. The main tool at stake is a set of recursive equations named after
Makeenko and Migdal [49]. When a loop is deformed in a specific way – that we call a Makeenko–Migdal
deformation – these equations relate the differential of the expected Wilson loops with the expectation
of a product of Wilson loops having a smaller number of intersection points. These equations can
be understood as a remarkable instance and a simplification of Schwinger–Dyson equations used in
random matrix theory.6 They were first inferred heuristically in [49] as an integration by parts for the
path integral over the space of connections. A first rigorous proof was given in the case of the plane in7

[39] and was later tremendously simplified and generalised in [26, 25] in a local way that applies to any
surface. Makeenko–Migdal equations were crucial to [21, 33] leading to an induction argument on the
number of intersection points that reduced the convergence of all Wilson loops on the sphere to the case
of simple loops. In the case of other surfaces, the very same strategy fails a priori, as some loops cannot
be deformed to simpler loops without raising the number of intersection points, while some homotopy
classes do not contain any loop for which the convergence is known to hold. We show here that the
first hurdle can be overcome, allowing to reduce the problem, completely in the torus case and partially
when 𝑔 ≥ 2, to the class of loops considered in [20]. We leave the completion of this program for all
compact surfaces to a future work.

3See also [33], where a conditional result was obtained implying the case of the sphere, given the convergence for simple loops.
4Though in this case, there is at the time of writing, no construction of the continuous Yang–Mills measure in dimension 3 and

higher.
5Informally described as all simple loops or iteration of simple loops, and all loops which do not visit one handle of the surface.
6See, for instance, [16], and [12, 61] for Schwinger-Dyson type equations in lattice gauge theory with Wilson action.
7See also [18, sect. 7] for a variation of this proof and [39, section 0] for the heuristics of the original proof of [49] based on

an integration by parts in infinite dimension. See also [24] for a proof closer in spirits to the original geometric argument of [49],
in an axial gauge setting.

https://doi.org/10.1017/fms.2024.152 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.152


4 A. Dahlqvist and T. Lemoine

Organisation of the paper

The first four following sections of the introduction give respectively an informal definition of the Yang–
Mills measure and of the main results, a discussion on the relation with the Atiyah–Bott–Goldman
measure and the work [48, 47], a consequence of the result on the torus in noncommutative probability,
and lastly, a sketch of the strategy of the main proofs. Section 2 recalls and adapts some combinatorial
notions of discrete homotopy and homology of loops in embedded graph instrumental to the proof.
Section 3 gives the definition of the Yang–Mills measure and a statement of the Makeenko–Migdal
equations and states the main results of the article. Section 4 consists of the proof of our main technical
result, which is Proposition 3.22. Section 5 describes the behaviour of Wilson loops when one performs
surgery on the underlying surface. Section 6 shows how the master field on the torus provides a new
interpolation between classical and free convolution of Haar unitaries, and proves an analog of this
statement for other surfaces. In an appendix, for the sake of completeness, we recall and prove several
results on Makeenko–Migdal equations that are quite standard in the literature for unitary groups but
not necessarily for all classical groups.

1.1. Yang–Mills measure and master field, statement of results

We shall first give a heuristic definition of the Yang–Mills measure in its geometric setting and state
informally the main results of the current article. Proper definitions and statements are respectively
given in Sections 3.2 and 3.3.

Let Σ be either a compact, connected, closed orientable surface of genus 𝑔 ≥ 1 endowed with a
Riemannian metric – we shall call it a compact surface of genus g in the sequel – or the Euclidean plane
R2 with its standard inner product. Let 𝐺𝑁 be a classical compact matrix Lie group of size N (i.e.,
viewed as a compact subgroup of GL𝑁 (C)). We assume that the Lie algebra 𝔤𝑁 of 𝐺𝑁 is endowed with
the following Ad-invariant inner product:

〈𝑋,𝑌〉 = 𝛽𝑁

2
Tr(𝑋∗𝑌 ), ∀𝑋,𝑌 ∈ 𝔤𝑁 , (1)

where 𝛽 is equal to 1 if 𝐺𝑁 = SO(𝑁), 2 if 𝐺𝑁 = U(𝑁) or SU(𝑁), and 4 if 𝐺𝑁 = Sp(𝑁). Given a
𝐺𝑁 -principal bundle (𝑃, 𝜋, Σ), a connection is a 1-form 𝜔 on M valued in adjoint fibre bundle ad(𝑃);
its curvature is the ad(𝑃)-valued 2-form Ω = 𝑑𝜔 + 1

2 [𝜔 ∧ 𝜔]. The Yang–Mills action of a connection
𝜔 on a 𝐺𝑁 -principal bundle (𝑃, 𝜋,Σ) is defined by

𝑆YM (𝜔) = 1
2

∫
Σ
〈Ω ∧★Ω〉, (2)

where ★ denotes the Hodge operator. An important feature of dimension 2 is that whenever Ψ is a
diffeomorphism of Σ preserving its volume form,

𝑆YM (Ψ∗𝜔) = 𝑆YM (𝜔). (3)

The Euclidean Yang–Mills measure is the formal Gibbs measure

𝑑𝜇YM (𝜔)“ = ”
1
𝑍
𝑒−𝑆YM (𝜔)D𝜔, (4)

where D𝜔 plays the role of a formal Lebesgue measure on the space of connections over an arbitrary
principal bundle8 and Z is a normalisation constant supposed to ensure the total mass to be 1. We

8There is here an apparent additional issue with this vague definition. A slightly less dubious state space could be obtained by
fixing a representant of each principal bundle equivalence class over Σ and by considering instead the set of pairs of a principal
bundle belonging to this family together with a connection on it. When Σ is a contractible space or if 𝐺𝑁 is simply connected,
there is only one equivalence class of 𝐺𝑁 -principal bundles over Σ and this issue disappears. We shall not discuss further the
question of the type of the principal bundle under the Yang–Mills in this text. For more details and rigorous results, we refer to [40].
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choose here not to include a parameter in front of the action, as it can be included in the volume
form of Σ.

The spaceA(𝑃) being infinite-dimensional, the latter equation has no mathematical meaning. Though
at first stance, as the Yang–Mills action of 𝜔 can be seen as the 𝐿2-norm of the curvature Ω, an analogy
with Gaussian measures can be hoped. However, when 𝐺𝑁 is not abelian, Ω depends nonlinearly on
𝜔, which prevents any direct construction of 𝜇YM using a Gaussian measure. In two dimensions, this
nonlinearity can be compensated by the so-called gauge symmetry of 𝑆YM, which allows to bypass this
problem. This enabled the constructions of [31, 23, 56] based on stochastic calculus. See also [13] for
a recent approach defining further a random, distribution-valued connection on trivial bundles over the
two-dimensional torus. We follow here instead the approach of [42], which focuses on the holonomy of a
connection, whose law can be directly defined using the heat kernel on 𝐺𝑁 . The definition we are using
is recalled in Section 3.2; it agrees with the construction of [31, 23, 56] thanks to the so-called Driver–
Sengupta formula. An important feature of this measure is suggested by (3). For any two-dimensional
Riemannian manifold Σ′ diffeomorphic to Σ, and for any diffeomorphism Ψ : Σ → Σ′, there is an
induced measure Ψ∗(YMΣ) on connections of (𝑃,Ψ ◦ 𝜋, Σ′). If Ψ preserves the area, then

Ψ∗(YMΣ) = YMΣ′ .

We shall call this property the area-invariance of the Yang–Mills measure. Moreover, for any relatively
compact, contractible, open subset U of Σ, the restriction to U induces a measure R𝑈

∗ (YMΣ) on
connections of the bundle (𝜋−1 (𝑈), 𝜋,𝑈). When Σ is the Euclidean plane R2 or the Poincaré disc
D𝔥, with its usual (hyperbolic) metric, it satisfies9 R𝑈

∗ (YMΣ) = YM𝑈 , where U is endowed with the
metric of Σ.

Let 𝜔 be a connection on a 𝐺𝑁 -principal bundle (𝑃, 𝜋, Σ), and U be an open subset of Σ where
𝜋 : 𝜋−1(𝑈) → 𝑈 can be10 trivialised. When such a trivialisation has been fixed, its holonomy is a
function 𝛾 ↦→ hol(𝜔, 𝛾) mapping paths11 𝛾 : [0, 1] → 𝑈 to elements of the group 𝐺𝑁 such that

hol(𝜔, 𝛾1𝛾2) = hol(𝜔, 𝛾2)hol(𝜔, 𝛾1)

for any paths 𝛾1 and 𝛾2 such that the endpoint of 𝛾1 coincides with the starting point of 𝛾2, while for
any path 𝛾,

hol(𝜔, 𝛾−1) = hol(𝜔, 𝛾)−1,

where 𝛾1𝛾2 and 𝛾−1 denote the concatenation and reversion of the paths.
When 𝐺𝑁 is a group of matrices of size N and ℓ is a loop of U, the Wilson loop associated to ℓ is the

function

𝑊ℓ (𝜔) = tr(hol(𝜔, ℓ)),

where tr = 1
𝑁 Tr, with Tr the usual trace of matrices. This function can be shown to be independent of

the choice of local trivialisation of (𝑃, 𝜋, Σ) and is therefore only a function of 𝜔 and ℓ.
Our primary source of interest is the study of the random variables 𝑊ℓ := 𝑊ℓ (𝜔), for loops of Σ,

when 𝜔 is sampled according to YMΣ . We are interested in the large N limit of 𝑊ℓ , when the scalar
product 〈·, ·〉 is chosen as (1) and the volume form of the surface is fixed. The paper [62] seems to be
the first mathematical article addressing this question, and it motivates the following conjecture, also
suggested by [43, 25, 33].

9Compact surfaces do not have this property, but there is still absolute continuity in place of equality. This was instrumental
in [20].

10The tubular neighbourhood of a smooth loop or of an embedded graph could be such an open set.
11In this section, the space of paths is not specified and could be taken as the space of piecewise smooth paths with constant

speed and transverse intersections. A loop is a path with starting point equal to its endpoint.
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Conjecture 1.1. Let 𝐺𝑁 be a classical compact matrix Lie group of size N, endowed with the metric of
Section 3.1 and denote by Σ a compact surface of genus 𝑔 ≥ 0, the Euclidean plane R2 or the Poincaré
disc D𝔥. For any loop ℓ of Σ, there is a constant ΦΣ (ℓ) such that under YMΣ,

𝑊ℓ → ΦΣ (ℓ) in probability as 𝑁 → ∞. (5)

The functional ΦΣ is called the master field on Σ.

The case of plane was first proved in [72, 3] for 𝐺𝑁 = U(𝑁). In [43], the above statement was proved
simultaneously to [3] for all groups mentioned and for a large family of loops given by loops of finite
length. Moreover, motivated by the physics articles [49, 51, 37], Lévy proved in [43] recursion relations
giving a way to compute explicitly ΦR2 for all loops with finitely many intersections.

By area invariance and restriction property, the result on the hyperbolic plane can be deduced
directly from these latter works as follows. According to a theorem of Moser [54], any relatively
compact open disc U of D𝔥 with hyperbolic volume t can be mapped to the open Euclidean disc 𝐷𝑡

of R2 centered at 0 and of area t, by a diffeomorphism Ψ : 𝑈 → 𝐷𝑡 sending the restriction of the
hyperbolic volume form on U to the restriction of Euclidean volume form on 𝐷𝑡 . By area-invariance,
R𝑈

∗ (YMD𝔥 ) = YM𝑈 = Ψ−1
∗ (YM𝐷𝑡 ), so that the conjecture holds true for D𝔥 with

ΦD𝔥 (ℓ) = ΦR2 (Ψ ◦ ℓ)

for any loop ℓ with range included in 𝑈.
For Σ = S2, the conjecture was proved in [21] for all loops of finite length and 𝐺𝑁 = U(𝑁), while

[33] gave a conditional result on S2 based on an argument similar to [21], as well as a conditional result
for other surfaces for loops included in a topological disc, given convergence of Wilson loops for simple
loops. In [20], we gave an alternative argument proving a generalisation of the results by Hall in [33] on
compact surfaces while relaxing his assumptions; see Section 1.4. The current article was written with
the aim to strengthen the argument common to [21] and [33] in order to address the conjecture on all
compact manifolds. This led to the following theorem and conjecture.

Theorem 1.2. When T𝑇 is a torus of volume 𝑇 > 0, conjecture 1.1 is valid. Moreover, considering T𝑇
as the quotient of the Euclidean plane R2 by

√
𝑇.Z2,

ΦT𝑇 (ℓ) =
⎧⎪⎪⎨⎪⎪⎩
ΦR2 (ℓ̃) if ℓ is contractible,

0 otherwise,

where for any continuous loop ℓ in T𝑇 , ℓ̃ is a lift of ℓ to R2, that is a smooth loop of R2, whose projection
on R2/

√
𝑇.Z2 is ℓ.

We discuss an interpretation of this result in terms of noncommutative probability in Section 1.3. For
compact surfaces of higher genus, a natural candidate is given as follows. Recall that for any compact
surface Σ of volume 𝑇 > 0 and genus 𝑔 ≥ 2, there is a covering map 𝑝 : D𝔥 → Σ mapping the
hyperbolic metric of D𝔥 to the metric of Σ.

Conjecture 1.3. For any compact surface Σ of genus 𝑔 ≥ 2, with universal cover 𝑝 : 𝐷𝔥 → Σ, the
conjecture 1.1 is valid with

ΦΣ (ℓ) =
⎧⎪⎪⎨⎪⎪⎩
ΦD𝔥 (ℓ̃) if ℓ is contractible,

0 otherwise.
(6)
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The conjecture 1.3 is also justified by the main result of [20], which implies the following corollary
(together with Lemma 3.11 that we will state later). Recall that a simple loop ℓ of Σ is separating if the
set Σ \ ℓ, where ℓ also denotes the range of the loop, has two connected components Σ1,ℓ , Σ2,ℓ .

Corollary 1.4. If ℓ is a separating loop of compact surface Σ of genus 𝑔 ≥ 1 and Σ2,ℓ is not a disc, then
under YMΣ, the convergence (5) holds true with the limit (6).

In the present paper, we also obtain two conditional results that seem in line with the above conjecture.

Proposition 1.5. For any compact surface of genus 𝑔 ≥ 2, when 𝐺𝑁 is a classical compact matrix
group of size N, assume that for any geodesic loop ℓ of Σ with nonzero homology, under YMΣ,

𝑊ℓ → 0 in probability as 𝑁 → ∞. (7)

Then (7) also holds true for all loops with nonzero homology.

This proposition will follow straightforwardly from Proposition 3.22.
Assume 𝑔 ≥ 2 and Γ𝑔 is a discrete subgroup of isometries acting freely, properly on D𝔥 and that

D𝔥/Γ𝑔 is a compact surface of genus g with finite total volume 𝑇 > 0. There is a fundamental domain
for this action given by a 4𝑔 hyperbolic polygon D of volume 𝑇, centred at 0.

Theorem 1.6. The conjecture 1.3 holds true if (7) is true for every noncontractible loop ℓ of Σ such
that its lift ℓ̃ to D𝔥 can be written ℓ̃ = 𝛾1𝛾2, where 𝛾2 is a geodesic, and 𝛾1 is smooth, included in 𝐷 and
intersecting 𝜕𝐷 at most once, transversally at its endpoint.

A more precise statement is given in Theorem 3.14. Besides, the recent results of [47] are consis-
tent with the above statement as discussed in the next subsection. An outline of the proofs of Theo-
rems 1.2, 1.6, and Proposition 1.5 will be given in subsection 1.4, and the proofs themselves will be the
subject of Sections 4 and 5.

1.2. Atiyah–Bott–Goldman measure

Another measure on connections is due to Atiyah, Bott and Goldman [4, 27] when 𝑔 ≥ 2. Recently, the
limit of Wilson loops under this measure has been investigated by [48, 47]; we discuss the relation with
our result.

Let G be a compact connected semisimple12 Lie group G, 𝔤 its Lie algebra, endowed with an invariant
inner product, and 𝑍 (𝐺) its center. For any 𝑔 ≥ 2, let 𝐾𝑔 : 𝐺2𝑔 → 𝐺 be the product of commutators:

𝐾𝑔 (𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔) = [𝑎1, 𝑏1] · · · [𝑎𝑔, 𝑏𝑔] .

The space

M𝑔 = 𝐾−1
𝑔 (𝑒)/𝐺

is called the moduli space of flat G-connections over a compact surface of genus 𝑔 ≥ 2, where G acts
by diagonal conjugation, as

ℎ.(𝑧1, . . . , 𝑧2𝑔) = (ℎ𝑧1ℎ
−1, . . . , ℎ𝑧2𝑔ℎ

−1), ∀𝑧 ∈ 𝐺2𝑔, 𝑔 ∈ 𝐺.

For any 𝑧 ∈ 𝐺2𝑔, its isotropy group is 𝑍𝑧 = {ℎ ∈ 𝐺, ℎ.𝑧 = 𝑧}. The set M0
𝑔 = {𝑧 ∈ 𝐺2𝑔 : 𝑍𝑧 = 𝑍 (𝐺)}

can be shown to be a manifold [27, 58] of dimension (2𝑔− 2) dim(𝐺), endowed with a symplectic form
𝜔𝐴 with finite total volume. Besides, using the holonomy map along a suitable 2𝑔−tuple ℓ1, . . . , ℓ2𝑔 of
loops, M0

𝑔 can be identified with a subset of smooth connections 𝜔 on a G-principal bundle over Σ such

12Mind that this excludes U(𝑁 ) .
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that 𝑆YM (𝜔) = 0. This subset is a manifold with a symplectic structure [4], equal to the push-forward
of 𝜔𝐴. The Atiyah–Bott–Goldman measure is the volume form on M0

𝑔 associated to 𝜔𝐴, given by

vol𝑔 =
𝜔

1
2 dimM0

𝑔

𝐴

( 1
2 dimM0

𝑔)!
. (8)

Let us denote by 𝜇𝐴𝐵𝐺,𝑔 the probability measure on M0
𝑔 obtained by normalising vol𝑔. It appeared in

[71] that integrating against the Yang–Mills measure on a compact surface of total area T and letting T
tend to 0 allows to obtain formulas for integrals against 𝜇𝐴𝐵𝐺,𝑔. This convergence was proved rigorously
by Sengupta in [58]. Using the holonomy mapping of the Yang–Mills measure, the convergence can be
understood as follows. Consider a heat kernel (𝑝𝑡 )𝑡>0 on G, when its Lie algebra 𝔤 is endowed with its
Killing form 〈·, ·〉.

Theorem 1.7 (Symplectic limit of Yang–Mills measure). Let 𝑓 : 𝐺2𝑔 → C be a continuous G-invariant
function and 𝑓 : M0

𝑔 → C be the induced function on the moduli space. Then

lim
𝑇 ↓0

∫
𝐺2𝑔

𝑓 (𝑥)𝑝𝑇 (𝐾𝑔 (𝑥))𝑑𝑥 =
vol(𝐺)2−2𝑔

|𝑍 |

∫
M0

𝑔

𝑓 𝑑vol𝑔 . (9)

For any word w in the variables 𝑎1, . . . , 𝑏𝑔 and their inverses, setting

𝑊𝑤 (𝑧) = 1
𝑁

Tr(𝑤(𝑧1, 𝑧
−1
1 , . . . , 𝑧2𝑔, 𝑧

−1
2𝑔)), ∀𝑧 ∈ 𝐺2𝑔

defines also a function on M0
𝑔. Denoting it also by 𝑊𝑤 and considering the loop ℓ𝑤 obtained by the

concatenation 𝑤(ℓ1, ℓ
−1
1 , . . . , ℓ2𝑔, ℓ

−1
2𝑔 ), the last statement can be reformulated as

lim
𝑇 ↓0

EYMΣ𝑇
[𝑊ℓ𝑤 ] =

∫
M0

𝑔

𝑊𝑤𝑑𝜇𝐴𝐵𝐺,𝑔 .

Given the surface group

Γ𝑔 = 〈𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 | [𝑎1, 𝑏1] . . . [𝑎𝑔, 𝑏𝑔]〉,

consider the equivalence relation ∼ on the set of words with 2𝑔 letters and their inverses, such that
𝑤 ∼ 𝑤′ iff 𝑤(𝑎1, . . . , 𝑏𝑔) and 𝑤′(𝑎1, . . . , 𝑏𝑔) are equal in Γ𝑔 . Thanks to the defining relation of M𝑔,
for any word w, the function 𝑊𝑤 depends only on the equivalence class of w. When 𝛾 ∈ Γ𝑔 is the
evaluation of w in Γ𝑔, denote this function by 𝑊𝛾 . In [47], Magee obtained the following analog of
asymptotic freeness of Haar unitary random matrices.

Theorem 1.8 ([47] Corollary 1.2). Consider the group 𝐺 = SU(𝑁). For any 𝛾 ∈ Γ𝑔,

lim
𝑁→∞

E𝜇𝐴𝐵𝐺,𝑔 [𝑊𝛾] =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝛾 = 1,

0 otherwise.

Since for any word with evaluation 𝛾 ∈ Γ𝑔, it can be shown that 𝛾 = 1 if and only if the loop ℓ𝑤 is
contractible, the above statement can be understood as the 𝑇 = 0 case of Conjecture 1.3, with a weaker
convergence given in expectation instead of in probability. In [48], it is also shown that E𝜇𝐴𝐵𝐺,𝑔 [𝑊ℓ]
admits an asymptotic expansion in powers of 1

𝑁 .
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Let us discuss the main differences between the approach of [47] and ours:
◦ Although both approaches use the convergence of the partition function of the model, we use in [20]

the Markov property of the Yang–Mills holonomy field in order to prove the convergence for simple
loops. Then we use the Makeenko–Migdal equations to induce the convergence on a larger class of
loops; the latter is actually not needed in the zero volume case.

◦ We only consider the limit of Wilson loops, whereas Magee obtains a 1
𝑁 expansion.

◦ We prove a convergence in probability whereas Magee gets a convergence in expectation.
◦ We also consider a larger family of matrix groups, whereas he only treats the unitary case.
◦ In the case 𝑔 = 1, the Atiyah–Bott–Goldman measure is ill-defined; hence, Magee’s paper cannot

handle it, but we still find a result when𝑇 > 0, which gives a matrix approximation of an interpolation
between classical and free convolution of Haar unitaries.

1.3. Noncommutative distribution and master field on the torus: an interpolation between free and
classical convolution

We discuss here the noncommutative distribution associated to the master field on the torus, leading
to Corollary 1.12 below, obtained by specialising Theorem 1.2 to projection of loops restrained to the
lattice

√
𝑇.Z2.

1.3.1. Noncommutative probability and free independence
Let us give an extremely brief account of these notions. We refer to [68, 52] for more details. A
noncommutative probability space13 is the data of a tuple (A, ∗, 1, 𝜏), where (A, ∗, 1) is a unital ∗-
algebra over C, and 𝜏 is a positive, tracial state – that is, a linear map 𝜏 : A → C with

𝜏(𝑎𝑎∗) ≥ 0 and 𝜏(𝑎𝑏) = 𝜏(𝑏𝑎), ∀𝑎, 𝑏 ∈ A,

with furthermore 𝜏(1) = 1 and 𝜏(𝑎∗) = 𝜏(𝑎), ∀𝑎 ∈ A. We shall often leave as implicit the choice of
unit and ∗, and denote a noncommutative probability space simply as a pair (A, 𝜏).
Example 1.9. For 𝑁 ≥ 1, the tuple (𝑀𝑁 (C), ∗, Id𝑁 , tr), where tr = 1

𝑁 Tr, gives such a space. Consider
the group U(𝑁) of unitary complex matrices of size 𝑁 and a group Γ with unit element 1. Let (C[Γ], ∗)
be the group algebra of Γ endowed with the skew-linear idempotent defined by 𝛾∗ = 𝛾−1, ∀𝛾 ∈ Γ. Then,
whenever 𝜌 : Γ → U𝑁 (C) is a unitary representation of Γ, setting 𝜏𝜌 = tr ◦ 𝜌, the tuple (C[Γ], ∗, 1, 𝜏𝜌)
is a noncommutative probability space.

Let (A1,A2) be unital subalgebras of a noncommutative probability space A1.
◦ They are classically independent if ∀𝑎1, . . . , 𝑎𝑛 ∈ A1, 𝑏1, . . . , 𝑏𝑛 ∈ A2,

𝜏(𝑎1𝑏1𝑎2 . . . 𝑎𝑛𝑏𝑛) = 𝜏(𝑎1 . . . 𝑎𝑛)𝜏(𝑏1 . . . 𝑏𝑛).

◦ They are freely independent if for any 𝑛 ∈ N, for any {𝑖1, . . . , 𝑖𝑛} ∈ {1, 2}𝑛 such that 𝑖1 ≠ 𝑖2, . . . , 𝑖𝑛−1 ≠
𝑖𝑛 and for any 𝑎𝑘 ∈ A𝑖𝑘 ,

𝜏(𝑎𝑘 ) = 0, ∀1 ≤ 𝑘 ≤ 𝑛 =⇒ 𝜏(𝑎1 · · · 𝑎𝑛) = 0.

These definitions can be generalised to any number of subalgebras, and a family of elements (𝑎𝑖)𝑖∈𝐼
of a noncommutative probability space (A, 𝜏) is said to be independent (resp. free) if the family (A𝑖)𝑖∈𝐼
is independent (resp. free), where for all 𝑖 ∈ 𝐼, A𝑖 is the subalgebra generated by 𝑎𝑖 and 𝑎∗

𝑖 . We shall
then say that (𝑎𝑖)𝑖∈𝐼 are resp. independent and free under 𝜏.

When I is an arbitrary set, let us denote by C〈𝑋𝑖 , 𝑋∗
𝑖 , 𝑖 ∈ 𝐼〉 the unital ∗-algebra of noncommutative

polynomials in the variables 𝑋𝑖 , 𝑋
∗
𝑖 , ∈ 𝐼, with ∗ mapping 𝑋𝑖 to 𝑋∗

𝑖 for all 𝑖 ∈ 𝐼 . When (A, ∗, 1, 𝜏) is a

13Sometimes denoted NCPS.
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noncommutative probability space and a = (𝑎𝑖)𝑖∈𝐼 is a family of elements of A, its noncommutative
distribution is the positive, tracial, state on C〈𝑋𝑖 , 𝑋∗

𝑖 , 𝑖 ∈ 𝐼〉 given by

𝜏a (𝑃) = 𝜏(𝑃(𝑎𝑖 , 𝑖 ∈ 𝐼)), ∀𝑃 ∈ C〈𝑋𝑖 , 𝑋∗
𝑖 , 𝑖 ∈ 𝐼〉,

where 𝑃(𝑎𝑖 , 𝑖 ∈ 𝐼) ∈ A denotes the evaluation of P replacing 𝑋𝑖 and 𝑋∗
𝑖 by 𝑎𝑖 and 𝑎∗

𝑖 . Likewise, when
A and B are subalgebras of a same noncommutative probability space (C, 𝜏), we call the state 𝜏〈A,B〉
on C〈𝑋𝑎, 𝑌𝑏 , 𝑎 ∈ A, 𝑏 ∈ B〉 given by

𝜏〈A,B〉 (𝑃(𝑋𝑎, 𝑌𝑏; 𝑎 ∈ A, 𝑏 ∈ B)) = 𝜏(𝑃(𝑎, 𝑏; 𝑎 ∈ A, 𝑏 ∈ B)),

the joint distribution of (A,B) in (C, 𝜏).
When 𝑎, 𝑏 are two elements of noncommutative probability spaces with respective noncommutative

distribution 𝜏𝑎 and 𝜏𝑏 , there are unique states 𝜏𝑎 ★𝜏𝑏 and 𝜏𝑎 ∗𝑐 𝜏𝑏 on C〈𝑋,𝑌, 𝑋∗, 𝑌 ∗〉 such that 𝜏𝑋 = 𝜏𝑎
and 𝜏𝑌 = 𝜏𝑏 both under and 𝜏𝑎 ∗𝑐 𝜏𝑏 and 𝜏𝑎 ★ 𝜏𝑏 , while the joint distribution (𝑋,𝑌 ) under 𝜏𝑎 ★ 𝜏𝑏 and
𝜏𝑎 ∗𝑐 𝜏𝑏 , are respectively freely and classically independent. The states 𝜏𝑎 ★ 𝜏𝑏 and 𝜏𝑎 ∗𝑐 𝜏𝑏 are resp.
called the free and the classical convolution of 𝜏𝑎 and 𝜏𝑏 . We define likewise the free and classical
convolution of two states on 𝜏A, 𝜏B of NCPS (A, 𝜏A), (B, 𝜏B) as states 𝜏A ★ 𝜏B and 𝜏A ∗𝑐 𝜏B on
C〈𝑋𝑎, 𝑌𝑏 , 𝑎 ∈ A, 𝑏 ∈ B〉.

Let us recall the following result of asymptotic freeness due to Voiculescu [66], and for the considered
group series by [17], see also [43, Sect. I-3].

Theorem 1.10 [66, 17, 43]. Let A and B be two deterministic matrices of size N with respective
noncommutative distribution satisfying for all fixed 𝑃 ∈ C〈𝑋, 𝑋∗〉,

𝜏𝐴(𝑃) → 𝜏𝑎 (𝑃), 𝜏𝐵 (𝑃) → 𝜏𝑏 (𝑃), as 𝑁 → ∞,

for some state 𝜏𝑎, 𝜏𝑏 on C〈𝑋, 𝑋∗〉. Consider U and V two independent Haar unitary matrices on a group
𝐺𝑁 and 𝜌𝑁 : C[F2] → 𝐺𝑁 the associated unitary representation of the free group of rank 2.

Then for any 𝛾 ∈ F2 and 𝑃 ∈ C〈𝑋,𝑌, 𝑋∗, 𝑌 ∗〉, the following limit holds in probability as 𝑁 → ∞,

𝜏𝜌𝑁 (𝛾) →
⎧⎪⎪⎨⎪⎪⎩

1 if 𝛾 = 1,

0 if 𝛾 ∈ F2 \ {1}
(10)

and

𝜏𝐴,𝑈𝐵𝑈 ∗ (𝑃) → 𝜏𝑎 ★ 𝜏𝑏 (𝑃). (11)

On the one hand, the first convergence (10) can be proved to be a special case of (11) when A and B
are themselves independent Haar unitary random variables. On the other hand, when A and B are unitary
or Hermitian with uniformly bounded spectrum, (11) can be deduced from (10) by functional calculus.

One of the motivations of the current article was to understand an analog of (10) when (𝑈,𝑉) are
sampled according to a different law with correlation, as discussed in Section 1.3.3.

1.3.2. Free unitary Brownian motion and t-freeness
We refer here to [6, 67, 5] for more details. Consider a noncommutative probability space (A, 𝜏, ∗, 1).
An element 𝑢 ∈ A is called unitary when 𝑢𝑢∗ = 𝑢∗𝑢 = 1. It is Haar unitary if for any integer 𝑛 > 0,
𝜏(𝑢𝑛) = 𝜏((𝑢∗)𝑛) = 0. The free unitary Brownian motion on a ∗-probability space (A, 𝜏, ∗, 1) is a
family (𝑢𝑡 )𝑡≥0 of unitary elements of A such that the increments 𝑢𝑡1𝑢

∗
0, . . . , 𝑢𝑡𝑛𝑢

∗
𝑡𝑛−1

are free for all
0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝑛, and for any 𝑘 ∈ Z∗ and 0 < 𝑠 < 𝑡,

𝜏((𝑢𝑡𝑢∗
𝑠)𝑘 ) = 𝜏(𝑢𝑘𝑡−𝑠),
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while 𝜏(𝑢𝑘𝑡 ) = 𝜈𝑡 (|𝑘 |) is 𝐶1 with for all 𝑚 ≥ 0,

𝑑

𝑑𝑡
𝜈𝑡 (𝑚) = −𝑚

2
𝜈𝑡 (𝑚) − 𝑚

2

𝑚∑
𝑙=1

𝜈𝑡 (𝑙)𝜈𝑡 (𝑚 − 𝑙), ∀𝑡 ≥ 0, 𝜈0(𝑚) = 1. (12)

Let us set 𝜈𝑡 = 𝜏𝑢𝑡 . It follows from the above expression that as t tends respectively to 0 and +∞, the
distribution 𝜈𝑡 converges pointwise to the one of, respectively, 1 and a Haar unitary. In view of (11), it
is also natural to introduce the following deformation of free convolution.

Theorem 1.11 [67]. Let (A, 𝜏A) and (B, 𝜏B) be two noncommutative probability spaces, and 𝑡 > 0 be
a fixed real number. Then there exists a noncommutative probability space (C (𝑡) , 𝜏C (𝑡 ) ) such that

1. A and B can be identified with two independent subalgebras of (C (𝑡) , 𝜏C (𝑡 ) ) with

𝜏C (𝑡 ) (𝑎) = 𝜏A (𝑎) and 𝜏C (𝑡 ) (𝑏) = 𝜏B (𝑏), ∀(𝑎, 𝑏) ∈ A × B.

2. There is a unitary element 𝑢𝑡 ∈ C (𝑡) free with the subalgebra of C (𝑡) generated by A and B, such that
𝑢𝑡 has distribution 𝜈𝑡 .

The t-free convolution product of 𝜏A and 𝜏B is then the joint distribution 𝜏A ★𝑡 𝜏B of (A, 𝑢𝑡B𝑢∗
𝑡 ) in

the noncommutative probability space (C (𝑡) , 𝜏C (𝑡 ) ). It does not depend on the choice of (C (𝑡) , 𝜏C (𝑡 ) )
satisfying 1) and 2).

The above construction was introduced more generally14 by Voiculescu [67] in his study of free
entropy and free Fisher information via the liberation process. For any 𝑡 > 0, two subalgebras A and B
of a same noncommutative probability space (C, 𝜏) with respective distribution 𝜏A and 𝜏B are said to be
t-free if their joint distribution under 𝜏 is given by 𝜏A★𝑡 𝜏B . It can be shown ([67, 5]) that the following
limits hold pointwise:

lim
𝑡↓0

𝜏A ★𝑡 𝜏B = 𝜏A ∗𝑐 𝜏B and lim
𝑡→+∞

𝜏A ★𝑡 𝜏B = 𝜏A ★ 𝜏B .

1.3.3. A matrix approximation for another interpolation from classical to free convolution
Let us present an application of Theorem 1.2. Consider a heat kernel (𝑝𝑡 )𝑡>0 on a classical compact
matrix Lie group 𝐺𝑁 endowed with the metric defined by (1), and for any 𝑇 > 0, define a probability
measure setting15

𝑑𝜇𝑁 ,𝑇 (𝐴, 𝐵) = 𝑍−1
𝑇 𝑝𝑇 ([𝐴, 𝐵])𝑑𝐴𝑑𝐵 (13)

on 𝐺2
𝑁 , where 𝑑𝐴𝑑𝐵 denotes the Haar measure on 𝐺2

𝑁 and 𝑍𝑇 is the partition function

𝑍𝑇 =
∫
𝐺2
𝑁

𝑝𝑇 ([𝐴, 𝐵])𝑑𝐴𝑑𝐵.

As the limits lim𝑇 ↓0 𝑝𝑇 (𝑈)𝑑𝑈 = 𝛿Id𝑁 and lim𝑇→∞ 𝑝𝑇 (𝑈)𝑑𝑈 = 𝑑𝑈 hold weakly, we can think about
𝜇𝑇 as a model of random matrices interpolating between commuting and noncommuting settings. In
[20, Thm 2.15], we have proved that though A and B are not Haar distributed for N fixed, as 𝑁 → ∞,
they converge individually to Haar unitaries. Moreover, we also saw that under 𝜇𝑁 ,𝑇 , [𝐴, 𝐵] converges
in noncommutative distribution, with limit given by 𝜈𝑇 , a free unitary Brownian motion at time 𝑇. In
view of (10), it is then natural to investigate the possible limit of the joint law, hoping for a nontrivial

14Not necessarily with the assumption of classical independence for the initial state.
15Consider three independent random variables (𝐴, 𝐵,𝑈𝑇 ) on 𝐺𝑁 , where 𝐴, 𝐵 are Haar distributed, and 𝑈𝑇 is Brownian

motion at time 𝑇 , that is with distribution 𝑝𝑇 (𝑈 )𝑑𝑈. It is can be shown using a suitable definition of conditioning that 𝜇𝑁,𝑇
is the law of the first two marginals of the triple (𝐴, 𝐵,𝑈𝑇 ) conditioned to satisfy [𝐴, 𝐵] =𝑈𝑇 .
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coupling of Haar unitaries. Note that analog models with potentials16 have been investigated in [16].
A challenge appearing in the setting of [16] is that these general results are limited to weak coupling
regimes.17 A consequence of our work is that 𝜇𝑁 ,𝑇 has a noncommutative limit for all 𝑇 > 0, leading to
an interpolation between independent and free Haar unitaries. Denote by 𝜏𝑢 the distribution of a Haar
unitary.

Corollary 1.12. For any 𝑇 > 0, there is a state Φ𝑇 on A = C〈𝑋, 𝑋∗, 𝑌 ,𝑌 ∗〉, such that for any 𝑃 ∈ A,
under 𝜇𝑁 ,𝑇 ,

tr(𝑃(𝐴, 𝐵)) → Φ𝑇 (𝑃) in probability as 𝑁 → ∞

with

lim
𝑇 ↓0

Φ𝑇 (𝑃) = 𝜏𝑢 ∗𝑐 𝜏𝑢 (𝑃) and lim
𝑇→+∞

Φ𝑇 (𝑃) = 𝜏𝑢 ★ 𝜏𝑢 (𝑃).

Besides, for all 𝑇, 𝑡 > 0,

Φ𝑇 ≠ 𝜏𝑢 ★𝑡 𝜏𝑢 , (14)

while

Φ𝑇 ((𝑋𝑌𝑋∗𝑌 ∗)𝑛) = 𝜈𝑇 (𝑛) = 𝜏𝑢 ★𝑇
4
𝜏𝑢 ((𝑋𝑌𝑋∗𝑌 ∗)𝑛), ∀𝑛 ∈ Z∗.

We prove in Section 6.2 the above corollary together with a few other properties of Φ𝑇 . Let us
mention that the interpolation provided by Corollary 1.12 is not the only possible interpolation, even if
we exclude the t-free convolution; for instance, another interpolation was proposed in [50] using rank
one Harish–Chandra–Itzykson–Zuber integrals. Let us also mention that there are variations of freeness
for family of algebras which are partly commuting [53, 63].

1.4. Strategy of proof via Makeenko–Migdal deformations

An important property, formally inferred by integration by parts from (4) in [49] and rigorously proved
in [43] based on the Driver–Sengupta formula, is a family of equations almost characterising the function
ΦΣ when Σ is the plane. Other proofs have been given in [18, 26]. The proofs of [26] were much shorter
and local, and it was possible to adapt them to all compact surfaces [25]. See also [24] for a different
approach based on the construction of the Yang–Mills measure via white noise and [55] for a proof
based on the representation of Wilson loop expectations as surface sums.

These equations can be described informally as follows. Consider a smooth loop ℓ with a transverse
intersection at a point 𝑣. Assume that (ℓ𝜀)𝜀 is a deformation of ℓ in a neighborhood of v such that the
areas of the four corners adjacent to v are modified as in Figure 1. Then the Makeenko–Migdal equation

Figure 1. Makeenko–Migdal deformation near an intersection point.

16Though the class of potentials considered in [16] does not cover the heat kernel.
17Meaning that the parameter of the potential responsible for the non-independence of A and B needs to be small enough.
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Figure 2. Desingularisation at a simple intersection point.

at v for a master field ΦΣ is given by

𝑑

𝑑𝜀

����
𝜀=0

ΦΣ (ℓ𝜀) = ΦΣ (ℓ1)ΦΣ (ℓ2), (15)

where ℓ1, ℓ2 are two loops obtained by desingularising ℓ at v as on Figure 2. The works [43, 21, 33] can
be understood as a study of existence and uniqueness of variants of equation (15). Our strategy here is
to extend these results to all compact surfaces of genus 𝑔 ≥ 1.

A motivation of [43] for proving these relations was to compute explicitly the planar master field
by induction on the number of intersections and to characterise it through differential equations. It was
realised there that for the plane, there is no uniqueness for the Makeenko–Migdal equations alone, but
there is if they are completed by an additional family of equations.18 In [21, 33], the authors are interested
in a perturbation of (15) arising from finite N analogs of (15) in view of proving the convergence of
Wilson loops. The same lack of uniqueness occurs but is dealt with differently, adding in some sense
boundary conditions, specifying the value of the master field19 for simple loops. With this boundary
condition, both [21, 33] are able to deduce the convergence of Wilson loops20 on the sphere by induction
on the number of intersection points. To complete the proof of Wilson loops convergence, it is then
necessary to prove the convergence for boundary conditions via other means: this was done in [21] using
a representation through a discrete21 𝛽-ensemble.

In [33], the author applied the same argument on all compact surfaces with a boundary condition
given by simple loops within a disc and a uniquess or convergence result for loops within a disc. See
the introduction of [20] for a more detailed discussion. In [20], we were able, using an independent
argument, to prove the same result but without any boundary condition and making a relation with the
planar master field.
Theorem 1.13 ([20], Theorem 2.16, 2.17). Let ℓ be a loop in a compact connected orientable Riemann
surface Σ of genus 𝑔 ≥ 1 with area measure vol.
1. If ℓ is topologically trivial and included in a disc U such that vol(𝑈) < vol(Σ), then as N tends to

infinity, under YMΣ,

𝑊ℓ → Φ̃(𝜓 ◦ ℓ) in probability,

where Φ̃ denotes the master field in the planar disc 𝜓(𝑈) where 𝜓 : 𝑈 → 𝜓(𝑈) ⊂ R2 is an area-
preserving diffeomorphism.

2. If ℓ is simple and noncontractible, then for any 𝑛 ∈ Z∗, as N tends to infinity,

𝑊ℓ𝑛 → 0 in probability.

18Associated to each face adjacent to an infinite face.
19Or the convergence of Wilson loops
20This argument is valid for loops with finitely many transverse intersections. An additional step which is not considered in

[33] is to extend it to loops with finite length.
21As suggested in [33], another route here could be to relate Wilson loops for simple loops on the sphere to the Dyson Brownian

bridge on the unit circle, which has been studied recently at another scale in [45].
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Figure 3. In this example, it is impossible to change the area around any intersection point, respecting
the constraint of Makeenko–Migdal given in Figure 1, without raising the number of intersection points.

A first remark is that evaluating the planar master field at lift of contractible loops to the universal
cover of Σ, as in Conjecture 1.3, gives a solution to Makeenko–Migdal equations. Our main focus
will therefore be to study uniqueness of the Makeenko–Migdal equations or its deformation arising for
finite N.

The general strategy of this article is to use Theorem 1.13 as a boundary condition to prove Proposi-
tion 1.5 and Theorem 1.6. For the torus, any nontrivial closed geodesic is either simple or the iteration
of a simple closed loop; Proposition 1.5 together with Theorem 1.6 yield Theorem 1.2. For surfaces
of genus 𝑔 ≥ 2, the results of [20] do not include all the loops in the assumption of Theorem 1.6, and
there are then loops whose homotopy class does not include any simple loop, or any loop obtained by
iterating a simple loop [7] (moreover, most geodesics have intersection points).

Let us now discuss how this strategy is implemented here. When applying the argument of [21] or
[33], it is difficult to prove a result better than Theorem 1.13, which, given point 1 of Theorem 1.13,
makes the use of Makeenko–Migdal equations pointless – a first obstacle being, for instance, a loop
like in Figure 3, where it does not seem possible to apply Makeenko–Migdal equations at any vertex to
deform the loop into a simpler loop.

To improve on [33], a first step is to characterise for surfaces of genus 𝑔 ≥ 1, the allowed deformations
in Makeenko–Migdal equations. Viewing the evaluation at a regular loop of the master field as a function
of faces area, we wonder along which deformation of loops the derivative of the master field is a linear
combination of area derivatives such as the one involved in the left-hand side of (15). This was understood
first in the plane by [43]. This is achieved here for surfaces in Section 2.2 with the following conclusions:

◦ When a loop has nonzero homology, then any reasonable deformation is allowed;
◦ When a loop has zero homology, then it is possible to define the winding number of the loop with

respect to each face, and that a deformation is allowed if and only if it preserves the algebraic area,
which is the area of each face weighted by the winding number of the loop with respect to it.

This observation allows to consider the simpler case of loops with nonzero homology separately. In
this case, it is possible to argue as follows by induction, showing at each step that the derivative along
a suitable deformation is bounded by induction assumption. First, considering the lift of a loop with
nonzero homology to the universal cover, by induction on the number of intersections, it is possible to
reduce the problem to loops with nonzero homology such that each strand of the lift going through a
fundamental region has22 no intersection point. Then Proposition 1.5 can be proved by induction on the
number of fundamental domains visited. A key remark in this case is that at each intersection point, the
two loops obtained by desingularisation have both nonzero homology and visit strictly less fundamental
domains. This programme is carried out in section 4.1.

A second step is to overcome the difficulty met in Figure 3. This loop has vanishing homology. The
cause of the obstruction becomes clearer thanks to the first step: it is not possible to decrease the area
of the central face as it is a strict maximum of the winding number function. An idea is to deform the
loop in a face that we want to ‘inflate’ so that the algebraic area remains preserved, as suggested on the
following figure.

22We shall call below these loops proper loops.
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Figure 4. Discrete homotopy towards a loop included in a disc preserving the algebraic area. Faces
are labelled by their area. Faces without label have area 0.

An apparent issue with this argument is that the number of intersections of the loops involved in
the different steps may increase, preventing a direct induction on the number of intersections as in [43,
21, 33]. To solve this issue, we consider a family of ‘marked’ loops, consisting of two paths whose
concatenation ℓ is a loop, where the second path is generic, while the first one has a specific form.23
In particular, we require that a loop obtained by desingularisation at an intersection point of the first
part is either in a fundamental domain or is the contraction of the initial loop ℓ along some faces
bounded by the perturbed part. Because of the nested part of the perturbation part, it becomes possible24

to argue by induction determining a complexity function on marked loops adapted25 to the boundary
conditions considered. The choice of complexity is done in Section 2.4; the induction is then performed
in Theorem 4.5.

Lastly, it remains to extend our convergence result to a wider family of loops. This is first done
using the property of continuity and compatibility on closed simplices of areas for loops with finitely
many transverse intersections.26 Then a more general argument introduced in [9, 21], building on the
construction of [42], allows to consider all loops with finite length.27

2. Homology and homotopy on embedded graphs

2.1. Four equivalence relations on paths and loops on maps

We recall briefly here standard notions and define some notations of topological discretisation of a
surface.

Definition 2.1. A graphG = (𝑉, 𝐸, 𝐼) is a triple consisting of two sets V and E and an incidence relation
𝐼 ⊂ 𝑉 × 𝐸 such that for any 𝑒 ∈ 𝐸 , the cardinal of {𝑣 ∈ 𝑉 : (𝑣, 𝑒) ∈ 𝐼} is 1 or 2. The elements of V
(resp. E) are called vertices (resp. edges).

This definition might seem very abstract at first sight, but it is actually simple: it merely says that a
graph is made of edges and vertices, and that each edge is incident to either 1 vertex (the edge is then
called a loop) or 2 vertices. Let G = (𝑉, 𝐸, 𝐼) be a graph, and 𝑒1, 𝑒2 ∈ 𝐸 be two distinct edges.

23We call this part nested; see Section 2.5.
24See p. 52 where this idea is illustrated to prove the uniqueness of Makeenko–Migdal equations for the example of Figure 4.
25We believe there is a lot of flexibility here in the argument. We choose here a combinatorial approach, but it would be

interesting to use instead a continuous functional on loops.
26See Lemma 3.4.
27This second step is not needed to consider projection of loops on a lattice.
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Figure 5. A map embedded in the torus, with |𝑉 | = 1, |𝐸+| = 3 and |𝐹+| = 2. The edges named a are
glued together, and same for the edges named b. There are two positively oriented faces, with respective
boundaries 𝑒𝑎−1𝑏 and 𝑎𝑏−1𝑒−1; the orientations are represented by the counterclockwise green arrows.
Euler’s formula is indeed satisfied.

1. If there is 𝑣 ∈ 𝑉 such that (𝑣, 𝑒1) ∈ 𝐼 and (𝑣, 𝑒2) ∈ 𝐼, then 𝑒1 and 𝑒2 are called adjacent.
2. If there are 𝑣1, 𝑣2 ∈ 𝑉 such that (𝑣𝑖 , 𝑒 𝑗 ) ∈ 𝐼 for all 1 ≤ 𝑖, 𝑗 ≤ 2, then 𝑒1 and 𝑒2 form a double edge.

More generally, if n edges share the same incidence vertices, they form a multiple edge, and G is called
a multigraph. A topological map M on a surface Σ is a finite multigraph G = (𝑉, 𝐸, 𝐼) together with an
embedding 𝜃 : G → Σ such that

◦ the images of two distinct vertices 𝑣1, 𝑣2 ∈ 𝑉 by 𝜃 are distinct points of Σ,
◦ for any edge 𝑒 ∈ 𝐸 , there is an edge 𝑒−1 ∈ 𝐸 such that 𝜃𝑒−1 = 𝜃−1

𝑒 ,
◦ the images of edges 𝑒 ∈ 𝐸 are continuous curves 𝜃𝑒 : [0, 1] → Σ with endpoints 𝑒 = 𝜃𝑒 (0) and

𝑒 = 𝜃𝑒 (1) such that 𝜃𝑒 and 𝜃𝑒′ can only intersect at their endpoints (unless 𝑒′ ∈ {𝑒, 𝑒−1}),
◦ the complement of the skeleton Sk(G) =

⋃
𝑒∈𝐸 𝜃𝑒 of G in Σ is split in one or several connected

components that are all homeomorphic to discs and represent the faces of the map.

An orientation of the map is the choice of a subset 𝐸+ ⊂ 𝐸 such that for any 𝑒 ∈ 𝐸 , |{𝑒, 𝑒−1} ∩ 𝐸+| = 1.
The orientation of Σ also induces an orientation of the faces as follows: a face f is positively oriented if
its boundary 𝜕 𝑓 is represented by 𝑒1 · · · 𝑒𝑛, where 𝑒1, . . . , 𝑒𝑛 are the edges constituting 𝜕 𝑓 in positive
order. It is negatively oriented if its boundary is represented by 𝑒−1

𝑛 · · · 𝑒−1
1 . We denote by F (resp. 𝐹+)

the set of all faces with both orientations (resp. the positively oriented faces), and for any 𝑓 ∈ 𝐹+, we
denote by 𝑓 −1 ∈ 𝐹 the same face with reverse orientation.

Remark 2.2. With our conventions, each unoriented edge and unoriented face is counted twice; there-
fore, Euler’s formula reads

|𝑉 | − 1
2 |𝐸 | + 1

2 |𝐹 | = |𝑉 | − |𝐸+| + |𝐹+| = 2 − 2𝑔

if G is embedded in a surface of genus g. See Figure 5 for an illustration.

From now on, we will denote by G = (𝑉, 𝐸, 𝐹) a topological map, and 𝜃 and Σ will be implied.
GivenG = (𝑉, 𝐸, 𝐹), one can describe a CW-complex corresponding to the map: its vertices are 0-cells,
its edges 1-cells and its faces 2-cells. Besides, the skeleton of the map is exactly the skeleton of the
complex. We will describe the corresponding chain and cochain complexes in the next section, as well
as their (co)homology. In this section, we rather focus on topological features of maps and algebraic
properties of loops in a map.

https://doi.org/10.1017/fms.2024.152 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.152


Forum of Mathematics, Sigma 17

A map with boundary is a map (𝑉, 𝐸, 𝐹) together with a proper subset B of F such that the closures
of 2-cells associated to any pair of distinct elements of B do not intersect. A path inG28 is either a single
vertex or a finite string of edges 𝑒1 . . . 𝑒𝑛 with 𝑛 ≥ 1 such that for all 𝑘 ∈ {1, . . . , 𝑛 − 2}, 𝑒𝑘+1 = 𝑒𝑘 . We
say it is constant in the first case and set |𝛾 | = 0, while in the second, we denote by 𝛾 = 𝑒𝑛 and 𝛾 = 𝑒1
its endpoint and starting point, and by |𝛾 | = 𝑛 its length. A loop of G is a path 𝛾 with 𝛾 = 𝛾. A loop
ℓ is based at a vertex v when ℓ = 𝑣. We say it is simple when all vertices of ℓ occur only once ℓ, but ℓ
which occurs exactly twice. We write, respectively, P(G) and L(G) for the set of paths and loops of G.
The respective sets of paths starting from a vertex 𝑣 ∈ 𝑉 are denoted by P𝑣 (G) and L𝑣 (G). Whenever
𝛼 and 𝛽 are two paths with 𝛼 = 𝛽, 𝛼𝛽 denotes their concatenation, while 𝛼−1 is the path run in reverse
direction, with the convention that 𝛾1𝛼𝛾2 = 𝛼 when 𝛾1 and 𝛾2 are constant paths at 𝛼 and 𝛼. We say
that 𝛽 is a subpath of 𝛿 ∈ P(G) and write 𝛽 ≺ 𝛿, if there are paths 𝛼 and 𝛾 with 𝛿 = 𝛼𝛽𝛾.

Homeomorphic loops: When two maps G,G′ yield homeomorphic CW complexes, they induce a
bijection between cells of same dimension. Denote by Φ : 𝐸 → 𝐸 ′ the associated bijection between
edges of G and G′ and the associated bijection between P(G) and P(G′). Consider two paths 𝛼 and 𝛽
within maps G1 and G2. We say that 𝛼 and 𝛽 are homeomorphic and write

𝛼 ∼Σ 𝛽

if there are maps G and G′ finer than, respectively, G1 and G2 such that G and G′ are homeomorphic,
with induced bijection Φ : P(G) → P(G′) such that

Φ(𝛼) = 𝛽.

Cyclically equivalent loops: We say that two loops are cyclically equivalent when one can be obtained
from the other by cyclically permuting its edges. By convention, two constant loops are cyclically
equivalent if they have equal base-point. This defines an equivalence relation ∼𝑐 on L(G). An element
of the quotient L𝑐 (G) = L(G)/∼𝑐 is called an unrooted loop.

Reduced loops: A path 𝛾′ is obtained by insertion of an edge in a path 𝛾 if 𝛾 = 𝛾1𝛾2 and 𝛾′ = 𝛾1𝑒𝑒
−1𝛾2

with 𝛾1, 𝛾2 two subpaths of 𝛾 and e an edge such that 𝛾1 = 𝑒 = 𝛾2. Vice versa, we say in this situation
that 𝛾 is obtained by erasing of an edge of 𝛾′. Two paths are said to have the same reduction if a finite
sequence of erasures and insertions of edges transforms one into the other. This defines an equivalence
relation ∼𝑟 on P(G), and we write RP(G) = P(G)/∼𝑟 , RP𝑣 (G) = P𝑣 (G)/∼𝑟 and RL𝑣 (G) = L𝑣 (G)/∼𝑟

for any 𝑣 ∈ 𝑉 . The reduction of a path 𝛾 ∈ P(G) is the unique path of minimal length in its ∼𝑟 -
equivalence class. We say that two loops are ∼𝑟 ,𝑐-equivalent if one can be obtained from the other by
iterated cyclic permutations, insertions and erasures of edges.

Lassos and discrete homotopy: For any face 𝑓 ∈ 𝐹, its boundary can be identified with an unrooted
loop 𝜕 𝑓 . When 𝑟 ∈ 𝑉 is a vertex of 𝜕 𝑓 , we write 𝜕𝑟 𝑓 for the loop in the ∼𝑐-class of 𝜕 𝑓 with 𝜕𝑟 𝑓 = 𝑟.

When 𝐹∗ is a subset of 𝐹, a 𝐹∗-lasso is a loop of the form 𝛼𝜕𝑟 𝑓 𝛼
−1, where f is an oriented face belonging

up to orientation to 𝐹∗ and 𝛼 ∈ P(G) is a path such that 𝑟 = 𝛼 is a vertex of 𝜕 𝑓 . When 𝛾 ∈ P(G), 𝛾′ is
obtained by lasso insertion from 𝛾 if 𝛾 = 𝛾1𝛾2 for some paths 𝛾1, 𝛾2 ∈ P(G) and 𝛾′ = 𝛾1ℓ𝛾2, where ℓ
is a lasso with 𝛾1 = ℓ = 𝛾

2
. Conversely, 𝛾′ is said to be obtained from 𝛾 by lasso erasure. We say that

two paths are discrete homotopic if there is a finite sequence of lassos or edge erasures and insertions
transforming one into the other. This defines an equivalence relation ∼ℎ on P(G) which is also well
defined on RP(G). Moreover, two paths of G are discrete homotopic if and only29 if their images in ΣG

28Here, G denotes a map, but the definition of a path can also be applied mutatis mutandis to any graph or CW complex. In
particular, it will also make sense later for universal covers of maps.

29Let us sketch an argument for this equivalence. When 𝐹∗ is a subset of faces, using reduction, two paths 𝛾, 𝛾′ ∈ P(G) with
same endpoints can be obtained by 𝐹∗-lasso or edge erasure or insertion if and only if 𝛾′ = 𝑤𝛾 with a word w in 𝐹∗-lassos based
at 𝛾. Also, the images of 𝛾 and 𝛾′ are homotopic with fixed endpoints if and only if 𝛾′ = 𝑤𝛾, where 𝑤 ∈ L𝛾 (G) is a loop whose
image in ΣG is contractible. It is therefore enough to show that for any 𝑣 ∈ 𝑉 , a loop ℓ ∈ L𝑣 (G) has a contractible image in ΣG
if and only if it is a word in lassos based at v. In order to prove this latter fact, choose a neighbourhood deformation retract U of
the embedding of G in ΣG. Applying inductively Van Kampen’s theorem to the covering by open sets given by the union of U
and the images of the faces of G in ΣG implies that 𝜋1 (ΣG) is a quotient of 𝜋1 (𝑈 ) by a group generated by lassos.
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are homotopic with fixed endpoints. For any 𝑣 ∈ 𝑉, we denote the quotient P𝑣 (G)/∼ℎ and L𝑣 (G)/∼ℎ

by �̃�𝑣 and 𝜋1,𝑣 (G). When 𝐹∗ ⊂ 𝐹, we say that two paths of G are 𝐹∗-homotopic if there is a finite
sequence of 𝐹∗-lassos or edge erasures and insertions transforming one into the other. This defines an
equivalence relation on P(G) denoted by ∼𝐹∗ . When K is a closed, compact, contractible subset of ΣG
given by the closure of the union of images of 𝐹∗, for any pair of paths 𝛾1, 𝛾2 ∈ P(G) whose image in
ΣG is included in K and with same endpoints,30 𝛾1 ∼𝐹∗ 𝛾2.

The group of reduced loops and the fundamental group: For any vertex 𝑣 ∈ 𝑉 , we define a group
by endowing RL𝑣 (G) with the multiplication given by concatenation and the inverse map given by
reversing the orientation of loops. The group 𝜋1,𝑣 (G) is the quotient of RL𝑣 (G) by the normal subgroup
generated by lassos based at 𝑣. Since two loops ofG are discrete homotopic if and only if their images in
ΣG are homotopic, the group 𝜋1,𝑣 (G) is isomorphic to the fundamental group of the surface ΣG. For any
group G, let us write [𝑎, 𝑏] = 𝑎𝑏𝑎−1𝑏−1, ∀𝑎, 𝑏 ∈ 𝐺. Then 𝜋1,𝑣 (G) is isomorphic to the surface group

Γ𝑔 = 〈𝑥1, 𝑦1, . . . , 𝑥𝑔, 𝑦𝑔 | [𝑥1, 𝑦1] . . . [𝑥𝑔, 𝑦𝑔]〉.

We will also consider, for 𝑟 ≥ 1, the group

Γ𝑟 ,𝑔 = 〈𝑧1, . . . , 𝑧𝑟 , 𝑥1, 𝑦1, . . . , 𝑥𝑔, 𝑦𝑔 | 𝑧1 . . . 𝑧𝑟 = [𝑥1, 𝑦1] . . . [𝑥𝑔, 𝑦𝑔]〉.

Lemma 2.3 [42]. For any map G, the following assertions hold:

1. The group RL𝑣 (G) is free of rank |𝐸+| − |𝑉 | + 1 = |𝐹+| + 2𝑔 − 1.
2. Assume that 𝑔 ≥ 0 and |𝐹+| = 𝑟 . For any 𝑣 ∈ 𝑉, there are lassos (ℓ𝑖 , 1 ≤ 𝑖 ≤ 𝑟) based at v, with

faces in bijection with 𝐹+, and loops 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 ∈ L𝑣 (G) such that the application

Θ : Γ𝑟 ,𝑔 → RL𝑣 (G)

that maps 𝑧𝑖 to ℓ𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 , 𝑥𝑚 (resp. 𝑦𝑚) to 𝑎𝑚 (resp. 𝑏𝑚) for all 1 ≤ 𝑚 ≤ 𝑔 is an
isomorphism.31 The diagram

1 → Γ𝑟 ,𝑔 → RL𝑣 (G) → 1
↓ ↓

1 → Γ𝑔 → 𝜋1,𝑣 (G) → 1

is then commutative, where the left downwards morphism is the group morphism mapping z to
1 ∈ Γ𝑟 ,𝑔 for any 𝑧 ∈ {𝑧1, . . . , 𝑧𝑟 }, and 𝑡 ∈ Γ𝑟 ,𝑔 to 𝑡 ∈ Γ𝑔 for any 𝑡 ∈ {𝑥1, 𝑦1, . . . , 𝑥𝑔, 𝑦𝑔}.

Refining maps: When G′ = (𝑉 ′, 𝐸 ′, 𝐹 ′) and G = (𝑉, 𝐸, 𝐹) are two maps, G′ is finer than G if (𝑉, 𝐸)
is a subgraph of (𝑉 ′, 𝐸 ′) and ΣG′ = ΣG, so that we can identify V and E with subsets of, respectively, 𝑉 ′

and P(G), while any face of G is the union of faces of G′. Conversely, we say that G is coarser then G′.
Dual map: When G = (𝑉, 𝐸, 𝐹) is a map of genus g with surface ΣG, we define its dual map as

follows: we put a vertex 𝑓 ∗ inside each face 𝑓 ∈ 𝐹, and for each edge 𝑒 ∈ 𝐸 that separates two faces
𝑓1 and 𝑓2, we draw a new edge 𝑒∗ that intersects it in its midpoint and connects the vertices 𝑓 ∗1 and 𝑓 ∗2 .
There is a bijection 𝑉∗ � 𝐹, 𝐸∗ � 𝐸 and 𝐹∗ � 𝑉 , and a dual edge inherits the orientation from the edges
it crosses as follows: if 𝑒∗ crosses 𝑒 ∈ 𝐸+ from the right,32 then 𝑒∗ ∈ 𝐸∗

+. See Figure 6 for an illustration.
In particular, we see that if 𝑒 = (𝑒, 𝑒) is an edge and 𝑒∗ = (𝑒∗, 𝑒∗) is the dual edge, then we have the
following facts:

𝑒∗ ∈ 𝜕𝑒, (𝑒−1
∗ ) ∈ 𝜕𝑒, 𝑒 ∈ 𝜕𝑒∗, 𝑒−1 ∈ 𝜕𝑒∗. (16)

30This fact can be proven by an argument similar to the one used in the previous footnote, and its proof is left to the reader.
31Denoting here abusively the ∼𝑟 class of a loop by the same symbol as the loop.
32Formally, it means that the dual edge ( 𝑓1, 𝑓2) with 𝑓1, 𝑓2 ∈ 𝐹+ is in 𝐸∗

+ if the edge 𝑒 ∈ 𝐸+ it crosses satisfies 𝑒 ∈ 𝜕 𝑓2 and
𝑒−1 ∈ 𝜕 𝑓1.
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Figure 6. On the left: a map embedded in the sphere (in plain lines), and its dual map (in dashed
lines). On the right: the orientation convention of an edge and its dual. We have 𝑒, 𝑒 ∈ 𝑉 = 𝐹∗ and
𝑒∗, 𝑒∗ ∈ 𝐹 = 𝑉∗.

Figure 7. Two examples of map cuts. In the first line, a genus 2 map is cut along ℓ into two genus 1
maps with boundary ℓ; hence, it is an essential cut. In the second line, a genus 1 map is cut into a genus
1 and a genus 0 maps, with boundary ℓ. It is therefore not essential.

Cut of a map: When G = (𝑉, 𝐸, 𝐹) is a map and ℓ is a simple loop of G, with dual edges 𝐸∗
ℓ , we

say that ℓ is separating if the graph (𝐹, 𝐸∗ \ 𝐸∗
ℓ ) has exactly two connected components (𝐹1, 𝐸

∗
1) and

(𝐹2, 𝐸
∗
2). Consider 𝑖 ∈ {1, 2}. Denote by 𝐸𝑖 the union of 𝐸ℓ with the set of edges of G dual to 𝐸∗

𝑖 , and
by 𝑉𝑖 the vertices of G endpoints of edges in 𝐸𝑖 . We then define a map with one boundary component
by setting G𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐹𝑖 � { 𝑓𝑖,∞}), where { 𝑓𝑖 ,∞} is the label of a boundary face with boundary ℓ. We
say that the pair of maps with boundary (G1, { 𝑓1,∞}), (G2, { 𝑓2,∞}) is the cut of G along ℓ. We say that
the cut is essential if ℓ is not contractible. A cut is essential if and only if the mapsG1 andG2 have genus
larger or equal to 1. Both cases are illustrated in Figure 7 below. When a map is cut, the lemma 2.3 can
be specified as follows.

Lemma 2.4. Assume that (G1, { 𝑓1,∞}), (G2, { 𝑓2,∞}) is the cut of a map G = (𝑉, 𝐸, 𝐹) of genus 𝑔 ≥ 0,
along a simple loop ℓ ∈ L𝑣 (G). Denote by 𝑔1 and 𝑔2 the genus of G1 and G2 and by 𝑟1 and 𝑟2 their
number of non-boundary faces, so thatG has genus 𝑔 = 𝑔1 +𝑔2 and 𝑟 = 𝑟1 +𝑟2 faces. Then the following
holds true.
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1. The group RL𝑣 (G) is isomorphic to RL𝑣 (G1) ∗ RL𝑣 (G2).
2. There are lassos (ℓ𝑖 , 1 ≤ 𝑖 ≤ 𝑟) based at v and loops 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 ∈ L𝑣 (G) as in Lemma 2.4

with the additional property that ℓ1, . . . , ℓ𝑟1 , 𝑎1, . . . , 𝑏𝑔1 ∈ L𝑣 (G1) and ℓ𝑟1+1, . . . , ℓ𝑟 , 𝑎𝑔1+1, . . . , 𝑏𝑔 ∈
L𝑣 (G2). The group RL𝑣 (G1) is then free over the basis ℓ1, . . . , ℓ𝑟1 , 𝑎1, . . . , 𝑏𝑔1 .

2.2. Discrete homology, winding function and Makeenko–Migdal vectors

We recall here some elementary results about the homology of topological maps and discuss their
relation to Makeenko–Migdal vectors introduced in [43, 21, 33]. It will lead us to a construction of the
winding function, as well as a characterisation of the Makeenko–Migdal vectors, which, as we recall,
encode the deformations that are allowed by Makeenko–Migdal equations. In the sequel, R will denote
a ring that is either R or Z, unless specified otherwise. We shall start with a general property of finitely
generated free modules.

Proposition 2.5. Let A be a finitely generated free R-module, and 𝐵 = (𝑒1, . . . , 𝑒𝑛) be a free basis of A.

1. There exists a nondegenerate bilinear form 〈·, ·〉 on A such that B is an orthonormal basis.
2. There is a canonical isomorphism 𝐴 � Hom(𝐴, 𝑅) expressed through the bilinear form 〈·, ·〉.

Proof. The first point is obvious: we set 〈𝑒𝑖 , 𝑒 𝑗〉 = 𝛿𝑖 𝑗 , and we extend the form by bilinearity. For the
second point, set

Φ :
{
𝐴 −→ Hom(𝐴, 𝑅)
𝑥 ↦−→ (𝑦 ↦→ 〈𝑥, 𝑦〉)

and notice that it is indeed an isomorphism. �

We can present the homology of a topological map from several equivalent ways, and we will present
three of them.

Definition 2.6. Let G = (𝑉, 𝐸, 𝐹) be a topological map. We define its associated chain complex by the
sequence

0 −→ 𝐶2 (G; 𝑅) 𝜕−→ 𝐶1 (G; 𝑅) 𝜕−→ 𝐶0 (G; 𝑅) −→ 0,

where 𝐶0 (G; 𝑅) (resp. 𝐶1 (G; 𝑅), 𝐶2 (G; 𝑅)) is the free R-module generated33 by V (resp. E, F). The
boundary operator is defined by linear extension of the boundary operator in the underlying surface,
defined by

𝜕𝑒 =𝑒 − 𝑒, ∀𝑒 ∈ 𝐸,

𝜕 𝑓 =
∑
𝑒∈𝜕 𝑓

𝑒, ∀ 𝑓 ∈ 𝐹.

Let G = (𝑉, 𝐸, 𝐹) be a topological map, and let G∗ = (𝑉∗, 𝐸∗, 𝐹∗) be its dual map. For any
𝑣 ∈ 𝑉 = 𝐹∗, we define its boundary 𝜕𝑣 as the cycle 𝑒∗

1 · · · 𝑒∗
𝑛 of dual edges constituting the positively

oriented boundary of the face v.

Definition 2.7. Let G = (𝑉, 𝐸, 𝐹) be a topological map. Its associated cochain complex is defined by
the sequence

0 ←− Ω2(G, 𝑅) 𝑑←− Ω1(G, 𝑅) 𝑑←− Ω0(G, 𝑅) ←− 0,

33Remark that E and F define generating families but not free families. A free basis of 𝐶1 (G, 𝑅) (resp. 𝐶2 (G; 𝑅)) is given by
𝐸+ (resp. 𝐹+).

https://doi.org/10.1017/fms.2024.152 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.152


Forum of Mathematics, Sigma 21

where Ω𝑘 (G, 𝑅) = Hom(𝐶𝑘 (G; 𝑅), 𝑅) for any 0 ≤ 𝑘 ≤ 2, and d is the dual of the boundary operator:

𝑑𝑓 (𝑒) = 𝑓 (𝜕𝑒) = 𝑓 (𝑒) − 𝑓 (𝑒), ∀𝑒 ∈ 𝐸, ∀ 𝑓 ∈ Ω0(G, 𝑅),

𝑑𝜔( 𝑓 ) =𝜔(𝜕 𝑓 ) =
∑
𝑒∈𝜕 𝑓

𝜔(𝑒), ∀ 𝑓 ∈ 𝐹, ∀𝜔 ∈ Ω1(G, 𝑅).

The elements of Ω𝑘 (G, 𝑅) are called R-valued k-forms on G.
Proposition 2.8. For any topological map G, its cochain complex is isomorphic to the chain complex
of the dual map G∗.
Proof. Let us first note that, as free modules, we have indeed canonical isomorphisms Φ : 𝐶𝑘 (G∗; 𝑅) �
Ω2−𝑘 (G, 𝑅) for 0 ≤ 𝑘 ≤ 2. They are explicitely given as follows:

𝑓𝑣 : 𝑣′ ∈ 𝑉 ↦→ 𝛿𝑣𝑣′ , ∀𝑣 ∈ 𝐹∗
+ � 𝑉,

𝜔𝑒 : 𝑒′ ∈ 𝐸+ ↦→ 𝛿𝑒𝑒′ , ∀𝑒∗ ∈ 𝐸∗
+ � 𝐸+,

𝜇 𝑓 : 𝑓 ′ ∈ 𝐹+ ↦→ 𝛿 𝑓 𝑓 ′ , ∀ 𝑓 ∈ 𝑉∗ � 𝐹+.

Using (16) in conjunction with the definitions of 𝜕 and d, one can easily find that the diagram

0 𝐶2 (G∗; 𝑅) 𝐶1 (G∗; 𝑅) 𝐶0 (G∗; 𝑅) 0

0 Ω0(G, 𝑅) Ω1(G, 𝑅) Ω2(G, 𝑅) 0

𝜕 𝜕

𝑑 𝑑

commutes, which proves the isomorphism. �

We shall denote by 𝜇∗ the constant 2-form defined by 𝜇∗( 𝑓 ) = 1 for all 𝑓 ∈ 𝐹+. Thanks to
Proposition 2.5, there is for any 0 ≤ 𝑘 ≤ 2 a canonical isomorphism Φ : 𝐶𝑘 (G; 𝑅) �−→ Ω𝑘 (G; 𝑅),
represented by the applications 𝑣 ↦→ 𝑓𝑣 , 𝑒 ↦→ 𝜔𝑒 and 𝑓 ↦→ 𝜇 𝑓 used in the proof of Proposition 2.8.

We define 𝑑∗ as the adjoint of d on the cochain complex of G, meaning that

𝑑∗𝜔 =
∑
𝑒∈𝐸+

𝜔(𝑒) 𝑓𝜕𝑒 =
∑
𝑒∈𝐸+

∑
𝑣 ∈𝜕𝑒

𝜔(𝑒) 𝑓𝑣 , ∀𝜔 ∈ Ω1(G, 𝑅),

𝑑∗𝜇 =
∑
𝑓 ∈𝐹+

𝜇( 𝑓 )𝜔𝜕 𝑓 =
∑
𝑓 ∈𝐹+

∑
𝑒∈𝜕 𝑓

𝜇( 𝑓 )𝜔𝑒, ∀𝜇 ∈ Ω2(G, 𝑅).

In particular, 𝑑∗ : Ω1(G, 𝑅) → Ω0(G, 𝑅) is the divergence operator in R. Kenyon’s terminology [38].
Let 𝑒 ∈ 𝐸+ be an oriented edge, and 𝑒∗ ∈ 𝐸∗

+ be the dual edge (i.e., the faces 𝑓 , 𝑓 ′ ∈ 𝐹+ such that 𝑒 ∈ 𝜕 𝑓
and 𝑒−1 ∈ 𝜕 𝑓 satisfy 𝑓 ′ = 𝑒∗ and 𝑓 = 𝑒∗). Then we have, for any 𝜇 ∈ Ω2(G, 𝑅) � 𝐶0 (G∗; 𝑅),

𝑑∗𝜇(𝑒) = 𝜇( 𝑓 ) − 𝜇( 𝑓 ′) = 〈𝜇, 𝜕𝑒∗〉.

We obtain an isomorphism of chain complexes given by the following commutative diagram:

0 𝐶2 (G; 𝑅) 𝐶1 (G; 𝑅) 𝐶0 (G; 𝑅) 0

0 Ω2(G, 𝑅) Ω1(G, 𝑅) Ω0(G, 𝑅) 0

𝜕 𝜕

𝑑∗ 𝑑∗

Equipped with these chain complexes, we can then do some (basic) homology. Let us introduce a few
notations, following, for instance, the conventions of [35]. We set
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◦ ♦1 = ker(𝑑∗ : Ω1(G, 𝑅)) � ker(𝜕 : 𝐶1 (G; 𝑅) → 𝐶2 (G; 𝑅) the module of cycles,
◦ �∗

1 = 𝑑∗(Ω2(G, 𝑅)) � 𝜕 (𝐶2(G; 𝑅)) the module of boundaries,
◦ �1 = 𝑑 (Ω0(G, 𝑅)) � 𝜕 (𝐶2(G∗; 𝑅)) the module of coboundaries.

All these modules are equipped with the bilinear form 〈·, ·〉 from Proposition 2.5, associated to a given
basis.

Definition 2.9. Let G be a topological map. Its first homology module is defined as the R-module

𝐻1 (G; 𝑅) = ♦1/�∗
1.

When ℓ is a loop of G, its R-homology [ℓ]𝑅 is the image of the element 𝜔ℓ in 𝐻1(G; 𝑅). For any 𝑛 ≥ 2,
its Z𝑛-homology [ℓ]Z𝑛 is the element 1 ⊗ [ℓ]Z ∈ 𝐻1(G;Z𝑛) = Z𝑛 ⊗Z 𝐻1(G;Z).

Note that by the universal coefficient theorem for homology, the change of ring commutes with the
homology

𝐻1(G; 𝑅) = 𝑅 ⊗Z 𝐻1(G;Z),

even if we take 𝑅 = Z𝑛.

Proposition 2.10. Denote by ♦0 the R-module spanned by 𝜔ℓ for all loops ℓ in G.

1. We have the following equality of R-modules:

♦0 = ♦1 =�⊥
1 .

2. We have the following direct sum decomposition into orthogonal subspaces:

Ω1(G, 𝑅) =�1 ⊕ ♦1. (17)

Proof. Let us start by showing that ♦1 =�⊥
1 . If 𝜔 ∈ ♦1, then for any 𝑓 ∈ Ω0(G, 𝑅), we have

〈𝜔, 𝑑𝑓 〉 = 〈𝑑∗𝜔, 𝑓 〉 = 0

and 𝜔 ∈ �⊥
1 . Conversely, remark that a free basis of �1 is given by (𝑑𝑓𝑣 , 𝑣 ∈ 𝑉), so that for any

𝜔 ∈ �⊥
1 , we have

〈𝑑∗𝜔, 𝑓𝑣〉 = 〈𝜔, 𝑑𝑓𝑣〉 = 0,

and 𝜔 ∈ ♦1.
Now let us prove that ♦0 = ♦1. If ℓ = 𝑒1 · · · 𝑒𝑛 is a loop in G, then

𝑑∗𝜔ℓ =
𝑛∑
𝑖=1

∑
𝑒∈𝐸+

𝜔𝑒𝑖 (𝑒) 𝑓𝜕𝑒 =
𝑛∑
𝑖=1

𝑓𝜕𝑒𝑖 = 0,

so that ♦0 ⊂ ♦1. Let 𝜔 ∈ ♦⊥
0 be a 1-form. We define a 0-form 𝑓𝜔 ∈ Ω0(G, 𝑅) by setting

𝑓𝜔 (𝑣) =
𝑛∑
𝑖=1

𝜔(𝑒𝑖),

where 𝑒1 · · · 𝑒𝑛 is a path in G starting from a given reference vertex 𝑣0 and ending at v. The fact that
it does not depend on the path follows from the fact that 𝜔 ⊥ 𝜔ℓ for any loop ℓ. We see that for any
𝑒 ∈ 𝐸 , 𝑑𝑓𝜔 (𝑒) = 𝜔(𝑒); therefore, we have the inclusion ♦⊥

0 ⊂ �1 = ♦⊥
1 . We finally get that ♦0 = ♦1. The

direct sum decomposition follows from the standard decomposition of a module into a submodule and
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its orthogonal, provided that the bilinear form is not degenerate on this submodule, which is trivially
the case here. �

Proposition 2.11. The R-module

H1 = (�∗
1)

⊥ ∩ ♦1

is isomorphic to 𝐻1(G; 𝑅).
Proof. Recall that�∗

1 ⊂ ♦1 thanks to the property of the chain complex. It follows from the direct sum
decomposition

♦1 =�∗
1 ⊕ H1

that for any 𝜔 ∈ ♦1, there is a unique couple (𝜔0, 𝜇) ∈ H1 × Ω2(G, 𝑅) such that 𝜔 = 𝜔1 + 𝑑∗𝜇. It is
then straightforward to check that the map [𝜔] ↦→ 𝜔0 is the isomorphism that we were looking for. �

The winding number of a planar loop ℓ = 𝑒1 · · · 𝑒𝑛 around a point is an integer that counts how many
times the loop cycles around the point; in particular, we see that in the case of a topological map, it
defines a function 𝑛ℓ ∈ Ω2(G,Z) that counts how many times the loop cycles around each face. One
can see that it is equivalent to require that 𝑑∗𝑛ℓ (𝑒𝑖) = 1 for any i such that 𝑒𝑖 ∈ 𝐸+, and −1 for any i
such that 𝑒−1

𝑖 ∈ 𝐸+. It sums up as

𝑑∗𝑛ℓ = 𝜔ℓ .

Is it possible to get such a construction for compact orientable surfaces? The general answer is not
exactly, because ‘bad’ things can happen when ℓ has a nontrivial homology, but it is still possible when
[ℓ] = 0, as stated by the following lemma.
Lemma 2.12. Assume that G is embedded in an orientable surface of genus 𝑔.

1. 𝐻1 (G; 𝑅) is free of rank 2𝑔, and there are 2𝑔 simple loops (𝑎𝑖 , 𝑏𝑖)1≤𝑖≤𝑔 of G such that
[𝑎1]𝑅, [𝑏1]𝑅, . . . , [𝑎𝑔]𝑅, [𝑏𝑔]𝑅 is a free basis of 𝐻1 (G; 𝑅). Equivalently, 𝜔𝑎1 , 𝜔𝑏1 , . . . , 𝜔𝑎𝑔 , 𝜔𝑏𝑔

is a free basis of H1.
2. When 𝑔 ≥ 1 and 𝑣 ∈ 𝑉 , (ℓ𝑖 , 1 ≤ 𝑖 ≤ 𝑟) and 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 ∈ L𝑣 (G) are as in Lemma 2.3, the map

Γ𝑔 = 〈𝑥1, 𝑦1, . . . , 𝑥𝑔, 𝑦𝑔 | [𝑥1, 𝑦1] . . . [𝑥𝑔, 𝑦𝑔]〉 → 𝐻1(G;Z)

that maps 𝑥𝑚 to [𝑎𝑚]Z and 𝑦𝑚 to [𝑏𝑚]Z is well-defined, onto morphism, with kernel given by the
commutator group [Γ𝑔, Γ𝑔].

3. For any loop ℓ of G such that [ℓ]𝑅 = 0, there is a unique34 𝑛ℓ ∈ Ω2(G, 𝑅) such that

𝜔ℓ = 𝑑∗𝑛ℓ .

We call the 2-form 𝑛ℓ the winding function of ℓ, and we shall identify it to an element of {𝜇∗}⊥.
Proof. Points 1 and 2 are standard results, and their proof can be found in Chapter 2 of [64]. We shall
prove the last point. Recall that

♦1 =�∗
1 ⊕ H1,

and that for any loop ℓ, the 1-form 𝜔ℓ is in ♦1. Hence, there is a unique pair (ℎℓ , 𝑛ℓ) with ℎℓ ∈ H1
and 𝑛ℓ ∈ Ω2(G, 𝑅) such that 𝜔ℓ = ℎℓ + 𝑑∗𝑛ℓ . If [ℓ]𝑅 = 0, it means that ℎℓ = 0 and 𝜔ℓ = 𝑑∗𝑛ℓ , as
expected. �

An example of winding number is depicted in Figure 8.

34Up to a constant.
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Figure 8. A representant of the winding number function with 𝑐 ∈ 𝑅, for a loop ℓ of null homology, on
a map of genus 2. The loop is drawn in green, and the value on each positively oriented face is displayed
on each 2-cell.

Let ℓ be a based loop of a topological map G = (𝑉, 𝐸, 𝐹) which uses each non-oriented edge at most
once and each vertex at most twice. We denote by 𝐸ℓ the subset of edges 𝑒 ∈ 𝐸 such that ℓ runs through
e or 𝑒−1. Whenever a vertex v is visited twice, the four outgoing edges at v visited by ℓ can be ordered
𝑒1, 𝑒2, 𝑒3, 𝑒4 respecting the counterclockwise, cyclic ordering of the orientation of the map. There are six
possible configurations, described by the order of appearance of the edges in ℓ. For instance, if ℓ is based at
𝑒1 and starts with 𝑒−1

1 , these configurations correspond to the orders (𝑒−1
1 , 𝑒2, 𝑒3, 𝑒

−1
4 ), (𝑒−1

1 , 𝑒2, 𝑒
−1
4 , 𝑒3),

(𝑒−1
1 , 𝑒3, 𝑒

−1
2 , 𝑒4), (𝑒−1

1 , 𝑒3, 𝑒
−1
4 , 𝑒2), (𝑒−1

1 , 𝑒4, 𝑒
−1
2 , 𝑒3) and (𝑒−1

1 , 𝑒4, 𝑒
−1
3 , 𝑒2). Up to rotations, they fall into

the three generic configurations illustrated in Figure 9. We say that ℓ is tame if it is only of the first type
of Figure 9 – that is, if it can be split into two loops that meet at the intersection point. See Figure 10 for
an example.

The set 𝑉ℓ of vertices visited twice by ℓ is then called the (transverse) intersection points of ℓ.

Definition 2.13. Let ℓ be a tame loop in a mapG. The Makeenko–Migdal vector at 𝑣 ∈ 𝑉ℓ is the 2-form

𝜇𝑣 = 𝑑 (𝜔𝑒1) + 𝑑 (𝜔𝑒3) = −𝑑 (𝜔𝑒2) − 𝑑 (𝜔𝑒4). (18)

We denote by 𝔪ℓ the R-vector space generated by {𝜇𝑣 , 𝑣 ∈ 𝑉ℓ } and {𝑑𝜔𝑒, 𝑒 ∉ 𝐸ℓ }.

The Makeenko–Migdal vectors are a way to encode algebraically the previously defined Makeenko–
Migdal deformations; see, in particular, Figure 1.

Lemma 2.14. Let ℓ be a tame loop of a map G. Then

𝔪ℓ =

⎧⎪⎪⎨⎪⎪⎩
{𝛼 ∈ Ω2(G, 𝑅) : 〈𝛼, 𝜇∗〉 = 0} if [ℓ]𝑅 ≠ 0,

{𝛼 ∈ Ω2(G, 𝑅) : 〈𝛼, 𝜇∗〉 = 〈𝛼, 𝑛ℓ〉 = 0} if [ℓ]𝑅 = 0.

Remark 2.15. The signification of the conditions given in the characterisation of 𝔪ℓ is the following:
〈𝛼, 𝜇∗〉 = 0 means that the deformation corresponding to 𝛼 preserves the total area of the graph, whereas
〈𝛼, 𝑛ℓ〉 = 0 means that the deformation preserves the algebraic area of the graph, which corresponds to
multiplying the area of each face by its winding number (with respect to the loop ℓ).
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Figure 9. The three main types of transverse simple intersections. In each case, the dotted paths might
be arbitrarily complicated and have multiple intersections outside {𝑒1, 𝑒2, 𝑒3, 𝑒4}. Only the first case
corresponds to a tame loop.

Figure 10. A tame loop in a graph with one vertex and 2 faces. The value of 𝜇𝑣 is displayed on each
face in blue.

Proof of Lemma 2.14. Let us first remark that the above construction is invariant by the following
appropriate subdivisions. Let us call subdivision of an oriented face 𝑓∗, the operation of adding two new
vertices on its boundary and adding an edge e connecting them; the new map G′ has 2 new vertices, 1
more edge and 1 more face, with in place of 𝑓∗, two faces 𝑓1 and 𝑓2 with the same orientation induced from
𝑓∗, while any other face is identified with a face of G. The map G′ being finer than G, ℓ can be identified
with a tame loop of G′ that we denote by the same letter. Consider the map 𝑃 : Ω2(G′, 𝑅) → Ω2(G, 𝑅)
with 𝑃(𝜑) ( 𝑓 ) = 𝜑( 𝑓 ′) whenever a face f of G is identified with a face of G′ and 𝜑( 𝑓1) + 𝜑( 𝑓2) when
𝑓 = 𝑓∗. On one hand, 𝑃(𝑑𝜔𝑒) = 0, and P maps all other vectors of the defining generating family of 𝔪′

ℓ

to the generating family of 𝔪ℓ . Therefore, 𝑃(𝔪′
ℓ) = 𝔪ℓ . As 𝑃 : {𝑑𝜔𝑒}⊥ → Ω2(G, 𝑅) is an isometry,

while 𝑑𝜔𝑒 ∈ 𝔪′
ℓ ∩ ker(𝑃), 𝑃(𝔪′

ℓ
⊥) = 𝔪⊥

ℓ . On the other hand, 𝑃(𝜇′
∗) = 𝜇∗, and when [ℓ]𝑅 = 0,

𝑃(𝑛′
ℓ ) = 𝑛ℓ . We conclude that it is enough to prove the claim for any subdivision of G.

We can then w.l.o.g. assume that ℓ and the paths 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 of Lemma 2.12 do not share any
edge in common. Under this assumption, let us set 𝒮 = {ℓ, 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔} and denote by T(𝒮) the
set of oriented edges e such that an element of 𝒮 runs through e or 𝑒−1. Let 𝜂 be the permutation of
the edges E such that 𝜂(𝑒−1) = 𝜂(𝑒)−1 for any edge 𝑒 ∈ 𝐸 , with 2 + 4𝑔 nontrivial cycles associated
to elements of 𝒮 forgetting the base point. More precisely, for each 𝛾 ∈ {ℓ, 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔} with
𝛾 = 𝑒1 . . . 𝑒𝑛, (𝑒1, . . . , 𝑒𝑛) and (𝑒−1

1 , . . . , 𝑒−1
𝑛 ) are cycles of 𝜂, whereas 𝜂(𝑒) = 𝑒 for any 𝑒 ∉ T(𝒮). For

any 𝜔 ∈ Ω1(G, 𝑅), setting

𝜂.𝜔 = 𝜔 ◦ 𝜂−1
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defines a 1-form. We claim that for any oriented edge 𝑒 ∈ T(𝒮),

𝛼𝑒 = 𝑑𝜔𝑒 − 𝑑 (𝜂.𝜔𝑒) ∈ 𝔪ℓ .

Indeed, it is nonzero only when 𝛾 ∈ 𝒮 runs through e or 𝑒−1, in which case, it follows from (18) that 𝛼𝑒
is a Makeenko–Migdal vector at, respectively, 𝑒 or 𝑒.

Let us now consider 𝛽 ∈ 𝔪⊥
ℓ ∩ {𝜇∗}⊥. Then

〈𝛽, 𝛼𝑒〉 = 〈𝛽, (𝑑 − 𝑑 ◦ 𝜂)𝜔𝑒〉 = 0, ∀𝑒 ∈ T(𝒮),

whereas 〈𝛽, 𝑑𝜔𝑒〉 = 0, ∀𝑒 ∉ T(𝒮), so that

𝑑∗𝛽 = (𝑑 ◦ 𝜂)∗(𝛽) = 𝜂−1 ◦ 𝑑∗𝛽 and 〈𝑑∗𝛽, 𝜔𝑒〉 = 0, ∀𝑒 ∉ T(𝒮).

It follows that

𝑑∗𝛽 = 𝑐𝜔ℓ +
𝑔∑
𝑖=1

(𝑎𝑖𝜔𝑎𝑖 + 𝑏𝑖𝜔𝑏𝑖 ), for some 𝑐, 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 ∈ R.

Using the decomposition ♦1 =�∗
1 ⊕ H1, we find

𝑑∗𝛽 = 𝑐𝑑∗𝑛ℓ and 𝑐ℎℓ +
𝑔∑
𝑖=1

(𝑎𝑖𝜔𝑎𝑖 + 𝑏𝑖𝜔𝑏𝑖 ) = 0.

Since 𝛽 ∈ �̂�⊥
ℓ , for any edge e such that 𝑒, 𝑒−1 do not belong to ℓ, we obtain that 〈𝑑∗𝛽, 𝜔𝑒〉 = 0.

In particular, 𝑎𝑖 = 𝑏𝑖 = 0 for all i and 𝑑∗𝛽 = 𝑐𝜔ℓ . Since 𝛽 ∈ 𝜇⊥
∗ , it follows that either [ℓ]𝑅 = 0 and

𝛽 = 𝑐𝑛ℓ or 𝑐 = 0 and 𝛽 = 0. We conclude that either [ℓ]𝑅 = 0 and 𝔪⊥
ℓ ∩ {𝜇∗}⊥ = R.𝑛ℓ , or [ℓ]𝑅 ≠ 0 and

𝔪⊥
ℓ ∩ {𝜇∗}⊥ = {0}. �

2.3. Regular polygon tilings of the universal cover, tiling-length of a tame loop and geodesic loops

To simplify the presentation, we shall work only with surfaces of genus g obtained by a standard quotient
of 4𝑔 polygons. We fix here notations and definitions relative to the universal cover of such maps. We
refer to [7] for more details.

Regular maps and regular loops: A 2𝑔-bouquet map is a map (𝑉, 𝐸, 𝐹) with 1 vertex v, 1 face and
2𝑔 edges, so that for 𝑓 ∈ 𝐹, there are 2𝑔 oriented edges 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 ∈ 𝐸 corresponding to distinct
edges, with 𝜕𝑣 𝑓 = [𝑎1, 𝑏1] . . . [𝑎𝑔, 𝑏𝑔] . A 2𝑔-bouquet map can be obtained by labelling the edges of a
4𝑔-polygon counterclockwise 𝑒1, . . . , 𝑒4𝑔 and gluing 𝑒𝑖+4𝑘 to 𝑒𝑖+4𝑘+1 for all 0 ≤ 𝑘 ≤ 𝑔 − 1 𝑖 ∈ {1, 2},;
cf. Figure 11.

Figure 11. Three representations of a 4-bouquet. From left to right: as a polygon whose sides are
identified pairwise (and whose vertices are all identified), as a graph embedded in a surface of genus 2,
and as the skeleton of the corresponding CW complex.
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A regular map is a pair given by a map G = (𝑉, 𝐸, 𝐹) and a 2𝑔-bouquet map G𝑔, such that G is finer
than G𝑔. Each edge of G𝑔 is uniquely decomposed as a concatenation of edges of G. Let 𝜕𝐸 ⊂ 𝐸 be
the set of edges appearing in these concatenations. We then denote by 𝜕𝑉 the set of endpoints of edges
of 𝜕𝐸 and �̊� = 𝑉 \ 𝜕𝑉. When (G,G𝑔) is a regular map, we refine the notion of tame loops defined in
the previous section as follows. A loop ℓ ∈ L(G) is regular whenever it is tame and none of its edges
belong to 𝜕𝐸 and ℓ ∈ �̊� . In particular, its intersection points satisfy 𝑉ℓ ⊂ �̊� .

Universal cover of a regular map: Let (G,G𝑔) be a regular map with G = (𝑉, 𝐸, 𝐹). When 𝑔 = 1,
consider the closed square 𝑃1 with vertices coordinates in {− 1

2 ,
1
2 } and the tiling of R2 by translation of

𝑃1 by Z2. When 𝑔 ≥ 2, consider a tiling of the Poincaré hyperbolic disc H by a family of closed regular
4𝑔-polygons of H whose sides do not intersect 0, and denote by 𝑃1 the polygon among them enclosing
0. The group Γ𝑔 can be identified with Z2 when 𝑔 = 1 and with a subgroup of Möbius transformations
that acts properly by isometry on H when 𝑔 ≥ 2. The group Γ𝑔 acts freely on the set of tiles, and for
each ℎ ∈ Γ𝑔, there is a unique tile 𝑃ℎ with ℎ · 0 belonging to the interior of 𝑃ℎ . Let us define Σ̃G as R2

when 𝑔 = 1 and H when 𝑔 ≥ 2. The quotient of Σ̃G by Γ𝑔 is homeomorphic to ΣG, and we denote by
𝑝 : Σ̃G → ΣG the quotient mapping. There is a unique CW decomposition of Σ̃G such that the restriction
of p to the interior of each cell of Σ̃G is a homeomorphism onto the interior of a cell of ΣG labelled
by an element of 𝑉, 𝐸 or F. We denote a labelling of the cells of this CW complex by G̃ = (�̃� , �̃� , �̃�)
and call G̃ a universal cover of G. There is a natural map from �̃� , �̃� , �̃� to, respectively, 𝑉, 𝐸 and F
that we also denote by 𝑝. The map G̃ is finer than the universal cover G̃𝑔 = (�̃�𝑔, �̃�𝑔, �̃�𝑔) of G𝑔, where
faces �̃�𝑔 can be identified with polygons (𝑃𝑔)𝑔∈Γ𝑔 , and Γ𝑔 acts free transitively on �̃�𝑔 . As for maps,
the pair (�̃� , �̃�) can be identified with a graph, and we denote by P(G̃) its set of paths. For each path
𝛾 = 𝑒1 . . . 𝑒𝑛 ∈ P(G) and �̃� ∈ 𝑝−1 (𝑣0), the lift of 𝛾 from �̃� is the unique path �̃� = 𝑒1 . . . , 𝑒𝑛 ∈ P(G̃) with
�̃� = �̃� and 𝑝(𝑒𝑘 ) = 𝑒𝑘 for all 1 ≤ 𝑘 ≤ 𝑛. Viceversa, when �̃� = (𝑒1, . . . , 𝑒𝑛) ∈ P(G̃), its projection is the
path 𝑝(𝛾) = (𝑝(𝑒1), . . . , 𝑝(𝑒𝑛)) ∈ P(G). Its image in RP(G) does not depend on the ∼𝑟 equivalence
class [𝛾] of 𝛾; we denote it by 𝑝([𝛾]) ∈ RP(G). When �̃� ∈ �̃� and 𝑣 = 𝑝(�̃�), the group RL�̃� (G̃) of
reduced loop of (�̃� , �̃�) based at �̃� allows to complete the diagram of Lemma 2.3 in the following way.
The proof is standard and left to the reader.

Lemma 2.16. Let (G,G𝑔) be a regular map, the following assertions hold:

1. The sequence

1 → RL�̃� (G̃)
𝑝
→ RL𝑣 (G) → 𝜋1,𝑣 (G) → 1

is a short exact sequence.
2. Denote by Γ𝑐 the kernel of the morphism Γ𝑟 ,𝑔 → Γ𝑔 considered in Lemma 2.3 and let 𝑠 : Γ𝑔 → Γ𝑟 ,𝑔

be an injective right-inverse map with 𝑠(Γ𝑔) = Γ𝑡𝑜𝑝 , where Γ𝑡𝑜𝑝 the subgroup of Γ𝑟 ,𝑔 generated
𝑆𝑡𝑜𝑝 = {𝑥1, 𝑦1, . . . , 𝑥𝑔, 𝑦𝑔}, built as follows. Consider a spanning tree T of the Cayley graph of Γ𝑔
generated by 𝑥1, . . . , 𝑦𝑔 . Identifying Γ𝑡𝑜𝑝 with paths of the Cayley graph of Γ𝑔 starting from 1, set for
any 𝛾 ∈ Γ𝑔, 𝑠(𝛾) ∈ Γ𝑡𝑜𝑝 to be the unique path of T from 1 to 𝛾. Then Γ𝑐 is free of infinite countable
rank with free basis {𝑠(𝛾)𝑧𝑖𝑠(𝛾)−1, 𝛾 ∈ Γ𝑔}.

3. Assume �̃� ∈ �̃�𝑔 and that (ℓ𝑖 , 1 ≤ 𝑖 ≤ 𝑟), 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 ∈ L𝑣 (G) and Θ : Γ𝑟 ,𝑔 → RL𝑣 (G)
are as in Lemma 2.3. Denote by RL𝑡𝑜𝑝 (G) the subgroup of RL𝑣 (G) generated by 𝑎1, . . . , 𝑏𝑔 . Then
the restrictions of Θ to Γ𝑡𝑜𝑝 and Γ𝑐 yield isomorphisms Θ : Γ𝑡𝑜𝑝 → RL𝑡𝑜𝑝 (G) and Θ : Γ𝑐 →
𝑝(RL�̃� (G̃)). Denoting by Θ̃ : Γ𝑐 → RL�̃� (G̃) the morphism with 𝑝 ◦ Θ̃ = Θ, the diagram

1 → Γ𝑐 → Γ𝑟 ,𝑔 → Γ𝑔 → 1
↓ Θ̃ ↓ Θ ↓

1 → RL�̃� (G̃)
𝑝
→ RL𝑣 (G) → 𝜋1,𝑣 (G) → 1
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Figure 12. On the left: a regular loop with base v in a regular map of genus 1. On the right: its lift on
the universal cover, with base �̃�. It has a tiling length of 4, as it crosses four times the boundaries of
tiles (at the purple crosses).

is commutative and exact. Consider a spanning tree T of �̃�𝑔, and for any 𝑥 ∈ �̃�𝑔, denote by 𝛾𝑥 the
unique path of T from �̃� to 𝑥. Then RL�̃� (G̃) is free of infinite rank, with free basis{�𝛾𝑥ℓ𝑖𝛾−1

𝑥 , 𝑥 ∈ �̃�𝑔, 1 ≤ 𝑖 ≤ 𝑟
}
.

Tile decomposition: For all ℎ ∈ Γ𝑔, we denote by 𝐷ℎ ⊂ �̃� , 𝐷∗
ℎ ⊂ �̃� and 𝐷ℎ ⊂ �̃� the subsets of

vertices and faces of G, whose image in Σ̃G is included, respectively, in 𝑃ℎ and its interior 𝑃ℎ . The
projection �̊� of �̊�ℎ does not depend on ℎ ∈ Γ. When 𝑈 ⊂ �̃� and 𝐸𝑐 ⊂ �̃� , we denote by 𝑈 \ 𝐸𝑐 the
subgraph of the graph of G̃∗, where all faces from �̃� \ 𝑈 and all edges dual to 𝐸𝑐 are removed. Let
us consider the oriented graph with vertices Γ𝑔 such that there is an edge between a and b if and only
if 𝑃𝑎 and 𝑃𝑏 share a side. The action of Γ𝑔 on H induces a free, transitive, isometric action on this
graph, and we denote by |ℎ|Γ𝑔 the distance between any ℎ ∈ Γ𝑔 and 1. For any nonconstant regular loop
ℓ = (𝑒1, . . . , 𝑒𝑛) ∈ L(G), we call

|ℓ |𝐷 = 𝑛 − 1 − #
{
1 ≤ 𝑖 ≤ 𝑛 − 1 : ∃ℎ ∈ Γ𝑔 with {𝑒𝑖 , 𝑒𝑖 , 𝑒𝑖+1} ⊂ 𝐷ℎ

}
the tiling length of35 ℓ. See Figure 12.

There is then a unique tuple 𝛾0, . . . , 𝛾 |ℓ |𝐷 of paths of G, such that for any lift ℓ̃ of ℓ, there are lifts
�̃�0, . . . , �̃� |𝛾 |𝐷 of 𝛾0, . . . , 𝛾 |ℓ |𝐷 such that

ℓ̃ = �̃�0 . . . �̃� |𝛾 |𝐷 , (19)

and for all 0 ≤ 𝑘 ≤ |ℓ |𝐷 , there are ℎ0, ℎ1, . . . , ℎ |ℓ ||𝐷 | ∈ Γ𝑔 such that all36 vertices of �̃�𝑘 belong to 𝐷ℎ𝑘 ,
while ℓΓ = (ℎ0, . . . , ℎ |ℓ |𝐷 ) is a path in Γ𝑔. We call ℓ𝐷 = 𝛾 |ℓ |𝐷𝛾0 the initial strand of ℓ. We call ℓΓ the
tiling path of ℓ and set

|ℓ |Γ = |ℎ |ℓ |𝐷 |Γ𝑔 .

A loop ℓ1 of (G,G𝑔) is called an inner loop of ℓ if ℓ1 is regular and included in �̊�, and ℓ1 ≺ ℓ. We then
say that ℓ1 is a contractible intersection point of ℓ and denote by 𝑉𝑐,ℓ the set of such points. A proper
loop is a regular loop ℓ with #𝑉𝑐,ℓ = 0.

A path 𝛾 ∈ P(G) is said to be geodesic when its embedding in the surface is the restriction of a
geodesic of the surface.37 A path in Γ𝑔 is geodesic if it is the tiling path of a geodesic path of a regular
map.

35Since the loop is regular, it is also understood as the number of pair consecutive edges of ℓ crossing the boundary of a polygon.
36This latter claim does not hold if ℓ is not regular.
37Mind that we also consider the power of a geodesic to be a geodesic.
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2.4. Shortening homotopy sequence

We define here operations on regular loops allowing to decrease their tiling length. We say that a
sequence ℓ1, . . . , ℓ𝑛 is a shortening homotopy sequence from ℓ1 to ℓ𝑛 if ℓ1, . . . , ℓ𝑛 are regular loops such
that |ℓ1 |𝐷 ≥ . . . ≥ |ℓ𝑛 |𝐷 , and for all 1 ≤ 𝑙 < 𝑛,

#𝑉𝑐,𝑙 = #𝑉𝑐,𝑙+1 = 0 or #𝑉𝑐,𝑙 > #𝑉𝑐,𝑙+1,

while there is a regular map (𝑉, 𝐸, 𝐹) with ℓ𝑙 , ℓ𝑙+1 ∈ P(G) and a subset of faces 𝐾𝑙 � 𝐹, with

ℓ𝑙 ∼𝐾𝑙 ℓ𝑙+1.

The aim of this section is to prove the following.
Proposition 2.17. For any proper loop ℓ, there is a shortening homotopy sequence ℓ1, . . . , ℓ𝑚, a geodesic
loop ℓ′ and a path 𝜂 within the same map G = (𝑉, 𝐸, 𝐹) as ℓ𝑚, such that ℓ𝑚 ∼𝐾 𝜂ℓ′𝜂−1 for some 𝐾 ⊂ 𝐹
with 𝐾 ≠ 𝐹. The path 𝜂 can be chosen simple, within a fundamental domain and crossing ℓ𝑚 and ℓ′

only at their endpoints.
We need two additional notions for this proof.
Bulk of a loop: Consider a regular map (G,G𝑔) with G = (𝑉, 𝐸, 𝐹) and a contractible loop ℓ of G

whose lift is a loop ℓ̃ of G̃. Let 𝐸𝑐 be the set of edges used by ℓ̃ and let 𝑂ℓ be the unbounded component
of G̃∗ \ 𝐸𝑐 . The bulk of ℓ is then 𝐾ℓ = 𝑝(�̃� \ 𝑂ℓ). Since 𝐸ℓ is connected, the image of 𝑂ℓ in Σ̃G is a
surface with one boundary, and the image �̃�ℓ of �̃� \ 𝑂ℓ in Σ̃G is a contractible set. The image of ℓ is
then contractible within 𝑋ℓ = 𝑝( �̃�ℓ ) and

ℓ ∼𝐾ℓ ℓ∗,

where ℓ∗ is the constant loop at ℓ.
Adding a rim to a regular map: When (G,G𝑔) is a regular map, let us define a map G𝑟 finer than G

in the following way. First, add exactly one vertex to each edge38 of 𝐸 \ 𝜕𝐸 with one endpoint in 𝜕𝑉
and exactly two when both endpoints belong to 𝜕𝑉 . Each new vertex is paired uniquely with a vertex of
𝜕𝑉 , and their set inherits the cyclic order of vertices of 𝜕𝑉. Second, add an edge for each consecutive
new vertices. We denote by G𝑟 the new map defined thereby and call the set 𝜕𝑟𝐸 of edges added in the
second step the rim of G. Each face of the new map, whose boundary has an edge in 𝜕𝐸 , has exactly
four adjacent edges with exactly one in 𝜕𝐸𝑟 . We denote this set of faces by 𝐹𝑟 . We denote all other faces
of G𝑟 by 𝐹𝑖 . For any 𝑓 ∈ 𝐹, either its boundary has no edge in 𝜕𝐸 and it is identified to a face of 𝐹𝑖 , or
it is the union of faces of G𝑟 with exactly one in 𝐹𝑖 that we abusively also denote by f. For any oriented
edge e of G𝑟 belonging to 𝜕𝐸, its right retract is the oriented edge of 𝜕𝐸𝑟 belonging to the face of 𝐹𝑟 on
the right of 𝑒. When 𝛾 is a path with edges in 𝜕𝐸 , its right retraction is the concatenation of the right
retraction of its edges. The left retraction is defined likewise.

We can now prove the existence of shortening homotopy sequence starting from any regular loop,
using a 5 type of operations.

Step 1–Deleting contraction points: Consider a regular loop ℓ such that #𝑉𝑐,ℓ > 0 of a regular map
with faces set F. Any lift �̃� of an inner loop 𝛼 ≺ ℓ is a loop, and we can consider its bulk. Denote by
K the union of bulks for all inner loops. Any face bordering 𝜕𝐸 does not belong to K so that 𝐾 � 𝐹,
while ℓ is ∼𝐾 -equivalent to the regular loop ℓ′ with all inner loops erased.

Step 2–Backtrack erasure: Assume that ℓ is a regular loop of a regular map (G,G𝑔) such that there is
1 < 𝑖 < |ℓ |𝐷 with ℎ𝑖−1 = ℎ𝑖+1, where (ℎ1, . . . , ℎ |ℓ |𝐷 ) is the tiling path of ℓ. Consider the decomposition
of ℓ̃ as in (19). Let G′ be the map (G,G𝑔) with a rim added. Denote by 𝑒𝑖 and 𝑒𝑜 the last and first edge
of 𝛾𝑖−1 and 𝛾𝑖+1. Then 𝑒𝑖 and 𝑒𝑜 belong to the same edge e of G𝑔 . Let 𝛽′ ∈ P(G′) be the reduced path
using only edges of the rim with 𝛽′ = 𝑒𝑖 and 𝛽

′
= 𝑒𝑜. Denote by 𝛾′

𝑖−1 and 𝛾′
𝑖+1 the reduction of 𝛾𝑖−1𝑒

−1
𝑖

38Recall the definition of 𝜕𝐸 and 𝜕𝑉 for a regular map in Section 2.3.

https://doi.org/10.1017/fms.2024.152 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.152


30 A. Dahlqvist and T. Lemoine

Figure 13. Discrete homotopy at a left turn of ℓ when 𝑔 = 2 and 𝑘 = 7. The latter vertex is shown as
a green dot; contracted faces are shown in green. The second rim is displayed with dotted lines. A lift
ℓ̃ of the initial loop in displayed in plain orange line, while a lift ℓ̃′ of the terminal loop is displayed in
dashed red line.

and 𝑒−1
𝑜 𝛾𝑖+1. The backtrack erasure for the backtracking (ℎ𝑖−1, ℎ𝑖 , ℎ𝑖+1) of ℓ is the regular loop

ℓ′ = 𝛾1 . . . 𝛾𝑖−2𝛾
′
𝑖−1𝛽

′𝛾′
𝑖+1𝛾𝑖+2 . . . 𝛾 |ℓ |𝐷 .

It can be obtained from ℓ by the following discrete homotopy. Since a lift of the paths 𝛽′ and 𝑒𝑖𝛾𝑖𝑒𝑜
starting in 𝐷ℎ𝑖−1 both ends in 𝐷ℎ𝑖 , the loop of 𝑒𝑖𝛾𝑖𝑒𝑜𝛽′−1 is contractible. Denote by 𝐾𝑏𝑡 its bulk. Then

ℓ ∼𝐹𝑏𝑡 ℓ
′.

Since 𝛾𝑖 only intersect the rim of G′ through the edge e, any face belonging to the rim whose boundary
intersects two different edges of G𝑏 is not in 𝐾𝑏𝑡 . It follows that 𝐾𝑏𝑡 ≠ 𝐹 ′.

Step 3-Vertex switch: Let ℓ be a regular loop of a regular map (G,G𝑔) and consider its decomposition
as in (19). A half turn of ℓ is a sequence 𝛾𝑙 , . . . , 𝛾𝑙+𝑘 such that 2𝑔 ≤ 𝑘 ≤ 4𝑔−1, and 𝐷ℎ𝑙 , 𝐷ℎ𝑙+1 , . . . , 𝐷ℎ𝑙+𝑘
runs around a common vertex 𝑣 ∈ G𝑔. Consider such a long turn and let G′ = (𝑉 ′, 𝐸 ′, 𝐹 ′) be the map
obtained from G by adding twice a rim as described in the last paragraph. See Figure 13 for an example.
Let 𝑒𝑖 and 𝑒𝑜 be, respectively, the last and the first edge of 𝛾𝑙 and 𝛾𝑙+𝑘 in G′. Besides, let 𝛽𝑝 ∈ P(G′∗)
be the shortest reduced path from a face adjacent of 𝑒𝑖 to a face adjacent of 𝑒𝑜 that crosses first 𝑒𝑖 and
uses only faces of 𝐹𝑟 so that its lift starting from 𝐷∗

ℎ𝑙
goes through 𝐷∗

ℎ𝑙
∪ 𝐷∗

ℎ𝑙+𝑘
and ends in 𝐷∗

ℎ𝑙+𝑘
.

Let 𝛽′ ∈ P(G′) be the reduced path from 𝑒𝑖 to 𝑒𝑜, such that each edge of 𝛽′ is bordering a face of 𝛽𝑝 .
Denote by 𝛾′

𝑙 and 𝛾′
𝑘+𝑙 the reduction of 𝛾𝑙𝑒−1

𝑖 and 𝑒−1
𝑜 𝛾𝑘+𝑙 . The vertex switch of ℓ for the considered half

turn is the regular loop

ℓ′ = 𝛾0𝛾1 . . . 𝛾𝑙−1𝛾
′
𝑙 𝛽

′𝛾′
𝑘+𝑙𝛾𝑘+𝑙+1 . . . 𝛾 |ℓ |𝐷 .

It can be obtained from ℓ by the following discrete homotopy. Consider the loop 𝑒𝑖𝛾𝑙+1 . . . 𝛾𝑙+𝑘−1𝑒𝑜𝛽
′−1.

Since a lift of 𝛽′ starting in 𝐷ℎ𝑙 ends in 𝐷ℎ𝑙+𝑘 , it follows that 𝑒𝑖𝛾𝑙+1 . . . 𝛾𝑙+𝑘−1𝑒𝑜𝛽
′−1 is contractible.

Denote by 𝐾𝑠𝑤 its bulk.
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Then,

𝑒𝑖𝛾𝑙+1 . . . 𝛾𝑙+𝑘−1𝑒𝑜 ∼𝐾𝑠𝑤 𝛽′

and

ℓ ∼𝐾𝑠𝑤 𝛾0 . . . 𝛾𝑙−1𝛾
′
𝑙 𝑒𝑖𝛾𝑙+1 . . . 𝛾𝑙+𝑘−1𝑒𝑜𝛾𝑘+𝑙+1 . . . 𝛾 |ℓ |𝐷 ∼𝐾𝑠𝑤 ℓ′.

Besides, 𝐹𝑠𝑤 ≠ 𝐹 ′. Indeed, consider the map G1 obtained by adding a single rim to G, so that G′

is finer than G1. Let 𝐹𝑐𝑟 , �̃�𝑐𝑟 be the set of of faces of G1 neighbouring, respectively, 𝑝(𝑣) and v. The
restriction of p to �̃�𝑐𝑟 is a homeomorphism onto 𝐹𝑐𝑟 . Since 𝑘 < 4𝑔, there is at least one face 𝑓𝑐𝑟 of
�̃�𝑐𝑟 that does not belong to 𝑝−1 (𝐹𝑠𝑤 ). Since 𝛽 uses only faces of 𝐹 ′

𝑟 , any face of 𝐹 ′ \ 𝐹𝑟 included in
𝑓𝑐𝑟 = 𝑝( 𝑓𝑐𝑟 ) does not belong to 𝐾𝑠𝑤 .

The following lemma reformulates a result due to [7] relating |ℓ |𝐷 to long turns of ℓ when 𝑔 ≥ 2.

Lemma 2.18. Let ℓ be a regular loop of a regular map (G,G𝑏). There is a finite sequence ℓ1, . . . , ℓ𝑛 or
regular loops obtained by vertex switches or backtracking erasures such that ℓ1 = ℓ, |ℓ1 |𝐷 ≥ |ℓ2 |𝐷 . . . ≥
|ℓ𝑛 |𝐷 and

|ℓ𝑛 |𝐷 = |ℓ |Γ𝑔 .

Proof. The case 𝑔 = 1 is elementary. An argument goes as follows. The path in Γ1 = Z2 associated to ℓ
can be assumed up to axial symmetries that ℎℓ has nonnegative coordinates. A backtracking of ℓΓ can be
erased by a backtracking erasure of ℓ. A path is geodesic if and only if all of its increments coordinates
are nonnegative. There are two consecutive increments with a negative followed by a positive sign.
This pair corresponds to a backtrack or a half turn of ℓ if one or two coordinates change. Applying
to a backtrack erasure or a switch at the half turn, the new loop has one less pair of increments with
coordinates changing sign.

When 𝑔 ≥ 2, the result follows from [7, Lemma 2.5]. In the setting of [7], a half turn of ℓ is a half
cycle of the path in Γ𝑔 associated to ℓ. A switch at a half turn corresponds to a replacement of a half cycle
with its complementary. Moreover, in the setting of [7], replacing a long chain by its complementary
chain can be obtained by successively replacing a long cycle by its complementary cycle. �

Step 4–From minimal tiling length to geodesic tiling paths: We say that a regular path 𝛾 of a regular
map has minimal tiling length when |𝛾 |𝐷 = |𝛾 |Γ . When 𝑔 ≥ 2, the following is a consequence of [7,
Thm 2.8].

Lemma 2.19. If ℓ is a regular loop of a regular map, there is a sequence of regular loops ℓ1, . . . , ℓ𝑛
with minimal tiling length equal to |ℓ1 |Γ obtained by switches and backtrack erasure, such that ℓ1 = ℓ
while the tiling path of ℓ𝑛 is geodesic.

Proof. When 𝑔 ≥ 2, in the setting of [7], our condition for a tiling path to be geodesic is equivalent for
it to be a shortest path. Since switches at half turns imply switches for half cycles of the tiling path in
the setting of [7], the result follows from point (c) of [7, Thm 2.8].

When 𝑔 ≥ 1, for any regular loop with minimal tiling length, we can assume w.l.o.g. that both
coordinates of the endpoint (𝑎, 𝑏) of ℓΓ are nonnegative. When 𝛾 is a path of Z2 with only positive
coordinates, a corner swap of 𝛾 is the path obtained by replacing a sequence of the form (𝑥, 𝑦), (𝑥 +
1, 𝑦), (𝑥 + 1, 𝑦 + 1) with (𝑥, 𝑦), (𝑥, 𝑦 + 1), (𝑥 + 1, 𝑦 + 1) or vice versa. Any other path of Z2 with the
same endpoints can be obtained by corner swaps and backtrack erasure. Since a switch at a half turn of
ℓ implies a corner swap of its tiling path and that tiling paths with positive coordinates have minimal
length in Z2, the claim follows. �

Step 5–From geodesic tiling paths to geodesic paths: Assume that ℓ is a regular loop such that ℓΓ
is geodesic and set 𝑛 = |ℓ |𝐷 = |ℓ |Γ. Let ℓ (∗) be a geodesic loop with ℓ (∗)

Γ = ℓΓ . Up to translation of
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the geodesic associated to ℓ (∗) , we can assume that ℓ (0) and ℓ (∗) are regular paths of a same regular
map (G(0) ,G(0)

𝑔 ). Let 𝜂 ∈ 𝑃(G(0) ) that does not cross the boundary of the polygon, while 𝜂 = ℓ and
𝜂 = ℓ (∗) , without using any edge of ℓ (∗) . Denote by (G,G𝑔) the regular map obtained by adding a rim
to (G(0) ,G(0)

𝑔 ). Using the same notation as in (19), consider the tile paths decompositions of ℓ and ℓ (∗)

adding an upper-script (∗) for the second decomposition. For any 0 ≤ 𝑘 ≤ 𝑛 − 1, let 𝑒𝑘 and 𝑒 (∗)
𝑘 be the

last edges of, respectively, 𝛾𝑘 and 𝛾 (∗)
𝑘 , denote by 𝛽𝑘 the reduced path with edges in 𝜕𝐸𝑟 from 𝑒 (∗)

𝑘 to
𝑒𝑘 and define ℓ (𝑘) as the reduction of

𝜂𝛾 (∗)
0 . . . 𝛾 (∗)

𝑘 𝑒 (∗)
𝑘

−1
𝛽𝑘𝑒𝑘𝛾𝑘+1 . . . 𝛾𝑛.

Let us set ℓ (𝑛) = 𝜂ℓ (∗)𝜂−1 and ℓ (−1) = ℓ. Let 𝛼𝑘 be the reduction of the loop 𝜂−1𝛾0𝑒
−1
0 𝛽−1

0 𝑒 (∗)
0 𝛾 (∗)

0
−1

when 𝑘 = 0, 𝑒 (∗)
𝑘−1

−1
𝛽𝑘−1𝑒𝑘−1𝛾𝑘𝑒𝑘

−1𝛽−1
𝑘 𝛾 (∗)

𝑘

−1
when 0 < 𝑘 < 𝑛 and 𝑒 (∗)

𝑛−1
−1

𝛽𝑛−1𝑒𝑘−1𝛾𝑛𝜂𝛾
(∗)
𝑛

−1
when

𝑘 = 𝑛. With this notation,

ℓ ∼𝑟 𝜂𝛼0𝛾
∗
0𝛼1𝛾

∗
1 . . . 𝛼𝑘𝛾

(∗)
𝑘 𝑒 (∗)

𝑘

−1
𝛽𝑘𝑒𝑘𝛾𝑘+1 . . . 𝛾𝑛 for 0 ≤ 𝑘 < 𝑛

and

ℓ ∼𝑟 𝜂𝛼0𝛾
∗
0𝛼1𝛾

∗
1 . . . 𝛼𝑛𝛾

(∗)
𝑛 𝜂−1.

Therefore, for all 0 ≤ 𝑘 ≤ 𝑛

ℓ (𝑘−1) = 𝛼𝛽 and ℓ (𝑘) = 𝛼𝛼𝑘 𝛽, (20)

for some paths 𝛼, 𝛽 ∈ P(G). For all 0 ≤ 𝑘 ≤ 𝑛, 𝛼𝑘 is contractible. Denoting by 𝐾𝑘 its associated bulk,
(20) yields

ℓ (𝑘) ∼𝐾𝑘 ℓ (𝑘−1) for all 0 ≤ 𝑘 ≤ 𝑛.

Besides, since 𝛼𝑘 intersects at most two edges of G𝑔, any face within the rim 𝑓 ∈ 𝐹𝑟 , which borders a
different edge of G𝑔, does not belong to 𝐾𝑘 . Therefore, 𝐾𝑘 ≠ 𝐹.

Proof of Proposition 2.17. For any regular loop ℓ, the claimed shortening homotopy sequence can be
obtained by applying first the deletion of contraction points, followed by Lemma 2.18, 2.19 and lastly a
shortening homotopy sequence from a loop with geodesic tiling path to a loop conjugated to a geodesic
loop. �

The following lemma is not necessary for our main argument and can be skipped at first reading.
Let us note that it is also possible to do the vertex switch operation (Step 3) before deleting contraction
points (Step 1) thanks to the following.

Lemma 2.20. Consider ℓ is a regular loop within a regular map (G,G𝑔) with faces set F. Denote,
respectively, by K and 𝐸𝑖𝑛 the union of bulks and the set of edges of its initial strand ℓ𝐷 . Then 𝐹 \ 𝐾 is
connected in G∗ \ (𝜕𝐸 ∪ 𝐸𝑖𝑛).

Proof. Since ℓ is regular, any edge crossing 𝜕𝐸 does not belong to 𝐸𝑖𝑛, and faces adjacent to 𝜕𝐸 belong
to the same connected component X of 𝐹 \𝐾 inG∗ \ (𝜕𝐸∪𝐸𝑖𝑛). Denote by �̃� the lift of X in 𝐷∗

1. Assume
that 𝐹 \ 𝐾 is not connected in G∗ \ (𝜕𝐸 ∪ 𝐸𝑖𝑛) and consider a connected component 𝐾 ′ different from
X. Then all edges of 𝜕𝐾 ′ belong to 𝐸𝑖𝑛. Since the infinite connected component of G̃∗ \ 𝐸𝑖𝑛 is given by
�̃� \ 𝐷∗ ∪ 𝑋, the lift of 𝐾 ′ in 𝐷∗

1 is included in the bounded connected component of G̃∗ \ 𝐸𝑖𝑛, where
we identified 𝐸𝑖𝑛 with the set of edges of the lift of ℓ𝐷 starting from 𝐷1. It follows that 𝐾 ′ is included
in K, which is a contradiction. �
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2.5. Nested and marked loops

Nested loop: We say that a loop ℓ of a regular map with n transverse intersection points is nested
if it is regular and if there are subloops ℓ1 ≺ ℓ2 ≺ . . . ≺ ℓ𝑛 with a strictly increasing number of
intersection points. By convention, a constant loop is a nested loop. A regular loop is nested if and
only if its transverse intersection points can be labelled 𝑣1, 𝑣2, . . . , 𝑣𝑛 so that it visits them in the order
(𝑣1𝑣2 . . . 𝑣𝑛−1𝑣𝑛𝑣𝑛𝑣𝑛−1 . . . 𝑣2𝑣1). See Figure 14.

Remark 2.21. A nested loop is an example of a splittable loop as defined in [21, Section 6.5], originally
introduced in [36] and called therein planar loops. Note that the right example in Figure 14 is splittable
but not nested.

Marked loops: A marked loop is a couple (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) of a regular loop and a regular path within a
regular map G such that

1. When (𝛾0, . . . , 𝛾 |ℓ |𝐷 ) denotes the tiling decomposition of ℓ, 𝛾0 = 𝛾𝑛𝑒𝑠𝑡𝛾
′, for some path 𝛾′.

2. The path 𝛾𝑛𝑒𝑠𝑡 is nonconstant and of the form 𝛼ℓ𝑛𝑒𝑠𝑡 𝛽 where ℓ𝑛𝑒𝑠𝑡 is a nested loop and 𝛼, 𝛽 are
simple paths, such that the only intersections between 𝛼, 𝛽 and ℓ𝑛𝑒𝑠𝑡 are at 𝛼 and 𝛽.

3. The path 𝛾𝑛𝑒𝑠𝑡 does not intersect transversally the two components of the initial strand ℓ𝐷 .
4. The path 𝛾𝑛𝑒𝑠𝑡 does not intersect any inner loop of 𝛼𝛽𝛾′𝛾1 . . . 𝛾 |ℓ |𝐷 .
5. The bulk 𝐹𝑛𝑒𝑠𝑡 of the contractible loop ℓ𝑛𝑒𝑠𝑡 has exactly #𝑉ℓ faces of G, and there is exactly one face

𝑓𝑜 of G adjacent to 𝐹𝑛𝑒𝑠𝑡 in G∗.

See Figure 15 for an example. We call the loop and the path defined by (ℓ, 𝛾𝑛𝑒𝑠𝑡 )∧ = 𝛼𝛽𝛾′𝛾1 . . . 𝛾 |ℓ |𝐷
and (ℓ, 𝛾𝑛𝑒𝑠𝑡 )∧∗ = 𝛾′𝛾1 . . . 𝛾 |ℓ |𝐷 the pruning and the cut of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ). We shall often denote them
abusively simply by ℓ∧ and ℓ∧∗ . We call 𝑓𝑜 the outer face of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) and the simple sub-loop of ℓ with
length 1 the central loop of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ). Being a sub-loop of ℓ𝑛𝑒𝑠𝑡 , it is contractible; faces belonging to
its bulk are called central.

A moving edge is an edge e of ℓ with the following property:

◦ When ℓ𝑛𝑒𝑠𝑡 is constant, e is any edge of 𝛾𝑛𝑒𝑠𝑡 .
◦ Otherwise, e bounds a central face of ℓ𝑛𝑒𝑠𝑡 .

Figure 14. Left: a nested loop. Right: this is not a nested loop.

Figure 15. A marked loop. Its nested part is drawn in blue. There are exactly one central face coloured
in blue and one outer face filled with dashed green lines.
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Figure 16. Left: A marked loop with the nested part drawn in blue. New edges of the modified regular
map are drawn with dashed lines. The union of faces of 𝐹𝑠𝑡𝑒𝑚 is a stroke with dashed lines. Right: Pull
of the left marked loop along the path of the dual drawn in orange.

Remark 2.22. For any nested loop ℓ included in a fundamental domain, it is easily shown by induction
on 𝑛 = #𝑉ℓ that the dual graph G∗ with the edges of ℓ removed has exactly 𝑛 + 1 connected components.
The fifth condition above can be removed considering regular maps finer than G.

The following is then a simple variation of Proposition 2.17.

Lemma 2.23. For any marked loop (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) with ℓ∧ proper, there is a shortening homotopy sequence
ℓ1, . . . , ℓ𝑚 such that

1. ℓ1 ∼𝑐 ℓ,
2. There is a common nested subpath 𝛾𝑛𝑒𝑠𝑡 of ℓ1, . . . , ℓ𝑛, such that (ℓ𝑘 , 𝛾𝑛𝑒𝑠𝑡 ) is a marked loop for all

𝑘 ≥ 1, and ℓ∧𝑘 is proper for 𝑘 ≥ 2.
3. There are proper subsets 𝐾1, . . . , 𝐾𝑚 of faces, such that ℓ∧∗

𝑘 ∼𝐾𝑘 ℓ∧∗
𝑘+1 for all 1 ≤ 𝑘 < 𝑚.

4. There is a marked loop (ℓ′, 𝛾′
𝑛𝑒𝑠𝑡 ), such that ℓ𝑚 ∼Σ ℓ′ and ℓ′∧ is geodesic.

2.6. Pull and twist moves

We introduce here two operations on loops in order to later modify shortening homotopy sequences to
satisfy the constraint imposed by Makeenko–Migdal equations – namely, to keep constant the algebraic
area of loops introduced in Section 2.2. This type of operation shall be required only when considering
loops with vanishing homology.

Pull move: Consider a nonconstant marked loop (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) in a regular map (G,G𝑔) with ℓ∧ has no
inner loops that are subpaths of ℓ𝐷 . Then the graph obtained from the dual graph G∗ by removing all
edges crossing 𝜕𝐸 or ℓ𝐷 but edges of 𝛾𝑛𝑒𝑠𝑡 is connected. For any face f ofG and any moving edge e that
does not bound 𝑓 , there is therefore a simple path 𝛾∗ = 𝑎∗

1 . . . 𝑎
∗
𝑚 in the dual graph G∗ with endpoint f

and first edge 𝑎∗
1 dual to e that crosses neither 𝜕𝐸 nor ℓ𝐷 but possibly at 𝛾𝑛𝑒𝑠𝑡 . Let us define inductively

a new map G′ finer than G, a new marked loop (ℓ′, 𝛾′
𝑛𝑒𝑠𝑡 ), as well as a subset 𝐹𝑠𝑡𝑒𝑚 of faces of G′. An

example of the result in displayed in Figure 16. Let us first set 𝐹𝑠𝑡𝑒𝑚 = ∅. Denote by 𝑎1, . . . , 𝑎𝑚 the
edges dual to 𝑎∗

1, . . . , 𝑎
∗
𝑚. Let 𝑘 ≥ 1 be the largest k such that 𝑎∗

𝑘 is dual to an edge of 𝛾𝑛𝑒𝑠𝑡 .

1. Add two new vertices to all edges dual to 𝑎∗
𝑘 , . . . , 𝑎

∗
𝑚. For all 𝑙 ≥ 𝑘, when 𝑎𝑙 = 𝑎𝑙,0𝑎𝑙,1𝑎𝑙,2 is the

edge decomposition of 𝑎𝑙 in the new map, replace 𝑎𝑙 by 𝑎𝑙,1.
2. Cut all faces visited by 𝑎∗

𝑘 . . . 𝑎
∗
𝑚 but f into three faces adding two noncrossing edges such that

endpoints of a new edge do not belong to the same initial edge. Add to 𝐹𝑠𝑡𝑒𝑚 all new faces bounded
by 2 new edges.

3. Cut the face f into two faces, adding an edge connecting the two new vertices on the edge dual to 𝑒∗
𝑚

introduced in Step 2. Add to 𝐹𝑠𝑡𝑒𝑚 the new face included in f whose boundary has only two edges.
4. Denote by 𝜂 the simple path using only edges added in Step 2 and 3 such that 𝜂 = 𝑎𝑘 and 𝜂 = 𝑎𝑘 .

Transform ℓ and 𝛾𝑛𝑒𝑠𝑡 , replacing the occurrence of the edge 𝑎𝑘 and 𝑎−1
𝑘 by, respectively, 𝜂 and 𝜂−1.
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Figure 17. Left: A marked loop with the nested part drawn in blue. The chosen moving edge is drawn
in orange. Right: n-twist of the left marked loop, with 𝑛 = −2 and the chosen moving edge. The new
moving edge is displayed in orange.

5. When 𝑘 = 1, stop the procedure. Otherwise, repeat this operation for the nested loop obtained in
Step 4 and the path 𝑎∗

1 . . . 𝑎
∗
𝑚.

The last marked loop produced is called the pull of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) along 𝛾∗.
Twist move: Consider a marked loop (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) with a moving edge e.
Let us refine a regular and marked loop as follows. Add a vertex to e and cut the face left of e

into two faces, adding an oriented edge 𝑒′ with both endpoints equal to the new vertex, such that 𝑒′ is
the boundary a positively oriented face. The initial moving edge reads 𝑒 = 𝑒1𝑒2 in the new map. The
left twist of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) is the marked loop obtained by replacing the occurrence of e by 𝑒1𝑒

′𝑒2 in both
ℓ and 𝛾𝑛𝑒𝑠𝑡 . The new marked loop has then 𝑒′ has unique moving edge. We denote by 𝐹𝑡𝑤 the face
bounded by 𝑒′. The right twist of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) is defined similarly considering the right face and a negative
orientation. When n is, respectively, positive or negative, the n-twist of a marked loop is obtained by
applying, respectively, n left twists or −𝑛 right-twists. We denote then by 𝐹𝑡𝑤 the |𝑛| faces of the new
map bounded solely by newly added edges. See Figure 17 for an example.

2.7. Vertex desingularisation and complexity

Consider a regular mapG. Assume that ℓ is a regular loop and 𝑣 ∈ 𝑉ℓ is an intersection point. We denote
by ℓ1 and ℓ2 the two sub-loops of ℓ based at v such that ℓ ∼𝑐 ℓ1ℓ2. We then set

𝛿𝑣ℓ = ℓ1 ⊗ ℓ2 ∈ C[L𝑐 (G)] ⊗2, (21)

with the convention that ℓ1 is left of ℓ2 at v as displayed on Figure 2. By definition of Makeenko-Migdal
vectors given in Section 2.2, there are39 linear forms (𝛼𝑣 )𝑣 ∈𝑉ℓ and (𝛽𝑒)𝑒∈𝐸\𝐸ℓ on 𝔪ℓ such that

𝑋 =
∑
𝑣 ∈𝑉ℓ

𝛼𝑣 (𝑋)𝜇𝑣 +
∑

𝑒∈𝐸\𝐸ℓ

𝛽𝑒 (𝑋)𝑑𝜔𝑒, ∀𝑋 ∈ 𝔪ℓ .

We then set

𝛿𝑋ℓ =
∑
𝑣 ∈𝑉ℓ

𝛼𝑣 (𝑋)𝛿𝑣ℓ.

39We fix them arbitrarily, for instance, using the pseudo-inverse of the Gram matrix of the spanning family (𝛼𝑣 )𝑣∈𝑉ℓ and
(𝛽𝑒)𝑒∈𝐸\𝐸ℓ .
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Let us define a complexity on loops that strictly decreases after such operations. Let us set

C (ℓ) = |ℓ |𝐷 + #𝑉𝑐,ℓ (22)

when ℓ is a regular loop and

C𝔪 (𝑥) = |ℓ |𝐷 + #𝑉𝑐,ℓ∧ (23)

when 𝑥 = (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) is a marked loop.

Lemma 2.24.

1. For any regular loop ℓ, 𝑣 ∈ 𝑉ℓ , if 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2, then

C (ℓ1), C (ℓ2) < C (ℓ).

Moreover, if [ℓ] ≠ 0, then [ℓ1] or [ℓ2] ≠ 0.
2. For any marked loop x, C𝔪 (𝑥) only depends on 𝑥∧∗ . Moreover, when 𝑦 = (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) is a marked loop

with 𝑦∧∗ = 𝑥∧∗ , for 𝑣 ∈ 𝑉ℓ∧ , if 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2, then there are ℓ′
1, ℓ

′
2, with ℓ′

𝑖 ∼𝑐 ℓ𝑖 and subpaths 𝛾1, 𝛾2
of ℓ′

1, ℓ
′
2, such that 𝑥1 = (ℓ′

1, 𝛾1), 𝑥2 = (ℓ′
2, 𝛾2) are marked loops with

C𝔪 (𝑥1), C𝔪 (𝑥2) < C𝔪 (𝑥).

Proof. Consider a regular loop ℓ. When 𝑣 ∈ 𝑉𝑐,ℓ , one can assume that ℓ2 is an inner loop that is
|ℓ2 |𝐷 = 0, and

#𝑉𝑐,ℓ1 + #𝑉𝑐,ℓ2 + 1 = #𝑉𝑐,ℓ .

Otherwise, both ℓ1 and ℓ2 are regular loops both crossing 𝜕𝐸 at least twice so that |ℓ1 |𝐷 , |ℓ2 |𝐷 > 0.
Moreover,

|ℓ1 |𝐷 + |ℓ2 |𝐷 = |ℓ |𝐷

since both count the number of edges of 𝜕𝐸 crossed by ℓ. Therefore,

|ℓ1 |𝐷 , |ℓ2 |𝐷 < |ℓ |𝐷 . (24)

Moreover, 𝜔ℓ = 𝜔ℓ1 + 𝜔ℓ2 , [ℓ] = [ℓ1] + [ℓ2] . In particular, if [ℓ] ≠ 0, [ℓ1] ≠ 0 or [ℓ2] ≠ 0. This
concludes the proof of the first point. Consider now two marked loops 𝑥 = (ℓ′, 𝛾′

𝑛𝑒𝑠𝑡 ), 𝑦 = (ℓ, 𝛾𝑛𝑒𝑠𝑡 )
with 𝑦∧∗ = 𝑥∧∗ . Then

|ℓ∧|𝐷 = |ℓ′∧ |𝐷 and #𝑉𝑐,ℓ∧ = #𝑉𝑐,ℓ′∧ ,

so that C𝔪 (𝑥) = C𝔪 (𝑦). Assume that 𝑣 ∈ 𝑉ℓ∧ and 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2 such that 𝛾𝑛𝑒𝑠𝑡 is a subpath of ℓ2.
Consider e the first edge of ℓ1 and ℓ′

2 ∼𝑐 ℓ2 with ℓ′
2 = 𝛾𝑛𝑒𝑠𝑡 . Then (ℓ1, 𝑒), (ℓ′

2, 𝛾𝑛𝑒𝑠𝑡 ) are marked loops.
If 𝑣 ∈ 𝑉𝑐,ℓ∧ ,

#𝑉𝑐,ℓ∧
1
+ #𝑉𝑐,ℓ′2∧ + 1 = #𝑉𝑐,ℓ .

Otherwise, |ℓ∧1 |𝐷 , |ℓ∧2 |𝐷 > 0, and the proof of 2 follows as for the first point. �

Let us fix a choice for 𝑥1, 𝑥2 used in the above lemma. Consider a marked loop 𝑥 = (ℓ, 𝛾𝑛𝑒𝑠𝑡 ), 𝑣 ∈ 𝑉ℓ
and assume 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2. When 𝑣 ∈ 𝑉ℓ∧ , exactly one loop, say ℓ1, has 𝛾𝑛𝑒𝑠𝑡 as subpath, and we set
𝑥1 = (ℓ′

1, 𝛾𝑛𝑒𝑠𝑡 ) and 𝑥2 = (ℓ2, 𝑒), where e is the first edge of ℓ2, and ℓ′
1 ∼𝑐 ℓ1 with ℓ′

1 = 𝛾𝑛𝑒𝑠𝑡 . When
𝑣 ∈ 𝑉ℓ𝑛𝑒𝑠𝑡 , exactly one loop, say ℓ1, is a sub-loop of ℓ𝑛𝑒𝑠𝑡 , set 𝑥1 = (ℓ1, ℓ1) and 𝑥2 = (ℓ′, 𝛾𝑛𝑒𝑠𝑡 ), where
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(ℓ′, 𝛾′
𝑛𝑒𝑠𝑡 ) is obtained from (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) by erasing the edges of ℓ1 (then ℓ′ ∼𝑐 ℓ2). Otherwise, we set

𝑥1 = (ℓ1, 𝑒1), 𝑥2 = (ℓ2, 𝑒2), where 𝑒𝑖 is the first edge of ℓ𝑖 . We then write

𝛿𝑣𝑥 = 𝑥1 ⊗ 𝑥2. (25)

3. Yang–Mills measure and Makeenko–Migdal equations

3.1. Metric and heat kernel on classical groups

We recall here briefly the definition and main properties of the heat kernel on classical groups that will
be needed to define the discrete Yang–Mills measure. These results are quite standard and can also be
found, for instance, in [43, Section 1]. In this text, for any 𝑁 ≥ 1, we denote by 𝐺𝑁 a compact classical
group of rank N – that is, U(𝑁), SU(𝑁), SO(𝑁) or Sp(𝑁) – following the same conventions as in
Section 2.1.2 of [20].

For any compact Lie group G, its Lie algebra 𝔤 is endowed with an invariant inner product 〈·, ·〉.
Setting

L𝑋 𝑓 (𝑔) = 𝑑

𝑑𝑡

����
𝑡=0

𝑓 (𝑔𝑒𝑡𝑋 ), ∀ 𝑓 ∈ 𝐶∞(𝐺) and 𝑔 ∈ 𝐺,

the Laplacian associated to 〈·, ·〉 is the operator defined by

Δ𝐺 𝑓 =
∑

1≤𝑖≤𝑑
L𝑋𝑖 ◦ L𝑋𝑖 ( 𝑓 ), ∀ 𝑓 ∈ 𝐶∞(𝐺),

where (𝑋𝑖)1≤𝑖≤𝑑 is an arbitrary orthonormal basis.

Definition 3.1. The heat kernel on G is the solution 𝑝 : (0,∞) × 𝐺 → R+, (𝑡, 𝑔) ↦→ 𝑝𝑡 (𝑔) of the heat
equation, with 𝑝𝑡 ∈ 𝐶∞(𝐺) for all 𝑡 > 0 and{

𝜕𝑡 𝑝𝑡 (𝑔) = Δ𝐺 𝑝𝑡 (𝑔), ∀𝑔 ∈ 𝐺, ∀𝑡 > 0,
lim𝑡↓0 𝑝𝑡 (𝑔)𝑑𝑔 = 𝛿𝐼𝑁 ,

(26)

where the convergence in the second line holds weakly.

It defines a semigroup for the convolution product; that is,

𝑝𝑡 ∗ 𝑝𝑠 = 𝑝𝑡+𝑠 , ∀𝑡, 𝑠 > 0. (27)

It inherits the following properties from the conjugation invariance of the scalar product: for all 𝑔, ℎ ∈ 𝐺
and 𝑡 > 0,

𝑝𝑡 (ℎ𝑔ℎ−1) = 𝑝𝑡 (𝑔) (28)

and

𝑝𝑡 (𝑔−1) = 𝑝𝑡 (𝑔). (29)

When 𝐺𝑁 is a compact classical group of rank N, we choose (1) as an invariant inner product.

3.2. Area weighted maps, Yang–Mills measure and area continuity

We recall here a definition of the discrete and continuous Yang–Mills measure in two dimensions on
arbitrary surfaces, with a focus on the former.
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Area vectors and area-weighted maps: When G = (𝑉, 𝐸, 𝐹) is a topological map, an area vector is
a function 𝑎 : 𝐹 → R+. We say that (G, 𝑎) is an area-weighted map with volume

∑
𝑓 ∈𝐹 𝑎 𝑓 . When

K is a subset of faces of G, we then write 𝑎(𝐾) =
∑

𝑓 ∈𝐾 𝑎( 𝑓 ) its volume. When 𝑚 = (G, 𝑎) and
𝑚′ = (G′, 𝑎′) are area weighted maps with faces set F and 𝐹 ′, 𝑚′ is finer than m if G′ is finer than G
and 𝑎 𝑓 =

∑
𝑓 ′ ∈𝐹 ′: 𝑓 ′ ⊂𝐹 𝑎′

𝑓 ′ . When 𝑇 > 0, we denote by

ΔG(𝑇) = {𝑎 : 𝐹 → R+ :
∑
𝑓 ∈𝐹

𝑎 𝑓 = 𝑇}

the closed simplex of area vectors of fixed volume T and its interior by

Δ𝑜
G
(𝑇) = {𝑎 ∈ ΔG(𝑇) : 𝑎( 𝑓 ) > 0, ∀ 𝑓 ∈ 𝐹}.

Its faces are given as follows. For any subset 𝐾 � 𝐹, we set

Δ𝐾,G (𝑇) = {𝑎 ∈ ΔG(𝑇) : 𝑎( 𝑓 ) = 0, ∀ 𝑓 ∈ 𝐾}

and

Δ𝑜
𝐾 ,G(𝑇) = {𝑎 ∈ Δ𝐾,G (𝑇) : 𝑎( 𝑓 ) > 0, ∀ 𝑓 ∈ 𝐹 \ 𝐾}.

The tangent space at any point of Δ𝑜
G
(𝑇) is canonically identified with the space of 2-forms 𝑋 ∈

Ω2(G,R) with
∑

𝑓 ∈𝐹 𝑋 ( 𝑓 ) = 0. For such a two form X, we shall also denote by X the associated constant
vector field on Δ𝑜

G
(𝑇) and write 𝑋.Ψ for the derivative of a function Ψ ∈ 𝐶1(Δ𝑜

G
(𝑇)) along X.

When (G, 𝐵) is a map with boundary faces 𝐵, we set

ΔG,𝐵 (𝑇) = {𝑎 : 𝐹 \ 𝐵 → R+ :
∑

𝑓 ∈𝐹\𝐵
𝑎 𝑓 = 𝑇}

and

Δ𝑜
G,𝐵 (𝑇) = {𝑎 ∈ ΔG,𝐵 (𝑇) : 𝑎( 𝑓 ) > 0, ∀ 𝑓 ∈ 𝐹}.

When G′ = (𝑉 ′, 𝐸 ′) is finer than G, any face F of G can be identified with a subset of faces of G′,
and for any 𝑎 ∈ ΔG′ (𝑇), we denote 𝑟G

′

G
(𝑎) or simply 𝑟G(𝑎) ∈ ΔG(𝑇) the associated area vector of G

summing the values of a on any given subset of faces. We then say that the area weighted map (G′, 𝑎)
is finer than (G, 𝑟G(𝑎)).

Multiplicative functions and Wilson loops: Given a map G = (𝑉, 𝐸, 𝐹) and a compact group G, we
say that a function ℎ : P(G) → 𝐺 is multiplicative if for any pair of paths 𝛾1, 𝛾2 with 𝛾1 = 𝛾

2
,

ℎ𝛾1𝛾2 = ℎ𝛾2ℎ𝛾1 . (30)

We denote their set by M(P(G), 𝐺). Endowing it with pointwise multiplication, it is a compact group,
and fixing an orientation of the edges, the evaluation on these edges defines an isomorphism

M(P(G), 𝐺) � 𝐺𝐸 .

The Haar measure on M(P(G), 𝐺) can be identified via this isomorphism to the tensor product of the
Haar measure on G; we denote it simply by 𝑑ℎ.

When G′ is a map finer than G, the restriction from P(G′) to P(G) defines a map

RG′

G
: M(P(G′), 𝐺) → M(P(G), 𝐺).
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A Wilson loop is a function of the form

M(P(G), 𝐺) −→ C

ℎ ↦−→ 𝜒(ℎℓ),

where 𝜒 : 𝐺 → C is a function invariant by conjugation and ℓ ∈ L(G). By centrality, the value 𝜒(ℎℓ )
depends on ℓ only through its ∼𝑐-equivalence class l, and we denote it by 𝜒(ℎ𝑙). When 𝐺𝑁 is a compact
classical group, for any loop ℓ ∈ L(G), we shall focus on the Wilson loop 𝑊ℓ obtained considering as
central function

𝜒 = tr𝑁 ,

where tr𝑁 = 𝑑−1
𝑁 Tr is the standard trace Tr in the natural matrix representation normalised by the size

𝑑𝑁 of the matrix – that is, 2𝑁 in the symplectic case and N otherwise.
Discrete Yang–Mills measure, nonsingular case on closed surfaces: When 𝑇 > 0, G is a map with

boundary faces B and 𝑎 ∈ Δ𝑜
G,𝐵

(𝑇), the Yang–Mills measure is the probability measure YMG,𝐵,𝑎 on
the compact group M(P(G), 𝐺) with density

𝑍−1
G,𝐵,𝑎

∏
𝑓 ∈𝐹\𝐵

𝑝𝑎 𝑓 (ℎ𝜕 𝑓 )

with respect to the Haar measure on M(P(G), 𝐺), where 𝑍G,𝐵,𝑎 = 1 if 𝐵 ≠ ∅ and

𝑍G,𝑎 =
∫
M(P(G) ,𝐺)

∏
𝑓 ∈𝐹

𝑝𝑎 𝑓 (ℎ𝜕 𝑓 )𝑑ℎ

otherwise. In the above formula, 𝜕 𝑓 is the boundary of the face for some arbitrary choice of root
and orientation. This does not change the value of 𝑝𝑎 𝑓 (ℎ𝜕 𝑓 ) thanks to (28) and (29). The fact that
this density defines a probability measure when 𝐵 ≠ ∅ follows, for instance, from Lemma 3.3 below.
We denote YMG,∅,𝑎 simply by YMG,𝑎 . The following lemma is standard and follows easily from the
definition of the discrete Yang–Mills measure.

Lemma 3.2.

1. For any 𝑎 ∈ Δ𝑜
G
(𝑇), the constant 𝑍G,𝑎 depends only on T and the genus g of G; we denote it by 𝑍𝑔,𝑇 .

2. When 𝑚′ = (G′, 𝑎′), 𝑚 = (G, 𝑎) are two area weighted maps with 𝑚′ finer than m and 𝑎′ ∈ Δ𝑜
G′ (𝑇),

then

RG′

G ∗(YMG′,𝑎′ ) = YMG,𝑎 .

Uniform continuity and compatibility: The Yang–Mills measure is also well defined on the faces on
the simplex of area vectors. For any 𝑟, 𝑔 ≥ 1 let us consider the set Hom(Γ𝑔,𝑟 , 𝐺) of group morphisms.
When endowed with pointwise multiplication, it is a compact group, and thanks to the presentation of
Lemma 2.3,

Hom(Γ𝑔,𝑟 , 𝐺) � 𝐺𝑟+2𝑔−1.

Moreover, this presentation allows to write the following integration formula.

Lemma 3.3 [42]. Assume (G, 𝑎) is an area weighted map with r faces, and (ℓ𝑖 , 1 ≤ 𝑖 ≤ 𝑟) and
𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 are as in Lemma 2.3. For any 1 ≤ 𝑖 ≤ 𝑟 , denote by 𝑎𝑖 the area of the face of ℓ𝑖 . Then
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for any continuous function 𝜒 : 𝐺2𝑔+𝑟 → C and any 𝑎 ∈ Δ𝑜
G
(𝑇) and 1 ≤ 𝑘 ≤ 𝑟,

EYMG,𝑎 (𝜒(ℎℓ1 , . . . , ℎℓ𝑟 , ℎ𝑎1 , . . . , ℎ𝑏𝑔 ))

= 𝑍−1
𝑔,𝑇

∫
𝐺2𝑔+𝑟−1

𝜒(𝑧1, . . . , 𝑧𝑟 , 𝑥1, . . . , 𝑦𝑔)𝑝𝑎𝑘 (𝑧𝑘 )
𝑟∏

𝑖=1,𝑖≠𝑘
𝑝𝑎𝑖 (𝑧𝑖)𝑑𝑧𝑖

𝑔∏
𝑙=1

𝑑𝑥𝑙𝑑𝑦𝑙 ,

where we set 𝑧𝑘 = (𝑧1 . . . 𝑧𝑘−1)−1 [𝑎1, 𝑏1] . . . [𝑎𝑔, 𝑏𝑔] (𝑧𝑘+1 . . . 𝑧𝑟 )−1. When B is a nonempty subset of
faces of G and lassos with faces in its complement have labels 𝑖1, . . . , 𝑖𝑝 ,

EYMG,𝐵,𝑎 (𝜒(ℎℓ𝑖1 , . . . , ℎℓ𝑖𝑝 , ℎ𝑎1 , . . . , ℎ𝑏𝑔 ))

=
∫
𝐺2𝑔+𝑝

𝜒(𝑧1, . . . , 𝑧𝑝 , 𝑥1, . . . , 𝑦𝑔)
𝑝∏
𝑖=1

𝑝𝑎𝑖 (𝑧𝑖)𝑑𝑧𝑖
𝑔∏
𝑙=1

𝑑𝑥𝑙𝑑𝑦𝑙 .

The above expression yields the following continuity in the area parameter. For any vertex v of a
map G, the restriction of a multiplicative function to loops based at v depends only on the ∼𝑟 -class of
a loop, and the restriction operation defines a map R𝑣 : M(P(G), 𝐺) → Hom(RL𝑣 (G, 𝐺)). For any
𝑎 ∈ Δ𝑜

G
(𝑇), we set YM𝑎,G,𝑣 = R𝑣 ∗(YMG,𝑎). Using the weak convergence of the heat kernel (26), we

directly deduce the following result.

Lemma 3.4. The family of measures (YM𝑎,G,𝑣 , 𝑎 ∈ Δ𝑜
G
(𝑇)) on the set Hom(RL𝑣 (G), 𝐺) has a weakly

continuous extension to ΔG(𝑇). It has the following properties.

1. Consider 𝐾 ⊂ 𝐹 with 𝐾 ≠ 𝐹. Let 𝑆 ⊂ {1, . . . , 𝑟} be the labels of the lassos with faces in 𝐹 \𝐾 . Then
for any 𝑎 ∈ Δ𝑜

𝐾 ,G
(𝑇) and any continuous function 𝜒 : 𝐺2𝑔+𝑟 → C,

EYMG,𝑎,𝑣 (𝜒(ℎℓ1 , . . . , ℎℓ𝑟 , ℎ𝑎1 , . . . , ℎ𝑏𝑔 ))

=
1

𝑍𝑔,𝑇

∫
𝐺2𝑔+𝑟−1

𝜒(𝑧1, . . . , 𝑧𝑟 , 𝑥1, . . . , 𝑦𝑔)𝑝𝑎𝑘 (𝑧𝑘 )
∏

𝑖∈𝑆,𝑖≠𝑘
𝑝𝑎𝑖 (𝑧𝑖)𝑑𝑧𝑖

𝑔∏
𝑙=1

𝑑𝑥𝑙𝑑𝑦𝑙 ,

where we set 𝑧𝑘 = (𝑧1 . . . 𝑧𝑘−1)−1 [𝑎1, 𝑏1] . . . [𝑎𝑔, 𝑏𝑔] (𝑧𝑘+1 . . . 𝑧𝑟 )−1 for 𝑘 ∈ 𝑆 arbitrary and 𝑧𝑖 = 1
for all 𝑖 ∉ 𝑆.

2. Consider a weighted map (G′, 𝑎′) finer than (G, 𝑎) and denote the restriction map RG′

G
:

Hom(RL𝑣 (G′, 𝐺)) → Hom(RL𝑣 (G, 𝐺)). Then,

RG′

G ∗(YMG′,𝑎′,𝑣 ) = YMG,𝑎,𝑣 .

3. Consider 𝐾 ⊂ 𝐹 with 𝐾 ≠ 𝐹 and 𝑎 ∈ Δ𝐾,G(𝑇). Then for any loops ℓ, ℓ′ ∈ RL𝑣 (G) with ℓ ∼𝐾 ℓ′, ℎℓ
and ℎℓ′ have same law under YMG,𝑎,𝑣 .

Continuous Yang–Mills measure: Thanks to the invariance by subdivision of the discrete Yang–Mills
measure, given a Riemannian metric, it is possible to take the projective limit of measures defined on
graphs embedded in Σ whose edges are piecewise geodesic. It allows to define a multiplicative random
process (𝐻𝛾)𝛾 indexed by all piecewise geodesic paths, whose marginals are given by the discrete
Yang-Mills measure.

This was done in [42], where the author is furthermore able to show a weak convergence result
allowing to define uniquely the distribution of a multiplicative function (𝐻𝛾)P(Σ) indexed by all path of
finite length. Let us recall this result.

Denote by P(Σ) the set of Lipschitz functions 𝛾 : [0, 1] → Σ with speed bounded from above and
from below, considered up to bi-Lipshitz re-parametrisations of [0, 1]. The set P(Σ) is endowed with
the starting and endpoint maps, 𝛾 ↦→ 𝛾, 𝛾 and of the operations of concatenation and reversion as
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above. A path of Σ is an element of 𝛾 ∈ P(Σ). It is simple if for any parametrisation 𝑝 : [0, 1] → Σ,
𝑝 : [0, 1) → Σ is injective. We consider then the set

M(P(Σ), 𝐺)

of multiplicative functions as in (30). It is a compact subset of 𝐺P(Σ) when the latter is endowed with
the product topology. A loop is a path ℓ ∈ P(Σ) such that ℓ = ℓ. We denote their set by L(Σ). For any
𝑥, 𝑦 ∈ Σ, we endow P𝑥,𝑦 (Σ) = {𝛾 ∈ P(Σ) : 𝛾 = 𝑥, 𝛾 = 𝑦} with a metric setting for any 𝛾1, 𝛾2 ∈ P𝑥,𝑦 (Σ),

𝑑 (𝛾1, 𝛾2) = inf
𝑝1 , 𝑝2

‖𝑝1 − 𝑝2‖∞ + |ℒ(𝛾1) −ℒ(𝛾2) |,

where the infimum is taken over all parametrisations 𝑝1, 𝑝2 of 𝛾1, 𝛾2, and for any 𝛾 ∈ P(Σ), ℒ(𝛾)
denotes the Riemannian length of 𝛾. Endowing M(P(Σ), 𝐺) with the cylindrical sigma field BΣ,𝐺 , we
denote by (𝐻𝛾)𝛾∈P(Σ) the canonical process. When 𝐺 = 𝐺𝑁 is a classical compact matrix Lie group of
size 𝑁, we write for any path 𝛾 ∈ P(Σ),

𝑊𝛾 = tr𝑁 (𝐻𝛾).

When (G, 𝑎) is an area weighted map of genus 𝑔 ≥ 0, a Riemannian embedding of (G, 𝑎) in a Riemann
surface with volume vol is a collection of simple paths (𝛾𝑒)𝑒∈𝐸 in 𝑃(Σ) indexed by edges of G that do
not cross but at their endpoints with the following properties:
1. The ranges of all paths (𝛾𝑒)𝑒∈𝐸 form the 1-cells of a CW complex isomorphic to the CW complex

of G.
2. Fixing such an isomorphism, each 2-cell of the complex associated to (𝛾𝑒)𝑒∈𝐸 is a subset of Σ of

Riemannian volume 𝑎( 𝑓 ) whenever it is identified with a face f of G.

When Σ is the Euclidean plane or the hyperbolic disc, while G is a map of genus 0, 𝑓∞ is a face of G
and 𝑎 ∈ ΔG, { 𝑓∞} (𝑇), and an embedding in Σ of the area weighted map (G, { 𝑓∞}, 𝑎) with one boundary
component is a collection of simple paths (𝛾𝑒)𝑒∈𝐸 in P(R2) indexed by edges of G that do not cross but
at their endpoints with the following properties:
1. The ranges of all paths (𝛾𝑒)𝑒∈𝐸 form the 1-cells of a CW complex isomorphic to the CW complex

of G, such that the unique unbounded 2-cell is mapped to 𝑓∞.
2. Fixing such an isomorphism, each bounded 2-cell of the complex associated to (𝛾𝑒)𝑒∈𝐸 is a subset

of Σ of Riemannian volume 𝑎( 𝑓 ) whenever it is identified with a face f of G.

In each case, we say that G is embedded in Σ if there is an area vector a satisfying the property 2.
WhenG = (𝑉, 𝐸, 𝐹) is a map, ℓ ∈ L(G), Σ is a two-dimensional Riemannian manifold and 𝑙 ∈ L(Σ),

we say that l is a drawing of ℓ = 𝑒1 . . . 𝑒𝑛 if there is a Riemannian embedding (𝛾𝑒)𝐸 ∈𝐸 of G into Σ,
such that l is the concatenation 𝛾𝑒1 . . . 𝛾𝑒𝑛 . The next two theorems are due to Lévy [42].
Theorem 3.5. Let Σ be a compact Riemannian surface with area measure vol, G a fixed compact Lie
group such that 𝔤 is endowed with a G-invariant inner product. There exists a unique measure YMΣ on
(M(P(Σ), 𝐺),BΣ, 𝐺), with the following properties.
1. If (𝛾𝑒)𝑒∈𝐸 is a Riemannian embedding in Σ of an area-weighted map (G, 𝑎) with edges E, the

distribution of (𝐻𝛾𝑒 )𝑒∈𝐸 is the discrete Yang–Mills measure YMG,𝑎.
2. For any 𝑥, 𝑦 ∈ Σ, if (𝛾𝑛)𝑛≥1 is a sequence of paths of P𝑥,𝑦 (Σ) with lim𝑛→∞ 𝑑 (𝛾𝑛, 𝛾) = 0 for some

𝛾 ∈ P(Σ), then under YMΣ, the sequence of random variables (𝐻𝛾𝑛 )𝑛≥1 converges in probability
to 𝐻𝛾 .

The process (𝐻𝛾)𝛾∈P(Σ) is called the Yang–Mills holonomy process.
Theorem 3.6. Let Σ be a Euclidean plane R2 or the hyperbolic disc 𝐷𝔥, endowed with their area
measure vol, G a fixed compact Lie group such that 𝔤 is endowed with a G-invariant inner product.
There exists a measure YMΣ on (M(P(Σ), 𝐺),BΣ, 𝐺), with following properties.
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1. If (𝛾𝑒)𝑒∈𝐸 is a Riemannian embedding in Σ of an area-weighted map of genus 0 with one boundary
(G, { 𝑓∞}, 𝑎) and edge set E, the distribution of (𝐻𝛾𝑒 )𝑒∈𝐸 is the discrete Yang–Mills measure YMG,𝑎.

2. For any 𝑥, 𝑦 ∈ Σ, if (𝛾𝑛) is a sequence of paths of P𝑥,𝑦 (Σ) with 𝑑 (𝛾𝑛, 𝛾) →
𝑛→∞

0 for some 𝛾 ∈ P(Σ),
then under YMΣ, the sequence of random variables (𝐻𝛾𝑛 )𝑛∈N converges in probability to 𝐻𝛾 .

The process (𝐻𝛾)𝛾∈P(Σ) is called the Yang–Mills holonomy process.

The first author showed with Cébron, Gabriel and Norris in [9, 21] that the proof of the above theorem
can be adapted to yield the following extension result when G is allowed to vary. Let us denote by 𝐴(Σ)
the subset of paths of P(Σ) with a piecewise geodesic bi-Lipschitz parametrisation.

Proposition 3.7. Let (𝐺𝑁 )𝑁 be a sequence of compact classical groups. Assume the following two
properties.

1. For any 𝛾 ∈ 𝐴(Σ), Φ(𝛾) = lim𝑁→∞ 𝑊𝛾 , where the convergence holds in probability under YMΣ

and Φ(𝛾) is constant.
2. There is a constant 𝐾 > 0 independent of 𝑁, such that for any simple contractible loop ℓ ∈ L(Σ)

bounding an area 𝑡 > 0,

EYMΣ [1 − !(𝑊ℓ)] ≤ 𝐾𝑡.

Then Φ : 𝐴(Σ) → C has a unique extension to P(Σ) such that for all 𝑥, 𝑦 ∈ Σ, Φ : P𝑥,𝑦 (Σ) → C is
continuous, and for any 𝛾 ∈ L(Σ), 𝑊𝛾 converges in probability towards Φ(𝛾) as 𝑁 → ∞.

The argument given in Section 5 of [21] for the sphere applies verbatim on any compact surface Σ to
yield the above statement; we will not repeat it in the current version. The same applies for the following
lemma.

Lemma 3.8.

1. For any map G, there is a regular map G′ finer than G.
2. For any 𝛾 ∈ 𝐴(Σ), there is a graph G with Riemannian embedding in Σ, such that 𝛾 is the drawing

of a path of G.
3. For any area weighted map (G, 𝑎) and 𝛾 ∈ P(G), there is a regular area weighted map (G′, 𝑎′) finer

than (G, 𝑎), 𝛾′ a regular path of G′ and K a subset of faces of G′, such that

𝛾 ∼𝐾 𝛾′.

4. For any compact Lie group G and any 𝛾 ∈ 𝐴(Σ), there is a regular path 𝔭 in a regular map G and
𝑎 ∈ ΔG(𝑇) such that under YMΣ, 𝑊𝛾 has same law as 𝑊𝔭 under YMG,𝑎 .

Together with the last proposition, this lemma reduces the study of Wilson loops for all loops of finite
length to the case of regular loops.

3.3. Planar master field, main results and conjecture

In the above setting, the following was proved in [43] and40 [33]; see [72, 3] for a weaker statement with
a smaller class of loops and of groups 𝐺𝑁 . Recall the definitions of the desingularisation operation in
Section 2.7, of Makeenko-Migdal vectors (18) and of area weighted maps in Section 3.2.

Theorem 3.9. Assume that 𝐺𝑁 is a compact classical group of rank N. Assume that (G, { 𝑓∞}, 𝑎) is
any area weighted map of genus 0, with one boundary component and ℓ ∈ L(G), or that 𝑙 ∈ L(R2).

40In [43], to get uniqueness, (b) is replaced by an additional set of differential equations
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Then the following convergences hold in probability,41 and the limits are constant and independent of
the type of series of 𝐺𝑁 :

Φ 𝑓∞
ℓ (𝑎) = lim

𝑁→∞
𝑊ℓ under YMG, { 𝑓∞},𝑎

and

ΦR2 (𝑙) = lim
𝑁→∞

𝑊𝑙 under YMR2 .

The function ΦR2 is characterised by the following properties:

1. For any 𝑥 ∈ R2, ΦR2 : P𝑥,𝑥 (R2) → C is continuous.
2. Whenever 𝑙 ∈ L(R2) is a drawing of a loop ℓ of an area weighted map of genus 0 with one boundary

component (G, { 𝑓∞}, 𝑎),

ΦR2 (𝑙) = Φℓ, 𝑓∞ (𝑎).

3. For any map of genus 0 with one boundary component (G, { 𝑓∞}), 𝑇 > 0, and any loop ℓ ∈ L(G),
Φℓ is uniformly continuous on ΔG, { 𝑓∞} (𝑇) and differentiable on Δ𝑜

G, { 𝑓∞} (𝑇) such that
(a) if G is regular, ℓ is a tame loop and 𝑣 ∈ 𝑉ℓ is a transverse intersection with 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2,

𝜇𝑣 .Φℓ, 𝑓∞ = Φℓ1 , 𝑓∞Φℓ2 , 𝑓∞ in Δ𝑜
G, { 𝑓∞} (𝑇).

(b) Whenever l is the boundary of a topological disc of area t,

ΦR2 (𝑙) = 𝑒− 𝑡2 .

See the appendix of [43] for a table of values of ΦR2 . Alternatively, the master field can be charac-
terised using free probability as follows. For any real 𝑡 ≥ 0 and any integer 𝑛 ≥ 0, set

𝜈𝑡 (𝑛) = 𝑒− 𝑛𝑡2
𝑛−1∑
𝑘=0

(−𝑡)𝑘
𝑘!

𝑛𝑘−1
(

𝑛

𝑘 + 1

)
.

It is known since the work of Biane [6] that these quantities are related to the limits of the moments
of Brownian motions on U(𝑁), and Lévy proved in [43] that it is still the case for the other compact
classical matrix Lie groups. Let us reformulate slightly a result of [43] in our notations.

Lemma 3.10 (Proposition 6.1.2 of [43]). Consider an area weighted map (G, { 𝑓∞}, 𝑎) of genus 0 with
one boundary component. Assume G = (𝑉, 𝐸, 𝐹), #𝐹 = 𝑟 + 1, 𝐹 = { 𝑓1, . . . , 𝑓𝑟 , 𝑓∞} and 𝑣 ∈ 𝑉. For any
ℓ ∈ L𝑣 (G), Φℓ, 𝑓∞ (𝑎) depends on ℓ only through its ∼𝑟 class. Setting

𝜏𝑣 (ℓ) = Φℓ, 𝑓∞ (𝑎) and ℓ∗ = ℓ−1, ∀ℓ ∈ RL𝑣 (G)

and extending these maps linearly and sesquilinearly defines a noncommutative probability space
(C[RL𝑣 (G)], 𝜏𝑣 , ∗). Assume that ℓ1, . . . , ℓ𝑟 , ℓ∞ is a family of lassos as in Lemma 2.3 with ℓ𝑖 bounding
𝑓𝑖 for 1 ≤ 𝑖 ≤ 𝑟 and ℓ∞ for 𝑓∞. Then 𝜏𝑣 is the unique state on (C[RL𝑣 (G)], ∗) such that

1. for all 𝑛 ∈ Z∗, 𝜏𝑣 (ℓ𝑛𝑖 ) = 𝜈𝑎 ( 𝑓𝑖) (𝑛),
2. ℓ1, . . . , ℓ𝑟 are freely independent under 𝜏𝑣 .

Similarly, the following lemma follows from the classical result of [6] and Lemma 3.3. It shows that
the conclusion of the former one is valid when the genus condition is dropped.

41It is also shown in [43] that the following convergences are almost sure.
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Lemma 3.11. Consider an area weighted regular map of genus 𝑔 ≥ 1 and with boundary (G, { 𝑓∞}, 𝑎).
Assume G = (𝑉, 𝐸, 𝐹), #𝐹 = 𝑟 + 1 with 𝐹 = { 𝑓1, . . . , 𝑓𝑟 , 𝑓∞} and 𝑣 ∈ 𝑉. Assume that 𝑎1, . . . , 𝑏𝑔 and
ℓ1, . . . , ℓ𝑟+1 are 2𝑔 simple loops and 𝑟 + 1 lassos as in Lemma 2.3, with ℓ𝑖 bounding 𝑓𝑖 for 1 ≤ 𝑖 ≤ 𝑟
and 𝑓∞ for 𝑖 = 𝑟 + 1. Assume that 𝐺𝑁 is a sequence of compact classical matrix Lie groups of size 𝑁.
Then for any 𝑇 > 0, 𝑎 ∈ ΔG, { 𝑓∞} (𝑇) and ℓ ∈ RL𝑣 (G),

𝑊ℓ → Φ1,𝑔
ℓ (𝑎) under YMG, { 𝑓∞},𝑎,

where Φ1,𝑔
ℓ (𝑎) is constant. Moreover, there is a constant 𝐾 > 0 independent of G and 𝑁 ≥ 1, such that

for any face 𝑓 ∈ 𝐹 \ { 𝑓∞},

E[1 − !(𝑊𝜕 𝑓 )] ≤ 𝐾𝑎( 𝑓 ). (*)

The ∗-algebra (C[RL𝑣 (G)], ∗) is endowed with a unique state 𝜏𝑣 satisfying

𝜏𝑣 (ℓ) = Φ1,𝑔
ℓ (𝑎), ∀ℓ ∈ RL𝑣 (G).

Moreover, 𝜏𝑣 is characterised by the following three properties:

1. ℓ1, . . . , ℓ𝑟 , 𝑎1, . . . , 𝑏𝑔 are freely independent under 𝜏𝑣 .
2. under 𝜏𝑣 , 𝑎1, . . . , 𝑏𝑔 are 2𝑔 Haar unitaries.
3. for any 1 ≤ 𝑖 ≤ 𝑟 and 𝑛 ∈ Z∗,

𝜏𝑣 (ℓ𝑛𝑖 ) = 𝜈𝑎 ( 𝑓𝑖) (𝑛).

A sketch of the proof is given in Section 5.
From Lemma 3.11 and the absolute continuity result of [20] follows Corollary 1.4 for loops avoiding

at least one handle. Let us give now a discrete reformulation of Corollary 1.4. Its proof is given
below in Section 5. Let us recall the definition of the universal cover G̃ = (�̃� , �̃� , �̃�) of a regular map
(G,G𝑏) given in Section 2.3, with a canonical covering map 𝑝 : �̃� → 𝐹. When 𝑎 ∈ ΔG(𝑇), let us set
�̃� = 𝑎 ◦ 𝑝 : �̃� → [0, 𝑇] .

Theorem 3.12. Assume that (G, 𝑎) is an area weighted map cut along a simple loop ℓ ∈ L(G) given by
(G1, { 𝑓1,∞}) and (G2, { 𝑓2,∞}), with the same convention as in Section 2.1. Assume that G2 has genus
𝑔2 ≥ 1. Then, for any loop ℓ ∈ L(G1) and 𝑎 ∈ ΔG(𝑇) with 0 <

∑
𝑓 ∈𝐹2 𝑎( 𝑓 ) < 𝑇 ,

𝑊ℓ →
𝑁→∞

Φℓ (𝑎) =
⎧⎪⎪⎨⎪⎪⎩
Φℓ̃ (�̃�) if ℓ ∼ℎ 𝑐ℓ ,

0 if ℓ �ℎ 𝑐ℓ ,
in probability under YMG,𝑎, (31)

where ℓ̃ is a lift of ℓ in G̃. Moreover, when 𝑔2 ≥ 2, the convergence holds true uniformly in 𝑎 ∈ ΔG(𝑇).
Besides, there is a constant 𝐾 > 0 independent of G and 𝑁 ≥ 1, and depending only on 𝑎(𝐹2) ∈ (0, 𝑇)
such that for any face 𝑓 ∈ 𝐹1,

E[1 − !(𝑊𝜕 𝑓 )] ≤ 𝐾𝑎( 𝑓 ). (32)

When G has genus 1, the above result gives information about loops included in a topological disc
but does not say anything about other loops – for instance, contractible loops obtained by concatenation
of simple loops of nontrivial homology. A more satisfying answer is then given by the following
theorem.
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Theorem 3.13. Consider a compact classical group 𝐺𝑁 of rank N, a torus T𝑇 of volume𝑇 > 0 obtained
as a quotient of the Euclidean plane R2 by the lattice

√
𝑇Z2. Then, the following convergence holds in

probability under YMT𝑇 :

𝑊𝑙 →
𝑁→∞

ΦT𝑇 (𝑙) =
⎧⎪⎪⎨⎪⎪⎩
ΦR2 (𝑙) if 𝑙 is contractible,

0 otherwise,

where for any loop 𝑙 ∈ L(T𝑇 ), 𝑙 ∈ P(R2) is a finite length path with projection to T𝑇 given by 𝑙. Besides,
ΦT𝑇 : L(T𝑇 ) → C is the unique function satisfying
1. For any 𝑥 ∈ T𝑇 , ΦT𝑇 : L𝑥 (T𝑇 ) → C is continuous for the length metric 𝑑.
2. For any regular loop ℓ in a regular map G of genus 1, there is a differentiable function

Φℓ : ΔG(𝑇) → C

such that for any transverse intersection 𝑣 ∈ 𝑉ℓ , with 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2,

𝜇𝑣 .Φℓ = Φℓ1Φℓ2 , (33)

and such that Φℓ (𝑎) = ΦT𝑇 (𝑙) whenever 𝑙 ∈ L(T𝑇 ) is a drawing of ℓ with associated area measure
on T𝑇 given by a.

3. For any loop 𝑙 ∈ L(T𝑇 ) obtained by projection of a loop 𝑙 ∈ L(R2) included in a fundamental
domain of T𝑇 ,

ΦT𝑇 (𝑙) = ΦR2 (𝑙).

4. For any noncontractible simple loop 𝑙 ∈ L(T2
𝑇 ) and 𝑛 ∈ Z∗,

ΦT𝑇 (𝑙𝑛) = 0.

When 𝑔 ≥ 2, we are unable to show a satisfying version of Conjecture 1.3, but we are able to prove
the following conditional results.
Theorem 3.14. Consider a compact classical group 𝐺𝑁 of rank N, 𝑔 ≥ 2 and 𝑇 > 0. Assume that for
any regular area weighted map (G, 𝑎) of genus 𝑔,

𝑊ℓ →
𝑁→∞

Φℓ̃ (�̃�) in probability under YMG,𝑎, (34)

whenever ℓ ∈ L(G) such that
1. any lift ℓ̃ ∈ L(G̃) of ℓ is included in a fundamental domain, or
2. ℓ = 𝛾𝑛𝑒𝑠𝑡𝛾, where 𝛾𝑛𝑒𝑠𝑡 is a nested loop and 𝛾 is a geodesic path.42

Then for any regular map G of genus g, (34) holds true for all ℓ ∈ L(G).
Besides, the following weaker statement can be proved independently.

Proposition 3.15. Consider a compact classical group 𝐺𝑁 of rank N and 𝑔 ≥ 2. Assume that for any
regular area weighted map (G, 𝑎) of genus 𝑔,

𝑊ℓ →
𝑁→∞

0 in probability under YMG,𝑎, (35)

whenever ℓ ∈ L(G) is a geodesic loop with non zero-homology. Then for any regular map G of genus
g, (35) holds true for all ℓ ∈ L(G) with nonzero homology.

42See Figure 14 and Section 2.3.
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Remark 3.16. The above statements may give the impression that any possible master field is expressed
in terms of the planar case. This is nonetheless not the case as the Wilson loops on the sphere converge
to different limits [21]. See also the discussion in [20, Section 2.5].

The proofs of Theorems 3.13, 3.14 and Proposition 3.15 are provided in the end of Section 3.5.

3.4. Invariance in law and Wilson loop expectation

Before proceeding to the main part of this paper, let us give a partial result that only holds in expectation
but relies on a simpler argument: the invariance in law by an action of the center of the structure group
𝐺𝑁 . Consider a regular map G = (𝑉, 𝐸, 𝐹) with r faces, 𝑣 ∈ 𝑉 and a basis ℓ1, . . . , ℓ𝑟 , 𝑎1, . . . , 𝑏𝑔 of the
free group RL𝑣 (G) as in Lemma 2.3. For any ℎ ∈ 𝐺2𝑔 and 𝜙 ∈ Hom(RL𝑣 (G), 𝐺), let us denote by
ℎ.𝜙 ∈ Hom(RL𝑣 (G), 𝐺) the unique group morphism with

ℎ.𝜙(ℓ𝑖) ↦→ 𝜙(ℓ𝑖), for 1 ≤ 𝑖 ≤ 𝑟

and

ℎ.𝜙(𝑎𝑖) = ℎ2𝑖−1𝜙(𝑎𝑖) and ℎ.𝜙(𝑏𝑖) = ℎ2𝑖𝜙(𝑏𝑖) for 1 ≤ 𝑖 ≤ 𝑔.

Let us denote by Z the center of 𝐺. When ℎ ∈ 𝑍2𝑔, it follows easily from point 2 of Lemma 2.12 that

ℎ.𝜙(ℓ) = 𝜙ℎ ([ℓ]Z)𝜙(ℓ), ∀ℓ ∈ RL𝑣 (G), (36)

where 𝜙ℎ ∈ Hom(𝐻1 (𝑑∗,Z), 𝑍) is the unique group morphism such that

𝜙ℎ ([𝑎𝑖]Z) = ℎ2𝑖−1 and 𝜙ℎ ([𝑏𝑖]Z) = ℎ2𝑖 for 1 ≤ 𝑖 ≤ 𝑔.

Lemma 3.17. Let G be regular map, 𝑇 > 0, 𝑎 ∈ ΔG(𝑇). Denoting by (𝐻ℓ)ℓ∈RL𝑣 (G) the canonical
G-valued random variable on Hom(RL𝑣 (G), 𝐺), the following assertions hold true.

1. The measure YM𝑎,G,𝑣 on Hom(RL𝑣 (G), 𝐺) is invariant under the action of 𝑍2𝑔 .
2. Assume that 𝜒 : 𝐺 → C is continuous and 𝛼 : 𝑍 → C is such that 𝜒(𝑧.ℎ) = 𝛼𝜒 (𝑧)𝜒(ℎ), ∀(𝑧, ℎ) ∈

𝑍 × 𝐺. Then
(a) for any ℎ ∈ 𝑍2𝑔 and ℓ ∈ RL𝑣 (G),

EYM𝑎,G,𝑣 [𝜒(𝐻ℓ)] = 𝛼𝜒 ◦ 𝜙ℎ ([ℓ]Z)EYM𝑎,G,𝑣 [𝜒(𝐻ℓ)] .

(b) if there is 𝜙 ∈ Hom(𝐻1 (𝑑∗,Z), 𝑍) with 𝜙([ℓ]Z) ≠ 0, then

EYM𝑎,G,𝑣 [𝜒(𝐻ℓ)] = 0.

3. When G is a classical compact matrix Lie group, for any ℓ ∈ RL𝑣 (G), E[𝑊ℓ ] = 0 if one of the
following conditions is satisfied:
(a) 𝐺 = U(𝑁) and [ℓ]Z ≠ 0.
(b) 𝐺 = SU(𝑁) and [ℓ]Z𝑛 ≠ 0
(c) 𝐺 = SO(2𝑁) and [ℓ]Z2 ≠ 0.

Proof. The implication 2.𝑎) ⇒ 2.𝑏) ⇒ 3 are elementary. Thanks to (36), 1 ⇒ 2.𝑎). Lastly, consider
1. Denote by 𝑑𝜙 the Haar measure on Hom(RL𝑣 (G), 𝐺) endowed with pointwise multiplication, and

𝑅𝑔 : (ℓ1, . . . , ℓ𝑟 , 𝑥1, 𝑦1, . . . , 𝑥𝑔, 𝑦𝑔) ↦→ [𝑥1, 𝑦1] · · · [𝑥𝑔, 𝑦𝑔]

the word map on RL𝑣 (G) corresponding to the commutator of the generators of the fundamental group.
By Lemma 3.4, it is enough to consider 𝑎 ∈ Δ𝑜

G
(𝑇) and denote by 𝑎1, . . . 𝑎𝑟 the area enclosed by the
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meanders of ℓ1, . . . , ℓ𝑟 and set 𝑎𝑟+1 = 𝑇−
∑𝑟
𝑖=1 𝑎𝑖 . For any continuous function 𝜒 : Hom(RL𝑣 (G), 𝐺) →

C and ℎ ∈ 𝑍2𝑔, 𝑑𝜙 is invariant by the action of 𝑍2𝑔 and∫
Hom(RL𝑣 (G) ,𝐺) 𝜒(ℎ−1.𝜙)𝑑YM𝑎,G,𝑣 (𝜙)

=
∫

Hom(RL𝑣 (G) ,𝐺)
𝜒(ℎ−1.𝜙)𝑝𝑎𝑟+1 (𝜙((ℓ1 . . . ℓ𝑟 )−1𝑅𝑔))

𝑟∏
𝑖=1

𝑝𝑎𝑖 (𝜙(ℓ𝑖))𝑑𝜙

=
∫

Hom(RL𝑣 (G) ,𝐺)
𝜒(𝜙)𝑝𝑎𝑟+1 (ℎ.𝜙((ℓ1 . . . ℓ𝑟 )−1𝑅𝑔))

𝑟∏
𝑖=1

𝑝𝑎𝑖 (ℎ.𝜙(ℓ𝑖))𝑑𝜙

=
∫

Hom(RL𝑣 (G) ,𝐺)
𝜒(𝜙)𝑝𝑎𝑟+1 (ℎ.𝜙((ℓ1 . . . ℓ𝑟 )−1𝑅𝑔))

𝑟∏
𝑖=1

𝑝𝑎𝑖 (ℎ.𝜙(ℓ𝑖))𝑑𝜙,

where in the last line we used that ℎ.𝜙([𝑥𝑖 , 𝑦𝑖]) = [𝜙(𝑥𝑖)ℎ2𝑖−1, 𝜙(𝑦𝑖)ℎ2𝑖−1]) = 𝜙([𝑥𝑖 , 𝑦𝑖]) for 1 ≤ 𝑖 ≤ 𝑔
and ℎ.𝜙(ℓ 𝑗 ) = 𝜙(ℓ 𝑗 ), for 1 ≤ 𝑗 ≤ 𝑟. �

3.5. Makeenko–Migdal equations, existence and uniqueness problem

The main tool of the current article is approximate versions of equations (33), satisfied on any surface
when 𝐺𝑁 is a compact classical group and 𝑁 → ∞. Let us introduce a setting to prove existence and
uniqueness of these equations.

For any regular map G and any vertex v of G, let A𝑣 (G) be the algebra with elements in C[L𝑣 (G)]
endowed with the multiplication given by concatenation, with unit 1𝑣 , or simply 1, given by the constant
loop at 𝑣, and setting ℓ∗ = ℓ−1 for all ℓ ∈ L𝑣 (G) and extending it skew-linearly. When w is another vertex,
A𝑣,𝑤 (G) denotes the usual tensor product of the ∗-algebras A𝑣 (G) and A𝑤 (G). Its elements belong to
C[L𝑣 (G)]⊗C[L𝑤 (G)], and multiplication and ∗-operation are defined for all (𝑥𝑖 , 𝑦𝑖) ∈ A𝑣 (G)×A𝑤 (G)
by

(𝑥1 ⊗ 𝑦1).(𝑥2 ⊗ 𝑦2) = (𝑥1𝑥2) ⊗ (𝑦1𝑦2) and (𝑥1 ⊗ 𝑦1)∗ = 𝑥∗
1 ⊗ 𝑦∗

1.

Let us fix 𝑔 ≥ 1 and 𝑇 > 0. Recall the notion of refinement for area weighted maps in Section 3.2.
A Wilson loop system is a family of continuous functions 𝜙ℓ1 , 𝜙ℓ1 ⊗ℓ2 : ΔG(𝑇) → C given for each map
G of genus g and each pair of loops ℓ1, ℓ2 ∈ L(G), with the following properties:

1. For any constant loop 𝑐,

𝜙ℓ1 ⊗𝑐 = 𝜙ℓ1 and 𝜙𝑐 = 1.

2. For any pair of loops ℓ1, ℓ2 within a same map of genus g,

𝜙ℓ1 ⊗ℓ2 = 𝜙ℓ2 ⊗ℓ1

depend on ℓ1, ℓ2 only through their ∼𝑟 ,𝑐 equivalence class.
3. If G′ is finer than G of genus 𝑔, then for all loops ℓ, ℓ1, ℓ2 ∈ L(G),

𝜙ℓ ◦ 𝑟G
′

G
= 𝜙ℓ and 𝜙ℓ1 ⊗ℓ2 ◦ 𝑟G

′

G
= 𝜙ℓ1 ⊗ℓ2 ,

where loops are identified in the right-hand sides with elements of L(G′).
4. If G′ is isomorphic to G of genus g, 𝑎 ∈ ΔG(𝑇) is mapped to 𝑎′ ∈ ΔG′ (𝑇), while ℓ′

1, ℓ
′
2 ∈ L(G) with

ℓ1 ∼Σ ℓ′
1, ℓ2 ∼Σ ℓ′

2, through the same isomorphism map, then

𝜙ℓ1 (𝑎) = 𝜙ℓ′1 (𝑎
′) and 𝜙ℓ1 ⊗ℓ2 (𝑎) = 𝜙ℓ′1 ⊗ℓ

′
2
(𝑎′).
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5. If G = (𝑉, 𝐸, 𝐹) is a map of genus g, ℓ1, ℓ
′
1, ℓ2 ∈ L(G), 𝐾 ⊂ 𝐹 with ℓ1 ∼𝐾 ℓ′

1, then

𝜙ℓ1 ⊗ℓ2 (𝑎) = 𝜙ℓ′1 ⊗ℓ2 (𝑎), ∀𝑎 ∈ Δ𝐾,G(𝑇).

6. For any map G of genus g with vertex v, for any 𝑎 ∈ ΔG(𝑇), extending ℓ ∈ L𝑣 (G) ↦→ 𝜙ℓ (𝑎) linearly
defines a nonnegative state 𝜙𝑎,𝑣 on (A𝑣 (G), 1𝑣 , ∗), while for any 𝑥 ∈ A𝑣 (G),

𝜙𝑥⊗𝑥∗ ≥ 0.

Our motivation for considering the above definition43 is the following example.

Example 3.18. Whenever 𝐺𝑁 is a compact classical group, from the above definition of the Yang-Mills
measure, the collection

𝑎 ∈ ΔG(𝑇) ↦→ (EYMG,𝑎 [𝑊ℓ],EYMG,𝑎 [𝑊ℓ1𝑊ℓ2 ])

for all regular maps G of genus g and loops ℓ, ℓ1, ℓ2 ∈ L(G) is a Wilson loop system.

Recall that it follows from the first part of 6 that

𝜙𝑥∗𝑦 = 𝜙𝑦∗𝑥 (37)

for all 𝑥, 𝑦 ∈ A𝑣 (G) and from 1 that ℓ has a unitary distribution in (A𝑣 (G), 1, ∗, 𝜙𝑣,𝑎), for any vertex v
and ℓ ∈ L𝑣 (G); that is,

𝜙𝑣,𝑎 ((ℓℓ∗ − 1) (ℓℓ∗ − 1)∗) = 𝜙𝑣,𝑎 ((ℓ∗ℓ − 1) (ℓ∗ℓ − 1)∗) = 0.

When 𝜙 is a Wilson loop system, for any map G and any loop ℓ ∈ L(G), (37), the second part of point
6 and point 1 yield44

𝒱𝜙,ℓ = 𝜙ℓ⊗ℓ−1 − |𝜙ℓ |2 = 𝜙ℓ⊗ℓ−1 − 𝜙ℓ𝜙ℓ−1 ≥ 0,

since for any 𝑎 ∈ Δ𝐾,G(𝑇), 𝒱𝜙,ℓ (𝑎) = 𝜙𝑥ℓ (𝑎) ⊗𝑥ℓ (𝑎)∗ (𝑎), where 𝑥ℓ (𝑎) = ℓ − 𝜙ℓ (𝑎)1𝑣 .
Recall definition (21). We say that a Wilson loop system 𝜙 is an exact solution of Makeenko–Migdal

equations if

1. For any tame loop ℓ within map G of genus g, 𝜙 ∈ 𝐶1(Δ𝑜
G
(𝑇)) and for any 𝑣 ∈ 𝑉ℓ ,

𝜇𝑣 .𝜙ℓ = 𝜙𝛿𝑣ℓ .

2. For any pair of regular loops within the same map, 𝜙𝛼⊗𝛽 = 𝜙𝛼𝜙𝛽 .
3. For any regular loop ℓ with ℓ �ℎ 𝑐ℓ , 𝜙ℓ = 0.

We say that a sequence (𝜙𝑁 )𝑁 ≥1 of Wilson loop systems is an approximate solution of Makeenko–
Migdal equations if for any map G of genus g, any loop ℓ in L(G), 𝜙𝑁ℓ and 𝒱𝑁

𝜙,ℓ are in 𝐶1 (Δ𝑜
G
(𝑇)),

there is a constant 𝐶 > 0 independent of ℓ and 𝑁 ≥ 1, such that for any intersection point 𝑣 ∈ 𝑉ℓ ,

|𝜇𝑣 .𝜙𝑁ℓ − 𝜙𝑁𝛿𝑣 (ℓ) | ≤
𝐶

𝑁
, (38)

|𝜇𝑣 .𝒱𝜙𝑁 ,ℓ | ≤ 𝒱𝜙𝑁 ,ℓ +𝒱𝜙𝑁 ,ℓ1 +𝒱𝜙𝑁 ,ℓ2 + 𝐶

𝑁
(39)

43Similar functions associated to the next example have been used in [21, Sect. 4.3].
44This function is the variance of a Wilson loop in the canonical example of a Wilson loop system associated to the Yang-Mills

measure.
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and

|𝜇𝑣 .𝒱𝜙𝑁 ,ℓ | ≤
√
𝒱𝜙𝑁 ,ℓ1𝒱𝜙𝑁 ,ℓ2 + |𝜙𝑁ℓ1

|
√
𝒱𝜙𝑁 ,ℓ2 + |𝜙𝑁ℓ2

|
√
𝒱𝜙𝑁 ,ℓ1 + 𝐶

𝑁
, (40)

where ℓ1 ⊗ ℓ2 = 𝛿𝑣ℓ.

Remark 3.19. Note that it follows from point 3 that if 𝜙 is a Wilson loop system and ℓ, ℓ1, ℓ2 are a
regular loops of a map G = (𝑉, 𝐸, 𝐹) with 𝑒 ∈ 𝐸𝑜 \ (𝐸𝑜

ℓ ∪ 𝐸𝑜
ℓ1

∪ 𝐸𝑜
ℓ2
), then

𝑑𝜔𝑒 .𝜙ℓ = 𝑑𝜔𝑒 .𝜙ℓ1 ⊗ℓ2 = 0. (41)

Consequently, for any regular loop ℓ, using the same linear forms as in Section 2.7, if 𝜙∞ and (𝜙𝑁 )
are, respectively, exact and approximate solutions of Makeenko–Migdal equations, for any regular loop
ℓ and 𝑋 ∈ 𝔪ℓ ,

𝑋.𝜙∞
ℓ = 𝜙∞

𝛿𝑋ℓ
and |𝑋.𝜙𝑁ℓ − 𝜙𝑁𝛿𝑋ℓ | ≤

‖𝑋 ‖𝐶
𝑁

, (42)

while

|𝑋.𝒱𝜙𝑁 ,ℓ | ≤ 𝐶‖𝑋 ‖
( ∑
𝑣 ∈𝑉ℓ

(√
𝒱𝜙𝑁 ,ℓ1𝒱𝜙𝑁 ,ℓ2 + |𝜙𝑁ℓ1

|
√
𝒱𝜙𝑁 ,ℓ2 + |𝜙𝑁ℓ2

|
√
𝒱𝜙𝑁 ,ℓ1

)
+ 1

𝑁

)
(43)

and

|𝑋.𝒱𝜙𝑁 ,ℓ | ≤ ‖𝑋 ‖𝐶
(
𝒱𝜙𝑁 ,ℓ +

∑
𝑣 ∈𝑉ℓ

(𝒱𝜙𝑁 ,ℓ𝑣,1 +𝒱𝜙𝑁 ,ℓ1,2 ) + 1
𝑁

)
, (44)

where for any 𝑣 ∈ 𝑉ℓ , we wrote 𝜕𝑣ℓ = ℓ1,𝑣 ⊗ ℓ2,𝑣 .

The existence problem of these equations is a consequence of [25] and [43] for the approximate
solutions and, given Theorem 3.9, of a simple computation for the exact ones.

Lemma 3.20. Consider 𝑔 ≥ 1, 𝑇 > 0.

1. Assume that 𝐺𝑁 is a compact classical group of rank N. Then setting for all map G, 𝑎 ∈ ΔG(𝑇) and
all loops ℓ, ℓ1, ℓ2 ∈ L(G),

𝜙𝑁ℓ (𝑎) = EYMG,𝑎 [𝑊ℓ], 𝜙𝑁ℓ1 ⊗ℓ2
(𝑎) = EYMG,𝑎 [𝑊ℓ1𝑊ℓ2]

defines an approximate solution of the Makeenko–Migdal equations.
2. Denoting by 𝑐𝑣 the constant loop at a vertex 𝑣, setting for any map G, 𝑎 ∈ ΔG(𝑇) and ℓ ∈ L(G),

𝜙ℓ (𝑎) =
⎧⎪⎪⎨⎪⎪⎩
Φℓ̃ (�̃�) if ℓ ∼ℎ 𝑐ℓ ,

0 if ℓ �ℎ 𝑐ℓ ,

defines an exact solution of the Makeenko–Migdal equations.

Proof. Point 1 is a direct consequence of Proposition 7.5 below, together with Cauchy–Schwarz or
arithmetic-geometric mean inequality to get (43) and (44). For point 2, we shall only check that the
Makeenko–Migdal equations are satisfied and leave the other points to the reader. Consider a map G
of genus g with ℓ ∈ L(G) and 𝑣 ∈ 𝑉ℓ . Consider 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2 and let us show that 𝜇𝑣𝜙ℓ = 𝜙ℓ1𝜙ℓ2 . If
ℓ �ℎ 𝑐ℓ , then the rerooting ℓ′ at v of ℓ satisfies ℓ′ �ℎ 𝑐𝑣 . Therefore, ℓ1 �ℎ 𝑐𝑣 or ℓ2 �ℎ 𝑐𝑣 , and we
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conclude that 𝜙ℓ = 𝜙ℓ′ = 0 = 𝜙ℓ1𝜙ℓ2 . Assume now ℓ ∼ℎ 𝑐ℓ . Consider the universal cover G̃ = (�̃� , �̃� , �̃�)
of G with projection map p. For all 𝑎 ∈ Δ𝑜

G
(𝑇),

𝜇𝑣 .𝜙ℓ (𝑎) = 𝜇𝑣 .(Φℓ̃ (�̃�)) =
∑

�̃�∈𝑝−1 (𝑣)∩𝑇ℓ̃

(𝜇 �̃� .Φℓ̃) (�̃�),

where 𝑇ℓ̃ is the set of vertices of G̃ visited by ℓ̃. Since ℓ is regular, either #𝑝−1 (𝑣) ∩ 𝑇ℓ̃ = 2 and
#(𝑉ℓ̃ ∩ 𝑝−1(𝑣)) = 0, or #(𝑝−1 (𝑣) ∩ 𝑇ℓ̃ ) = #(𝑝−1 (𝑣) ∩𝑉ℓ̃) = 1.

In the first case, ℓ1 �ℎ 𝑐𝑣 and ℓ2 �ℎ 𝑐𝑣 , so that 𝜙ℓ1 = 𝜙ℓ2 = 0. Moreover, for any �̃� ∈ 𝑝−1 (𝑣) ∩ 𝑇ℓ̃
and 𝑒1, . . . , 𝑒4 ∈ �̃�𝑜 four cyclically ordered, outgoing edges at �̃�, we may assume that ℓ̃ uses 𝑒−1

1
and 𝑒3, while 𝑒2, 𝑒4 ∉ 𝐸ℓ̃ . Therefore, 𝑑𝜔𝑒2 .Φℓ̃ = 𝑑𝜔𝑒4 .Φℓ̃ = 0, and as 𝜇 �̃� = ±(𝑑𝜔𝑒2 + 𝑑𝜔𝑒4),
(𝜇 �̃� .Φℓ̃) (�̃�) = 0 = 𝜙ℓ1 (𝑎)𝜙ℓ2 (𝑎).

In the second case, for �̃� ∈ 𝑉ℓ̃ ∩ 𝑝−1 (𝑣) = 𝑇ℓ̃ ∩ 𝑝−1(𝑣), by definition of the universal cover,
ℓ1 ∼ℎ 𝑐𝑣 ∼ℎ ℓ2. Then 𝛿 �̃� ℓ̃

′ = ℓ̃1 ⊗ ℓ̃2, where ℓ̃1, ℓ̃2 are lift with initial condition �̃�, so that using 3a) of
Theorem 3.9, we get

(𝜇 �̃� .Φℓ̃) (�̃�) = Φℓ̃1
(�̃�)Φℓ̃2

(�̃�) = 𝜙ℓ1 (𝑎)𝜙ℓ2 (𝑎). �

The main technical result of this article is the proof of the following uniqueness statements. Denote
by 𝔏𝑔 the space of regular loops of regular maps of genus 𝑔 ≥ 1. Let us say that a subset F of 𝔏𝑔 is a
good boundary condition of the Makeenko–Migdal equations if for any pair 𝜙∞ and (𝜙𝑁 )𝑁 ≥1 made of
an exact and an approximate solutions of Makeenko–Migdal equations,

lim
𝑁→∞

‖𝜙𝑁ℓ − 𝜙∞
ℓ ‖∞ + ‖𝒱𝜙𝑁 ,ℓ ‖∞ = 0, ∀ℓ ∈ F (45)

implies

lim
𝑁→∞

‖𝜙𝑁ℓ − 𝜙∞
ℓ ‖∞ + ‖𝒱𝜙𝑁 ,ℓ ‖∞ = 0, ∀ℓ ∈ 𝔏𝑔 . (46)

Setting

Ψ𝑁
ℓ = 𝜙𝑁(ℓ−𝜙∞

ℓ
𝑐) ⊗(ℓ−𝜙∞

ℓ
𝑐)∗ = 𝒱𝜙𝑁 ,ℓ + |𝜙𝑁ℓ − 𝜙∞

ℓ |2, (47)

where c is the constant loop at ℓ, this is equivalent to

lim
𝑁→∞

‖Ψ𝑁
ℓ ‖∞ = 0, ∀ℓ ∈ F ⇒ lim

𝑁→∞
‖Ψ𝑁

ℓ ‖∞ = 0, ∀ℓ ∈ 𝔏𝑔 .

Proposition 3.21. For any genus 𝑔 ≥ 1 and total volume 𝑇 > 0, the family of loops ℓ ∈ 𝔏𝑔 with a
subpath 𝛾, such that (ℓ, 𝛾) is a marked loop and (ℓ, 𝛾)∧ is geodesic, is a good boundary condition.

Denote by 𝔏∗
𝑔 the subset of 𝔏𝑔 of loops ℓ with [ℓ]Z ≠ 0. Let us say that a subset F∗ of 𝔏∗

𝑔 is a good
boundary condition in homology if for any pair 𝜙∞ and (𝜙𝑁 )𝑁 ≥1 made of an exact and an approximate
solution of Makeenko–Migdal equations, using the same notation as in (47),

lim
𝑁→∞

‖Ψ𝑁
ℓ ‖∞ = 0, ∀ℓ ∈ F∗ ⇒ lim

𝑁→∞
‖Ψ𝑁

ℓ ‖∞ = 0, ∀ℓ ∈ 𝔏∗
𝑔 .

The following can be proven independently from Proposition 3.21.

Proposition 3.22. For any genus 𝑔 ≥ 1 and total volume 𝑇 > 0, the family of geodesic loops in 𝔏∗
𝑔 is a

good boundary condition in homology.
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When 𝑔 = 1, for any loop ℓ ∈ 𝔏𝑔, ℓ ∼ℎ 𝑐ℓ if and only if [ℓ]Z = 0 and any geodesic loop is of the
form 𝑠𝑑 , where s is a simple loop and 𝑑 ≥ 1. Therefore, Proposition 3.22 and 3.21 have the following
consequence.

Corollary 3.23. Consider 𝑔 = 1, 𝑇 > 0, the set of regular loops ℓ ∈ 𝔏𝑔 such that |ℓ |𝐷 = 0 or ℓ = 𝑠𝑑 for
some simple loop s and some integer 𝑑 ≥ 1 is a good boundary condition.

Proof of Theorem 3.14 and Proposition 3.15. Since 𝐿2 convergence implies convergence in probability,
both statements follow from Lemma 3.20 and of, respectively, proposition 3.21 and 3.22. �

Proof of Theorem 3.13. Using the solutions given by 1 and 2 of Lemma 3.20, Theorem 3.12 implies
that the boundary conditions of Corollary 3.23 are satisfied. Therefore, the convergence in probability
holds true for any regular loops. Using Lemma 3.8, it follows that the convergence holds for all 𝛾 ∈
𝐴(Σ) ∩L(Σ). When 𝛾 ∈ 𝐴(Σ) \L(Σ), under YMΣ, 𝑊𝛾 is Haar distributed, so that EYMΣ [|𝑊𝛾 |2] → 0 as
𝑁 → ∞ by [22]. To prove the convergence in probability for any path of finite length, it is now enough to
combine the area bound (32) with Proposition 3.7. The uniqueness claim is proved identically considering
in place of the above approximate solution, a constant sequence given by an exact solution. �

4. Proof of the main result, stability of convergence under deformation

In this section, we give a proof first of Proposition 3.22, then of Proposition 3.21. We consider exact and
approximate solutions 𝜙∞ and (𝜙𝑁 )𝑁 ≥1 of Makeenko–Migdal equations in genus 𝑔 ≥ 1 and volume
𝑇 > 0, define Ψ𝑁 as in (47) and consider the subset 𝔅𝑔 ⊂ 𝔏𝑔 of loops ℓ with map G, satisfying

Ψ𝑁
ℓ →

𝑁→∞
0 uniformly on ΔG(𝑇). (48)

Our aim is to find a small subset ℭ𝑔 of loops in 𝔏𝑔, such that ℭ𝑔 ⊂ 𝔅𝑔 implies 𝔅𝑔 = 𝔏𝑔 . In the first
and second second sections, we shall use, respectively, the following bounds. Thanks to (42), (43) and
(44), using the same notation, for any ℓ ∈ 𝔏𝑔 and 𝑋 ∈ 𝔪ℓ ,

|𝑋.Ψ𝑁
ℓ | ≤ ‖𝑋 ‖𝐶 ′

ℓ

( ∑
𝑣 ∈𝑉ℓ

(√
Ψ𝑁
ℓ𝑣,1

+ |𝜙∞
ℓ𝑣,1

|
) (√

Ψ𝑁
ℓ𝑣,2

+ |𝜙∞
ℓ𝑣,2

|
)
+ 1

𝑁

)
(49)

and

|𝑋.Ψ𝑁
ℓ | ≤ ‖𝑋 ‖𝐶 ′

ℓ

(
Ψ𝑁
ℓ +

∑
𝑣 ∈𝑉ℓ

(
Ψ𝑁
ℓ𝑣,1

+ Ψ𝑁
ℓ𝑣,2

)
+ 1

𝑁

)
, (50)

where 𝐶 ′
ℓ > 0 is a constant independent of 𝑁 ≥ 1.

4.1. Non-null homology loops

Let us denote by 𝔅∗
𝑔 the subset 𝔅𝑔 ∩ 𝔏∗

𝑔. The purpose of this section is to prove Proposition 3.22. It is
equivalent to the following statement.

Theorem 4.1. Denote by ℭ∗
𝑔 the subset of 𝔏∗

𝑔 of regular loops with nonzero homology which are
geodesic. If ℭ∗

𝑔 ⊂ 𝔅∗
𝑔, then 𝔅∗

𝑔 = 𝔏∗
𝑔 .

The proof of this Theorem hinges on the following application of Makeenko–Migdal equations,
similarly to the argument of [21, 33].
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Lemma 4.2. Let ℓ, ℓ′ ∈ 𝔏∗
𝑔 be two loops of a regular map G with faces set F, such that there is 𝐾 ⊂ 𝐹

with 𝐾 ≠ 𝐹 and ℓ ∼𝐾 𝜂ℓ′𝜂−1, where 𝜂 is a path with 𝜂 = ℓ′ and 𝜂 = ℓ. Assume that ℓ′ ∈ 𝔅∗
𝑔 and that

for any 𝑣 ∈ 𝑉ℓ ,

(𝛿𝑣 (ℓ) = ℓ1 ⊗ ℓ2) ⇒ (ℓ1 or ℓ2 belongs to 𝔅∗
𝑔). (51)

Then ℓ ∈ 𝔅∗
𝑔 .

Proof. Setting

𝑎′( 𝑓 ) =
⎧⎪⎪⎨⎪⎪⎩

𝑇
#𝐹−#𝐾 if 𝑓 ∉ 𝐾,

0 if 𝑓 ∈ 𝐾
(52)

defines an element of Δ𝐾 (𝑇). According to the compatibility condition 3 of Lemma 3.4 and using that
ℓ′ ∈ 𝔅∗

𝑔,

Ψ𝑁
ℓ (𝑎′) = Ψ𝑁

𝜂ℓ′𝜂−1 (𝑎′) = Ψ𝑁
ℓ′ (𝑎

′) −→ 0 as 𝑁 → +∞. (*)

Now since [ℓ] ≠ 0 and 𝑎, 𝑎′ ∈ ΔG(𝑇), according to Lemma 2.14, 𝑋 = 𝑎 − 𝑎′ ∈ 𝔪ℓ .
Using the assumption (51) and the inequality (49), each term of the summand vanishes uniformly on

ΔG(𝑇) as 𝑁 → ∞, and for any 𝑡 ∈ (0, 1),

|𝜕𝑡Ψ𝑁
ℓ (𝑎 + 𝑡𝑋) | = |𝑋.Ψ𝑁

ℓ (𝑎 + 𝑡𝑋) | ≤ 𝐶ℓ ‖𝑋 ‖𝜀𝑁 ≤ 𝐶ℓ (‖𝑎‖ + ‖𝑎′‖)𝜀𝑁 , (**)

where 𝜀𝑁 → 0. Thanks to the boundary condition (*), we conclude that

Ψ𝑁
ℓ (𝑎) = Ψ𝑁

ℓ′ (𝑎
′) +

∫ 1

0
𝜕𝑡Ψℓ (𝑎′ + 𝑡𝑋)𝑑𝑡

converges to 0 uniformly in 𝑎 ∈ ΔG(𝑇), as 𝑁 → ∞; that is, ℓ ∈ 𝔅∗
𝑔 . �

We split the proof Theorem 4.1 into two steps. The first one allows to contract inner loops; the second
allows to follow a shortening sequence from proper loops to loops conjugated to a geodesic. Denote by
𝔓∗
𝑔 the subset of 𝔏∗

𝑔 of loops which are proper or included in a fundamental domain. Theorem 4.1 is a
direct consequence of the following.

Proposition 4.3.

a) If 𝔓∗
𝑔 ⊂ 𝔅∗

𝑔, then 𝔅∗
𝑔 = 𝔏∗

𝑔 .
b) If ℭ∗

𝑔 ⊂ 𝔅∗
𝑔, then 𝔓∗

𝑔 ⊂ 𝔅∗
𝑔 .

Proof. Let us recall the definition of C above Lemma 2.24. Let us prove first point a). Assume 𝔓∗
𝑔 ⊂ 𝔅∗

𝑔

and introduce for any 𝑛 ≥ 0 the subset ℓ∗𝑛,𝑔 of loops ℓ ∈ 𝔏∗
𝑔 with C (ℓ) ≤ 𝑛. By assumption, ℓ∗0,𝑔 ⊂ 𝔓∗

𝑔 ⊂
𝔅∗
𝑔 .
Consider 𝑛 > 0 and assume ℓ∗𝑛−1,𝑔 ⊂ 𝔅∗

𝑔 . Consider ℓ ∈ ℓ𝑛,𝑔 with #𝑉𝑐,ℓ > 0. According to
Lemma 2.24, for all 𝑣 ∈ 𝑉ℓ with 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2, C (ℓ1), C (ℓ2) < 𝑛 and [ℓ1] or [ℓ2] ≠ 0. Hence, ℓ1 or
ℓ2 belongs to ℓ∗𝑛−1,𝑔 . Choosing K as the bulk of an inner loop 𝛼 of ℓ, and ℓ′ the loop obtained from ℓ

by erasing the edges of 𝛼, ℓ′ ∼𝐾 ℓ, ℓ′ ∈ ℓ∗𝑛−1,𝑔 and Lemma 4.2 implies ℓ ∈ 𝔅∗
𝑔 . Point a) follows by

induction.
Let us now prove b) Assume that ℭ∗

𝑔 ⊂ 𝔅∗
𝑔 and introduce for any 𝑛 ≥ 0 the subset 𝔓∗

𝑛,𝑔 of proper
loops ℓ ∈ 𝔓∗

𝑔 with |ℓ |𝐷 ≤ 𝑛.
By assumption, 𝔓∗

0,𝑔 ⊂ ℭ∗
𝑔 ⊂ 𝔅∗

𝑔 . Assume that 𝑛 > 0 and 𝔓∗
𝑛−1,𝑔 ⊂ 𝔅∗

𝑔, and consider ℓ ∈ 𝔓∗
𝑛,𝑔 .

According to Proposition 2.17, there is a geodesic loop ℓ′ ∈ ℭ∗
𝑔 and shortening homotopy sequence
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Figure 18. Faces are labelled by their area. Faces without label have area 0. In the left figure, ±
symbols stand for the area change involved in the decomposition of 𝛿𝑎𝐹 as a signed sum of Makeenko–
Migdal vectors at four vertices acting on 𝜓. Here, only the vertex highlighted with a red circle yields a
desingularisation with only null-homology loops.

ℓ1, . . . , ℓ𝑚 of proper loops with ℓ1 = ℓ and ℓ𝑚 ∼𝐾 𝜂ℓ′𝜂−1 for some path 𝜂 and proper subset of faces K.
By assumption, ℓ′ ∈ 𝔅∗

𝑔. Using Lemma 2.24 and Lemma 4.2, by induction on m, ℓ ∈ 𝔅∗
𝑔 .

This concludes the proof of b) by induction on n. �

Remark 4.4. In the above proof, if we furthermore assume simple loops with nonvanishing homology
to be included in 𝔅∗

𝑔, it is also possible to argue by induction on the number of vertices.

4.2. Null homology loops

The purpose of this subsection is to prove Proposition 3.21. It is equivalent to the following statement.

Theorem 4.5. Denote by ℭ∨
𝑔 the subset of 𝔏𝑔 of regular loops ℓ, such that there is a nested subpath

𝛾𝑛𝑒𝑠𝑡 of ℓ making (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) a marked loop on a map of genus g and with ℓ∧ geodesic. If ℭ∨
𝑔 ⊂ 𝔅𝑔, then

𝔅𝑔 = 𝔏𝑔 .

To prove this theorem, we shall use the following lemma, formally analog to Lemma 4.2. Though,
unlike Lemma 4.2, due to the new constraint on the Makeenko–Migdal vectors, we work here with
marked loops and change the nested part in order to keep the constraint satisfied while performing the
required homotopy. This will break the induction on the number of intersection points or the complexity
C on regular loops.

The main idea to address this problem hinges on the observation, applied in Step 3 of the proof
below, that loops obtained by desingularisation at the intersection points of the nested part of a marked
loops yield either inner loops or a contraction of faces bounded by inner loops of the nested part. The
Makeenko-Migdal equation leads then to a Grönwall inequality that allows to use an induction on the
complexity C𝔪 of marked loops.

Uniqueness of Makeenko–Migdal equations; example of Figure 4: Let us illustrate the main idea
used in the lemma by a simple example related to the deformation considered in Figure 4. Consider
Δ = {(𝑎, 𝑏) ∈ R2

+ : 𝑎 + 𝑏 ≤ 𝑇} and a function 𝐹 ∈ 𝐶1 (Δ) associated to a solution 𝜓 of the Makeenko–
Migdal equations for the loop illustrated on the left of Figure 18. Assume that 𝜓 vanishes on loops
of non-null homology and matches with the planar master field for loops included in a fundamental
domain. Then the restrictions 𝐹|𝑎+𝑏=𝑇 and 𝐹|𝑎=0 are, respectively, associated to the loops on the middle
and on the right of Figure 18. Since the first loop is included in a fundamental domain, using the value
of the planar master field (see, for instance, Table 1 of [43, Appendix]),

𝐹 (𝑎, 𝑇 − 𝑎) = (1 − 𝑎)𝑒− 𝑎+𝑇2 , ∀𝑎 ∈ [0, 𝑇] . (♣)
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Writing the vector field 𝜕𝑎 as the signed sum of Makeenko–Migdal vectors at four vertices displayed in
the left-hand side of Figure 18, as 𝜓 vanishes on loops with non-null homology, only the term associated
to the circled vertex contributes to the right-hand side of Makeenko-Migdal equations with a negative
sign. Moreover,45 the desingularisation at this vertex yields a simple contractible loop bounding an area
a and a loop obtained by contracting the face with the area parameter a to a point, as displayed on the
right of Figure 18 but with area parameter 𝑎 + 𝑏 in place of b. Therefore, using, respectively, Table 1 of
[43, Appendix] and the restriction property, 𝜓 maps these two loops to 𝑒− 𝑎2 and 𝐹 (0, 𝑎 + 𝑏). All in all,

𝜕𝑎𝐹 (𝑎, 𝑏) = −𝑒− 𝑎2 𝐹 (0, 𝑎 + 𝑏), ∀(𝑎, 𝑏) ∈ Δ . (♠)

Now the equation (♠) with boundary condition (♣) has a unique solution. Indeed, denoting by G the
difference of two solutions, and setting 𝐻 (𝑡) = sup𝑎∈[0,𝑡 ] |𝐺 (𝑎, 𝑡 − 𝑎) |,

𝐻 (𝑡) ≤
∫ 𝑇

𝑡
𝐻 (𝑠)𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] .

By Grönwall’s inequality, 𝐻 (𝑡) = 0 for all 𝑡 ∈ [0, 𝑇] . Since the following right-hand side satisfies (♠)
and (♣), we conclude that46

𝐹 (𝑎, 𝑏) = (1 − 𝑎)𝑒− 2𝑇−𝑏
2 , ∀(𝑎, 𝑏) ∈ Δ .

Let us return to the proof of Theorem 4.5. Denote by 𝔏𝔪
𝑔 the set of marked loops on a regular map

of genus g and by 𝔅𝔪
𝑔 the set of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) ∈ 𝔏𝔪

𝑔 such that ℓ′ ∈ 𝔅𝑔, whenever (ℓ′, 𝛾′
𝑛𝑒𝑠𝑡 ) ∈ 𝔏𝔪

𝑔 with
ℓ′∧∗ = ℓ∧∗ . Recall the notation (25) for the desingularisation of a marked loop.

Lemma 4.6. Assume that for any regular loop ℓ with |ℓ |𝐷 = 0, ℓ ∈ 𝔅𝑔 . Let 𝑥 = (𝛼, 𝛼𝑛𝑒𝑠𝑡 ), 𝑦 =
(𝛽, 𝛽𝑛𝑒𝑠𝑡 ) ∈ 𝔏𝑚

𝑔 be two marked loops on a same regular map G and K a proper subset of faces of G,
such that 𝛼𝑛𝑒𝑠𝑡 = 𝛽𝑛𝑒𝑠𝑡 with a moving edge that is not adjacent to any face of K, 𝛼∧∗ ∼𝐾 𝛽∧∗ and
𝑦 ∈ 𝔅𝔪

𝑔 , while

∀𝑣 ∈ 𝑉𝛼∧ , 𝛿𝑣 (𝑥) = 𝑥1 ⊗ 𝑥2 with 𝑥1, 𝑥2 ∈ 𝔅𝔪
𝑔 . (53)

Then 𝛼 ∈ 𝔅𝑔 .

Proof of Lemma 4.6. Since 𝛼 ∼𝐾 𝛽 and 𝛽 ∈ 𝔅𝑔,

Ψ𝑁
𝛼 = Ψ𝑁

𝛽 → 0 uniformly on ΔG,𝐾 (𝑇). (54)

Let us prove that Ψ𝑁
𝛼 converges uniformly to zero on ΔG,𝐾 (𝑇).

Step 1: Let us first show that it is enough to show the latter convergence on one half of the simplex
ΔG(𝑇) depending on the winding47 of 𝛼. Thanks to Theorem 4.1, we can assume that [𝛼] = 0. Recall
from Lemma 2.12 that since [𝛼] = [𝛼∧] = 0, we can define winding number functions 𝑛𝛼, 𝑛𝛼∧ ∈ Ω2(G)
for 𝛼 and 𝛼∧, and that they are unique up to the choice of an additive constant. Let 𝐹𝑛𝑒𝑠𝑡 be the bulk of
the nested part of (𝛼, 𝛼𝑛𝑒𝑠𝑡 ) and let 𝑓𝑜 be its outer face. We fix 𝑛𝛼, 𝑛𝛼∧ setting 𝑛𝛼 ( 𝑓𝑜) = 𝑛𝛼∧ ( 𝑓𝑜) = 0.
Now define

Δ±(𝑇) = {𝑎 ∈ ΔG(𝑇) : ±〈𝑛𝛼∧ , 𝑎〉 ≥ 0}

45We use here the property at works in the proof below.
46Besides, using again Table 1 of [43, Appendix], the reader can also check that the right-hand side is indeed the value of the

master field at the lift to R2 of the loop on the left-hand side of Figure 18.
47This will inform in which direction to twist 𝛼 in the next step.
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and choose two faces 𝑓−, 𝑓+ ∈ 𝐹𝑛𝑒𝑠𝑡 ∪ { 𝑓𝑜} such that

𝑛𝛼 ( 𝑓−) = min
𝑓 ∈𝐹𝑛𝑒𝑠𝑡∪{ 𝑓𝑜 }

𝑛𝛼 ( 𝑓−) = 𝑛− and 𝑛𝛼 ( 𝑓+) = max
𝑓 ∈𝐹𝑛𝑒𝑠𝑡∪{ 𝑓𝑜 }

𝑛𝛼 ( 𝑓+) = 𝑛+.

Since Δ+(𝑇) ∪ Δ−(𝑇) = ΔG(𝑇) and Ψ𝑁
𝛼−1 = Ψ𝑁

𝛼 , it is enough to show that as 𝑁 → ∞, Ψ𝑁
𝛼 → 0

uniformly on Δ+(𝑇).
Step 2: Let us now modify 𝛼 to have a face disjoint from K and with high enough winding number,

so that changing its area allows to put all areas of faces of K to zero without changing the algebraic
area. The new area vector will be denoted by 𝑎′ below; it will vanish on a set 𝐾∗ of faces that covers K,
while satisfying the algebraic constraint (56).

Consider 𝜆 = 2 max 𝑓 ∈𝐹 |𝑛𝛼 ( 𝑓 ) | and define (ℓ, 𝛾𝑛𝑒𝑠𝑡 ) as the 𝜆-twist of (𝛼, 𝛼𝑛𝑒𝑠𝑡 ). Denote by G′
=

(𝑉 ′, 𝐸 ′, 𝐹 ′) the associated map finer than G and by 𝐹𝑡𝑤 the subset of 𝜆 faces of 𝐹 ′ associated to the
twist move such that ℓ ∼𝐹𝑡𝑤 𝛼. Denote by 𝑓𝑙 the face of G left of the moving edge and, respectively, by
𝑓 ′
𝑙 and 𝑓 ′

𝑐 the unique face of G′ adjacent to 𝐹𝑡𝑤 and the central face of (ℓ, 𝛾𝑛𝑒𝑠𝑡 ). Faces of 𝐹 \ { 𝑓𝑙} are
not changed by the twist and can be identified with 𝐹 ′ \

(
𝐹𝑡𝑤 ∪ { 𝑓 ′

𝑙 }
)
. In particular, faces of K can and

will be identified with faces of G′. We shall write 𝑓 ′
− = 𝑓 ′

𝑙 when 𝑓− = 𝑓𝑙 , and 𝑓 ′
− = 𝑓− otherwise.

Recall that [ℓ] = [𝛼] = 0 and denote by 𝑛ℓ the winding number function of ℓ with 𝑛ℓ ( 𝑓 ′
𝑜) = 0. It

satisfies

𝑛ℓ ( 𝑓 ′
𝑐) = 𝜆 + 𝑛𝛼 ( 𝑓𝑙), 1 ≤ 𝑛ℓ ( 𝑓 ) − 𝑛𝛼 ( 𝑓𝑙) ≤ 𝜆 − 1, ∀ 𝑓 ∈ 𝐹𝑡𝑤 \ { 𝑓𝑐}

while

𝑛ℓ ( 𝑓 ) = 𝑛𝛼 ( 𝑓 ), ∀ 𝑓 ∈ 𝐹 ′ \
(
𝐹𝑡𝑤 ∪ { 𝑓 ′

𝑜}
)

and 𝑛ℓ ( 𝑓 ′
𝑙 ) = 𝑛𝛼 ( 𝑓𝑙).

It follows that

𝑛ℓ ( 𝑓 ′
𝑐) = max

𝑓 ∈𝐹 ′
𝑛ℓ ( 𝑓 ). (55)

Recall that 𝛼∧ = ℓ∧ viewed as loops in G′ and denote

Δ ′
+(𝑇) = {𝑎 ∈ ΔG′ (𝑇) : 〈𝑛ℓ∧ , 𝑎〉 ≥ 0}.

Since the restriction map from Δ ′
+(𝑇) to Δ+(𝑇) is surjective, it is enough to show that Ψ𝑁

ℓ → 0
uniformly on Δ ′

+(𝑇).
For any 𝑎 ∈ Δ ′

+ (𝑇), thanks to (55) and since 𝑛ℓ ( 𝑓 ) ≥ 𝑛− for all 𝑓 ∈ 𝐹𝑛𝑒𝑠𝑡 ,

𝑛ℓ ( 𝑓 ′
−)𝑇 ≤ 〈𝑛ℓ∧ , 𝑎〉 + 𝑎(𝐹𝑛𝑒𝑠𝑡 )𝑛− ≤ 〈𝑛ℓ , 𝑎〉 ≤ 𝑛ℓ ( 𝑓 ′

𝑐)𝑇.

Hence, setting 𝐾∗ = 𝐹 ′ \ { 𝑓 ′
𝑐 , 𝑓

′
−}, there is a vector 𝑎′ ∈ Δ𝐾 ∗ (𝑇) with

〈𝑛ℓ , 𝑎′〉 = 〈𝑛ℓ , 𝑎〉, (56)

and thanks to Lemma 2.14, 𝑋 = 𝑎′ − 𝑎 ∈ 𝔪ℓ . Moreover, since 𝑛ℓ∧ vanishes on { 𝑓 ′
𝑙 , 𝑓

′
−}, 〈𝑛ℓ∧ , 𝑎′〉 = 0

and 𝑎′ ∈ Δ ′
+(𝑇).

Step 3: Let us show that Makeenko–Migdal equations applied along the vector X allow to apply
a Grönwall inequality to prove the uniform convergence of Ψℓ on Δ ′

+ (𝑇); according to Step 2, this
will then conclude the proof. Therefore, we shall need to bound 𝛿𝑣Ψℓ for all 𝑣 ∈ 𝑉ℓ . For vertices not
belonging to the nested part of ℓ, we shall use the assumption (53). For the remaining ones, it will be
achieved thanks to the restriction identity (58) below, which will be achieved similarly to (♠) in the
simple example introducing the proof. Similarly to the uniqueness argument in that example, we then
deduce a Grönwall type inequality in (59) from which the claim follows.
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i) Consider first vertices outside of the nested part of ℓ. Note that 𝑉ℓ∧ = 𝑉𝛼∧ . Writing 𝑧 = (ℓ, 𝛾𝑛𝑒𝑠𝑡 ),
for all 𝑣 ∈ 𝑉ℓ∧ = 𝑉𝛼∧ , if 𝛿𝑣 (𝑥) = 𝑥1 ⊗ 𝑥2, then 𝛿𝑣 (𝑧) = 𝑧1 ⊗ 𝑧2, where one marked loop, say 𝑧1, is
identical to or obtained from 𝑥𝑖 by 𝜆- twist at the moving edge 𝑒, whereas the other satisfies 𝑧2 = 𝑥2. In
particular, 𝑧∧𝑖 = 𝑥∧

𝑖 , and using the assumption (53), 𝑧𝑖 ∈ 𝔅𝔪
𝑔 and ℓ𝑣,𝑖 ∈ 𝔅𝑔 for 𝑖 ∈ {1, 2}.

ii) Consider now 𝑉ℓ𝑛𝑒𝑠𝑡 . We denote by 𝑣1, . . . , 𝑣𝑛 the intersection points of the nested part of ℓ,
ordering them so that ℓ𝑛𝑒𝑠𝑡 = (𝑣1 . . . 𝑣𝑛𝑣𝑛 . . . 𝑣1) and by 𝐹 ′

𝑛𝑒𝑠𝑡 the bulk of ℓ𝑛𝑒𝑠𝑡 . For all 1 ≤ 𝑘 ≤ 𝑛,
w.l.o.g., 𝛿𝑣𝑘 (ℓ) = 𝛼𝑘 ⊗ ℓ𝑘 , where 𝛼𝑘 is a nested loop with |𝛼𝑘 |𝐷 = 0; hence, 𝛼𝑘 ∈ 𝔅𝑔, and ℓ𝑘 is a
sub-loop of ℓ, with ℓ1 = 𝛼 and ℓ𝑘 ∼𝐹𝑛𝑒𝑠𝑡 ℓ for all 1 ≤ 𝑘 ≤ 𝑛. Denote by 𝐹𝑘 the minimal subset of 𝐹𝑛𝑒𝑠𝑡
with ℓ𝑘 ∼𝐹𝑘 ℓ. Since 𝑋 ∈ 𝔪ℓ , using inequality (50), we find

|𝑋.Ψ𝑁
ℓ | ≤ 𝐶

(
𝜀𝑁 + Ψ𝑁

ℓ +
𝑛∑
𝑘=1

Ψ𝑁
ℓ𝑘

)
, (57)

where 𝐶 > 0 is a constant independent of N and

𝜀𝑁 =
1
𝑁

+ sup
1≤𝑘≤𝑛+

‖Ψ𝑁
𝛼𝑘 ‖∞ + sup

𝑣 ∈𝑉ℓ∧

(
‖Ψ𝑁

ℓ𝑣,1
‖∞ + ‖Ψℓ𝑣,2 ‖∞

)
.

Thanks to i), and as |𝛼𝑘 |𝐷 = 0, for all k, ℓ𝑣,1, ℓ𝑣,2, 𝛼𝑘 ∈ 𝔅𝑔 for all 𝑣 ∈ 𝑉ℓ∧ and 1 ≤ 𝑘 ≤ 𝑛, so that
lim𝑁→∞ 𝜀𝑁 = 0. Let us now bound each term of the sum in the right-hand side of (57) in terms of Ψℓ .
Consider for all 𝑡 ∈ [0, 1],

Δ 𝑖𝑛 (𝑡) = {𝑎 ∈ ΔG′ (𝑡𝑇) : 𝑎( 𝑓 ) = 0,∀ 𝑓 ∉ 𝐹𝑛𝑒𝑠𝑡 ∪ { 𝑓 ′
𝑜}},

and for all 𝑎 ∈ Δ𝐹𝑡𝑤 ,+(𝑇) fixed, set

𝐻𝑁
𝑎 (𝑡) = sup

𝑏∈Δ𝑖𝑛 (1−𝑡)
Ψℓ (𝑡𝑎 + 𝑏), ∀0 ≤ 𝑡 ≤ 1.

On the one hand, for any 𝑡 ∈ (0, 1) and 𝑏 ∈ Δ 𝑖𝑛 (1 − 𝑡),

𝜕𝑠Ψ
𝑁
ℓ (𝑠𝑎 + (𝑡 − 𝑠)𝑎′ + 𝑏) = 𝑋.Ψ𝑁

ℓ (𝑠𝑎 + (𝑡 − 𝑠)𝑎′ + 𝑏), ∀𝑠 ∈ (0, 𝑡).

On the other hand, for all 𝑠 ∈ (0, 𝑡) and any k, as 𝑎(𝐹𝑘 ) = 0 and ℓ𝑘 ∼𝐹𝑘 ℓ, there are 𝑏1, . . . , 𝑏𝑛 ∈
Δ 𝑖𝑛 (1 − 𝑠) ∩ Δ𝐹𝑘 ((1 − 𝑠)𝑇) (see Figure 19) such that

Ψℓ𝑘 (𝑠𝑎 + (𝑡 − 𝑠)𝑎′ + 𝑏) = Ψℓ (𝑠𝑎 + 𝑏𝑘 ), ∀1 ≤ 𝑘 ≤ 𝑛. (58)

Combining the last two equalities with the bound (57), we find

𝐻𝑁
𝑎 (𝑡) ≤ 𝐻𝑁

𝑎 (0) + 𝜀𝑁𝐶 + (𝑛 + 1)𝐶
∫ 𝑡

0
𝐻𝑁
𝑎 (𝑠)𝑑𝑠, ∀𝑡 ∈ [0, 1], 𝑎 ∈ Δ ′

+ (𝑇).

By Grönwall’s inequality,

𝐻𝑁
𝑎 (𝑡) ≤ (𝐻𝑁

𝑎 (0) + 𝜀𝑁𝐶) exp((𝑛 + 1)𝐶𝑡), ∀𝑡 ∈ [0, 1] . (59)

Since Δ 𝑖𝑛 (1) ⊂ Δ𝐾 (𝑇), by (54),

sup
𝑎∈Δ′

+ (𝑇 )
𝐻𝑁
𝑎 (0) ≤ sup

𝑥∈ΔG,𝐾 (𝑇 )
Ψℓ (𝑥)
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Figure 19. Example of a n-left twist with 𝑛 = 3. We consider here 𝑘 = 2; the area of 𝐹2 needs to be
‘moved’ into 𝑓1. We have 𝑎( 𝑓1) = 𝑎( 𝑓2) = 𝑎( 𝑓3) = 0 = 𝑎′( 𝑓1) = 𝑎′( 𝑓2). For all 0 < 𝑠 < 𝑡 < 1, define
𝑏2 setting 𝑏2 ( 𝑓1) = 𝑏(𝐹1) + (𝑡 − 𝑠)𝑎′(𝐹1) and 0 for other faces. Denote 𝑎𝑠,𝑡 = 𝑠𝑎 + (𝑡 − 𝑠)𝑎′ + 𝑏 and
�̃�𝑠,𝑡 = 𝑠𝑎 + 𝑏2. On the one hand, for any face 𝑓 ∉ 𝐹1, 𝑎𝑠,𝑡 ( 𝑓 ) = 𝑎′

𝑠,𝑡 ( 𝑓 ) while 𝑎𝑠,𝑡 (𝐹1) = 𝑎′
𝑠,𝑡 (𝐹1);

therefore, Ψ𝑁
ℓ2

(𝑎𝑠,𝑡 ) = Ψ𝑁
ℓ2

(�̃�𝑠,𝑡 ). On the other hand, �̃�𝑠,𝑡 (𝐹2) = 0 so that Ψ𝑁
ℓ2

(�̃�𝑠,𝑡 ) = Ψ𝑁
ℓ (�̃�𝑠,𝑡 ).

vanishes as 𝑁 → ∞. Since 𝜀𝑁 → 0 as 𝑁 → ∞, from (59),

Ψ𝑁
ℓ (𝑎) = 𝐻𝑁

𝑎 (1) → 0

uniformly in 𝑎 ∈ Δ ′
+(𝑇).

�

Using this lemma, the rest of the proof is a refinement of the null-homology case. Denote by ℭ𝔪
𝑔 ,𝔓𝔪

𝑔

the set of marked loops (ℓ, ℓ𝑛𝑒𝑠𝑡 ) ∈ 𝔏𝔪
𝑔 with |ℓ |𝐷 = 0, or, respectively, ℓ∧ ∈ ℭ𝑔 and ℓ∧ proper.

Theorem 4.5 is then a direct consequence of the following Proposition.

Proposition 4.7.

a) If 𝔓𝔪
𝑔 ⊂ 𝔅𝔪

𝑔 , then 𝔅𝔪
𝑔 = 𝔏𝔪

𝑔 .
b) If ℭ𝔪

𝑔 ⊂ 𝔅𝔪
𝑔 , then 𝔓𝔪

𝑔 ⊂ 𝔅𝔪
𝑔 .

Proof. Let us recall the definition of C𝔪 above Lemma 2.24. Let us prove first point a). Assume
𝔓𝔪
𝑔 ⊂ 𝔅𝔪

𝑔 and introduce for any 𝑛 ≥ 0 the subset ℓ𝔪𝑛,𝑔 of marked loops 𝑥 ∈ 𝔏𝔪
𝑔 with C𝔪 (𝑥) ≤ 𝑛. By

assumption, ℓ𝔪0,𝑔 ⊂ 𝔓𝔪
𝑔 ⊂ 𝔅𝔪

𝑔 .

Consider 𝑛 > 0 and assume ℓ𝔪𝑛−1,𝑔 ⊂ 𝔅𝔪
𝑔 . Consider 𝑥 = (𝛼, 𝛼𝑛𝑒𝑠𝑡 ) ∈ ℓ𝑛,𝑔 with #𝑉𝑐,𝑥∧ > 0. According

to Lemma 2.24, for all 𝑣 ∈ 𝑉ℓ , 𝛿𝑣𝑥 = 𝑥1 ⊗ 𝑥2, with C𝔪 (ℓ1), C𝔪 (ℓ2) < 𝑛. Hence, 𝑥1, 𝑥2 ∈ ℓ𝔪𝑛−1,𝑔 . Thanks
to Proposition 4.3, we can assume [𝛼] = 0. Choosing K as the bulk of an inner loop ℓ of 𝑥∧, and
𝑦 = (𝛽, 𝛽𝑛𝑒𝑠𝑡 ) the marked loop obtained from x by erasing the edges of ℓ, 𝛼 ∼𝐾 𝛽, 𝑦 ∈ ℓ𝔪𝑛−1,𝑔 . Since
𝛼𝑛𝑒𝑠𝑡 do not intersect inner loops of 𝛼∧, the moving edge of x is not adjacent to any face of 𝐾. Lemma 4.6
applies and yields ℓ ∈ 𝔅𝔪

𝑔 . Point a) follows by induction.
Consider now b). Assume thatℭ𝔪

𝑔 ⊂ 𝔅𝔪
𝑔 and introduce for any 𝑛 ≥ 0 the subset𝔓𝔪

𝑛,𝑔 of marked loops
𝑥 ∈ 𝔓𝔪

𝑔 with |𝑥∧|𝐷 ≤ 𝑛. By assumption, 𝔓𝔪
0,𝑔 ⊂ ℭ𝔪

𝑔 ⊂ 𝔅𝔪
𝑔 . Assume that 𝑛 > 0 and 𝔓𝔪

𝑛−1,𝑔 ⊂ 𝔅𝔪
𝑔 , and

consider 𝑥 = (𝛼, 𝛼𝑛𝑒𝑠𝑡 ) ∈ 𝔓𝔪
𝑛,𝑔 . According to Proposition 2.17, there is a geodesic loop ℓ′ ∈ ℭ𝔪

𝑔 and
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shortening homotopy sequence 𝑥1, . . . , 𝑥𝑚 of marked loops with 𝑥∧
𝑖 proper, 𝑥1 = 𝑥 and 𝑥𝑚 = (ℓ𝑚, 𝛾𝑚)

such that ℓ𝑚 ∼𝐾 𝜂ℓ′𝜂−1 for some path 𝜂 and proper subset of faces K. By assumption, ℓ′ ∈ 𝔅𝔪
𝑔 . Consider

the first proper set of faces 𝐾1 with 𝑥∧∗
1 ∼𝐾1 𝑥∧∗

2 . Denote by 𝑥 ′, 𝑦′ the pull of 𝑥1 and 𝑥2 to a face that does
not belong to 𝐾1. Lemma 4.6 applies to 𝑥 ′, 𝑦′. Since C𝔪 (𝑥𝑖) is nonincreasing, we conclude by induction
on m that 𝑥 ∈ 𝔅𝔪

𝑔 . This concludes the proof of b) by induction on n. �

5. Proof of convergence after surgery

We give here the main arguments to prove Theorem 3.12.

Proof of Lemma 3.11. Let us start by applying the second part of Lemma 3.3. It follows that, under
YMG, { 𝑓∞},𝑎, (ℎℓ1 , . . . , ℎℓ𝑟 , ℎ𝑎1 , . . . , ℎ𝑏𝑔 ) are independent random variables on 𝐺𝑁 , such that for all
1 ≤ 𝑖 ≤ 𝑔, ℎ𝑎𝑖 , ℎ𝑏𝑖 are Haar distributed, while for any 1 ≤ 𝑘 ≤ 𝑟 , ℎℓ𝑘 has the same law as a Brownian
motion at time 𝑎( 𝑓𝑘 ). It is now standard (see [43, Section 3]) that as 𝑁 → ∞, this tuple of matrices
is asymptotically freely independent, and its joint noncommutative distribution converges towards 𝜏𝑣 ,
satisfying the properties (*), 1,2 and 3. �

Let us use the same notation as in Theorem 3.12. In what follows, we will denote by E (resp. E𝑖 , E′
𝑖)

the expectation with respect to YMG,𝑎 (resp. YMG𝑖 ,𝑎𝑖 , YMG′
𝑖 ,𝑎

). In a previous paper, we proved that the
restriction to G′

1 of YMG,𝑎 is absolutely continuous with respect to YMG′
1 ,𝑎

.
Proposition 5.1 ([20], Corollary 4.3). Let ℓ ∈ RL𝑣 (G′

1). For any 𝑓 : 𝐺𝑁 → C bounded, measurable
and central,

E[ 𝑓 (𝐻ℓ )] = E′
1 [ 𝑓 (𝐻ℓ)𝐼 (𝐻−1

ℓ0
)], (60)

where 𝐼 : 𝐺𝑁 → C is a bounded measurable function such that

‖𝐼 ‖∞ ≤
𝑍𝑔2 ,𝑎 (𝐹2)

𝑍𝑔,𝑇
.

Note that the bound in the previous proposition ensures that I is uniformly bounded because for any
considered sequence (𝐺𝑁 )𝑁 , the corresponding sequences of partition functions converge towards a
nonzero limit.48

Proof of Theorem 3.12. Without loss of generality, we can assume thatG is a regular map, with 𝑣 = 𝑝(�̃�),
where �̃� ∈ �̃�𝑔 . Let ℓ be a loop in L𝑣 (G1). According to Proposition 5.1,

E[𝑊ℓ ] = E′
1 [𝑊ℓ 𝐼 (𝐻ℓ−1

0
)],

where I is uniformly bounded in 𝑁. From Lemma 3.11, 𝑊ℓ converges in probability towards Φ1,𝑔1
ℓ (𝑎1)

under YMG1 ,𝑎. Because I is uniformly bounded in N, this convergence holds true as well under YMG,𝑎.
It remains to identify Φ1,𝑔1

ℓ (𝑎1) with Φℓ (𝑎).
Consider a free basis ℓ1, . . . , ℓ𝑟 , 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 of RL𝑣 (G) as in Lemma 2.4 and let us identify

RL𝑣 (G1) as a subgroup of RL𝑣 (G). Denote by 𝜏 the linear functional on (C[RL𝑣 (G)], ∗) that satisfies
for all ℓ ∈ RL𝑣 (G),

𝜏(ℓ) = Φℓ (𝑎).

It is enough to show that the restriction of 𝜏 to C[RL𝑣 (G1)] satisfies 1, 2 and 3 of Lemma 3.11.
Point 3 follows from point 1 of Lemma 3.10. Consider point 2. For any ℓ ∈ 𝑆𝑡𝑜𝑝 =

{𝑎1, 𝑏1, . . . , 𝑎𝑔1 , 𝑏𝑔1 } and 𝑘 ∈ Z∗, ℓ𝑘 is not contractible, and therefore, 𝜏(ℓ𝑘 ) = 0. Let us now prove

48Besides, when 𝑔2 ≥ 2 and 𝐺𝑁 ≠ U(𝑁 ) , it remains bounded uniformly in 𝑎 ∈ ΔG (𝑇 ) , which allows then to drop the
condition 𝑎 (𝐹2) > 0 in Theorem 3.12.
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point 1. Note that ℓ1, . . . , ℓ𝑟1 have the same joint distribution under 𝜏𝑣 and 𝜏. Hence, thanks to point 2
of Lemma 3.10, ℓ1, . . . , ℓ𝑟1 are freely independent under 𝜏.

Since 𝑔2 ≥ 1, according to Lemma 2.3, identifying 𝜋1,𝑣 (G) with 𝜋1,𝑣 (G), the images of
𝑎1, 𝑏1, . . . , 𝑎𝑔1 , 𝑏𝑔1 in 𝜋1,𝑣 (G) � Γ𝑔 span a free subgroup Γ# of Γ𝑔 of rank 2𝑔1, isomorphic to the
group RL𝑡𝑜𝑝,1 generated by 𝑎1, . . . , 𝑏𝑔1 in RL𝑣 (G). Therefore, �̃�𝐿 = Γ#.�̃�𝑔 is included in a spanning
tree T of �̃�𝑔 . Choosing (𝛾𝑥)𝑥∈�̃�𝑔 as in Lemma 2.16, (�𝛾𝑥ℓ𝑖𝛾−1

𝑥 )𝑥∈�̃�𝑔 ,1≤𝑖≤𝑟 is a free basis of lassos of
RL�̃� (G̃). Therefore, thanks to Lemma 3.10, (𝛾𝑥ℓ𝑖𝛾−1

𝑥 )𝑥∈�̃�𝐿 ,1≤𝑖≤𝑟1
are freely independent under 𝜏. For

any 𝛾 ∈ RL𝑡𝑜𝑝,1, denote by A𝛾 the subalgebra generated by 𝛾ℓ1𝛾
−1, . . . , 𝛾ℓ𝑟1𝛾

−1. We infer in particular
that the subalgebras (A𝛾)𝛾∈RL𝑡𝑜𝑝,1 are freely independent under 𝜏.

Now since Γ# is free over the image of 𝑆𝑡𝑜𝑝 , for any alternated word w in 𝑎1, . . . , 𝑏𝑔1 , the image
in Γ# is not trivial and the associated loop ℓ𝑤 ∈ RL𝑡𝑜𝑝,1 is not contractible; hence, 𝜏(𝑤) = 0. To
conclude, it remains to show that the subalgebra A𝔣 and A𝑡𝑜𝑝 of C[RL𝑣 (G1)] spanned, respectively, by
𝑆𝔣 = {ℓ1, . . . ℓ𝑟1 } and 𝑆𝑡𝑜𝑝 are freely independent under 𝜏. Since 𝜏 is tracial and unital, it is enough to
show

𝜏(𝑤1𝛼1𝑤2 . . . 𝑤𝑛𝛼𝑛𝑤𝑛+1) = 0

whenever 𝑤1, . . . , 𝑤𝑛 ∈ RL𝑡𝑜𝑝,1 \ {𝑐𝑣 }, 𝑤𝑛+1 ∈ RL𝑡𝑜𝑝,1 and 𝛼1, . . . , 𝛼𝑛 ∈ A𝔣 with 𝜏(𝛼1) = . . . =
𝜏(𝛼𝑛) = 0. Denote by𝐺𝔣 the subgroup of RL𝑣 (G1) generated by 𝑆𝔣 . Since RL𝑡𝑜𝑝,𝑣 is isomorphic to Γ#, if
𝑤1 . . . 𝑤𝑛+1 does not reduce to the constant loop, then for any 𝑥1, . . . , 𝑥𝑛 ∈ 𝐺𝔣, 𝑤1𝑥1𝑤2 . . . 𝑤𝑛𝑥𝑛𝑤𝑛+1 ∼ℎ

𝑤1 . . . 𝑤𝑛+1 is not contractible, and the claim follows. Otherwise, we have 𝑤1 . . . 𝑤𝑛+1 = 1 ∈ RL𝑡𝑜𝑝,1
and

𝑤1𝛼1𝑤2 . . . 𝑤𝑛𝛼𝑛𝑤𝑛+1 = 𝛾1𝛼1𝛾
−1
1 𝛾2𝛼1𝛾

−1
2 . . . 𝛾𝑛𝛼1𝛾

−1
𝑛 , (61)

where 𝛾𝑖 = 𝑤1 . . . 𝑤𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. Now for all 1 ≤ 𝑖 < 𝑛, since 𝑤𝑖+1 ≠ 1 ∈ RL𝑡𝑜𝑝,1, 𝛾𝑖 ≠ 𝛾𝑖+1 and
it follows that (61) is an alternated word in centered elements of (A𝑔)𝑔∈RL𝑡𝑜𝑝,1 . Since these subalgebras
are free under 𝜏, the claim follows. �

6. Interpolation between regular representations

6.1. State extension and interpolation

In this section, we remark that the maps considered in Conjecture 1.3 have a positivity property and can
be seen as states of a noncommutative probability space.

Lemma 6.1. Consider two groups 𝐺, Γ, a surjective morphism 𝜋 : 𝐺 → Γ, and 𝜏 a unital state on
(C[𝐾], 1𝐺 , ∗), where 𝐾 = ker(𝜋) and 1𝐺 denote the neutral element of 𝐺. For any 𝑔 ∈ 𝐺, set

𝜏(𝑔) =
⎧⎪⎪⎨⎪⎪⎩
𝜏(𝑔) if 𝜋(𝑔) = 1Γ,

0 otherwise.
(62)

Assume that for any (𝑔, 𝑘) ∈ 𝐺 × 𝐾,

𝜏(𝑔𝑘𝑔−1) = 𝜏(𝑘). (63)

Then 𝜏 extends linearly to a unital state on (C[𝐺], 1, ∗).

Proof. Let us check that 𝜏 is tracial. For any 𝑎, 𝑏 ∈ 𝐺, if 𝜋(𝑎) ≠ 𝜋(𝑏)−1, then 𝜋(𝑎𝑏), 𝜋(𝑏𝑎) ≠ 1Γ and
𝜏(𝑎𝑏) = 𝜏(𝑏𝑎) = 0. Otherwise, thanks to (63), 𝜏(𝑎𝑏) = 𝜏(𝑎𝑏) = 𝜏(𝑏𝑎𝑏𝑏−1) = 𝜏(𝑏𝑎) = 𝜏(𝑏𝑎). Let
us check now the positivity condition. Since 𝜋 is surjective, there is a right-inverse map 𝑠 : Γ → 𝐺
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satisfying 𝜋 ◦ 𝑠(𝛾) = 𝛾 for all 𝛾 ∈ Γ. Consider 𝑥 =
∑
𝑔∈𝐺 𝛼𝑔𝑔 for some finitely supported sequence

(𝛼𝑔)𝑔∈𝐺 . Then

𝜏(𝑥𝑥∗) =
∑

𝑎,𝑏∈𝐺
𝛼𝑎𝛼𝑏𝜏(𝑎𝑏−1) =

∑
𝑎,𝑏∈𝐺:𝜋 (𝑎)=𝜋 (𝑏)

𝛼𝑎𝛼𝑏𝜏(𝑎𝑏−1)

=
∑
𝛾∈Γ

∑
𝑎,𝑏∈𝐾 :

𝛼𝑎𝑠 (𝛾)𝛼𝑏𝑠 (𝛾)𝜏
(
𝑎𝑏−1

)
=

∑
𝛾∈Γ

𝜏
(
𝑦𝛾𝑦

∗
𝛾

)
≥ 0,

where we set for any 𝛾 ∈ Γ, 𝑦𝛾 =
∑
𝑎∈𝐾 𝛼𝑎𝑠 (𝛾)𝑎. �

When G is a group, let us denote by 𝜏𝑟𝑒𝑔𝐺 and 𝜏𝑡𝑟𝑖𝑣𝐺 the regular and the trivial states on (C[𝐺], 1𝐺 , ∗)
defined by

𝜏𝑟𝑒𝑔𝐺 (𝑔) =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝑔 = 1𝐺 ,

0 otherwise,
and 𝜏𝑡𝑟𝑖𝑣𝐺 (𝑔) = 1, ∀𝑔 ∈ 𝐺.

The following lemma is straightforward and gives states interpolating between regular representations
of G and 𝐾.

Lemma 6.2. Consider 𝐺, Γ, 𝜋 and K as in Lemma 6.1 and (𝜏𝑇 )𝑇 >0 a family of states on (C[𝐾], 1, ∗)
satisfying (63), such that for any 𝑘 ∈ 𝐾,

lim
𝑇→0

𝜏𝑇 (𝑘) = 𝜏𝑡𝑟𝑖𝑣𝐾 (𝑘) and lim
𝑇→∞

𝜏𝑇 (𝑘) = 𝜏𝑟𝑒𝑔𝐾 (𝑘). (64)

Then for any 𝑔 ∈ 𝐺,

lim
𝑇→0

𝜏𝑇 (𝑔) = 𝜏𝑟𝑒𝑔Γ ◦ 𝜋(𝑔) and lim
𝑇→∞

𝜏𝑇 (𝑔) = 𝜏𝑟𝑒𝑔𝐺 (𝑔).

Let us consider two examples of extensions of the surface group Γ𝑔.
Extensions to the free group of even rank: Consider the free group F2𝑔 in 2𝑔 generators

𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 and the morphism

𝜋 : F2𝑔 → Γ𝑔 = 〈𝑥1, 𝑦1 . . . , 𝑥𝑔, 𝑦𝑔 | [𝑥1, 𝑦1] . . . [𝑥𝑔, 𝑦𝑔]〉

with 𝜋(𝑎𝑖) = 𝑥𝑖 , 𝜋(𝑏𝑖) = 𝑦𝑖 , ∀𝑖 and 𝐾 = ker(𝜋). Identifying F2𝑔 with Γ1,𝑔, this morphism coincides
with Γ1,𝑔 → Γ𝑔 considered in 3 of Lemma 2.16, and accordingly, there is a right-inverse 𝑠 : Γ𝑔 → F2𝑔
such that K is free over

(𝑤𝛾)𝛾∈Γ𝑔 = (𝑠(𝛾) [𝑎1, 𝑏1] . . . [𝑎𝑔, 𝑏𝑔]𝑠(𝛾)−1)𝛾∈Γ𝑔 .

Assume that (𝜇𝑇 )𝑇 >0 is a family of measures on the unit circle such that for any integer 𝑛 ≠ 1,

lim
𝑇→0

∫
U

𝜔𝑛𝜇𝑇 (𝑑𝜔) = 1 and lim
𝑇→∞

∫
U

𝜔𝑛𝜇𝑇 (𝑑𝜔) = 0.

Denote by 1 ∈ F2𝑔 the empty word and consider the unique state 𝜏𝑇 on (C[𝐾], 1, ∗) such that under 𝜏𝑇 ,
(𝑤𝛾)𝛾∈Γ𝑔 are freely independent and identically distributed with distribution 𝜇𝑇 .

Proposition 6.3. For any 𝑔 ≥ 1, for all 𝑇 > 0, 𝜏𝑇 is a state on (C[F2𝑔], 1, ∗) with

lim
𝑇→0

𝜏𝑇 (𝑤) = 𝜏𝑟𝑒𝑔Γ𝑔 ◦ 𝜋(𝑤) and lim
𝑇→∞

𝜏𝑇 (𝑤) = 𝜏𝑟𝑒𝑔F2𝑔
◦ 𝜋(𝑤), ∀𝑤 ∈ F2𝑔 .
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Remark 6.4.

1. Mind that under 𝜏𝑟𝑒𝑔F2𝑔
, 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 are freely independent, whereas when 𝑔 = 1, under 𝜏𝑟𝑒𝑔

Z2 ,
𝑎1, 𝑏1 are classically independent. Hence, when 𝑔 = 1, (𝜏𝑇 )𝑇 >0 gives an interpolation between freely
and classically independent Haar unitaries.

2. Recall that when (𝜇𝑇 )𝑇 >0 is given by a free unitary Brownian motion, according to Lemma (3.10),
𝜏𝑇 can be identified with the restriction of the master field on G̃𝑔 where all polygon faces have area𝑇.

Proof. It is enough to prove that (𝜏𝑇 )𝑇 >0 satisfies the assumptions of Lemma 6.2. We shall only
prove (63) and leave the proof of the other conditions to the reader. According to Lemma 6.5, there
is a surjective group morphism 𝑝 : 𝑃 → F2𝑔, a state 𝜂𝑇 on (C[𝑃], 1, ∗) and a subgroup L such that
𝑝 : 𝐿 → 𝐾 is surjective with

𝜂𝑇 (ℓ) = 𝜏𝑇 ◦ 𝜋(ℓ), ∀ℓ ∈ 𝐿.

Hence, for any 𝑤 ∈ F2𝑔 and 𝑛 ∈ 𝐾, there are 𝛾 ∈ 𝑃, ℓ ∈ 𝐿 with 𝑝(𝛾) = 𝑤, 𝑝(ℓ) = 𝑛, and since 𝜂𝑇 is a
trace,

𝜏𝑇 (𝑤𝑛𝑤−1) = 𝜏𝑇 (𝑝(𝛾ℓ𝛾−1)) = 𝜂𝑇 (𝛾ℓ𝛾−1) = 𝜂𝑇 (ℓ) = 𝜏𝑇 (𝑛). �

Following the same convention as in Section 2.3, consider the covering map G̃𝑔 = (�̃� , �̃� , �̃�) of the
2g-bouquet map, G𝑔 = (𝑉, 𝐸, 𝐹), its 2𝑔 distinct edges 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔, a vertex 𝑟 ∈ �̃� , an orientation
�̃�+ of the edges of G̃𝑔, and the free group 𝑃 = F(𝐸+) over the �̃�+. When 𝑒 ∈ �̃�+, let us identify the
inverse of e in H with the edge 𝑒−1 of G̃ with reverse orientation. Denote by 𝑝 : 𝑃 → F2𝑔 the group
morphism mapping any edge 𝑒 ∈ �̃� to its projection 𝑝(𝑒) ∈ 𝐸. Note that we can identify any nontrivial
reduced path of (�̃� , �̃�) with a (strict) subset of P, and through this identification, the group of reduced
loops of (�̃� , �̃�) based at r is identified with a subgroup 𝐿𝑟 of P such that

𝑝 : 𝐿𝑟 → ker(𝜋) = 𝐾

is an isomorphism. Let us fix a spanning tree T of (�̃� , �̃�). As in Lemma 2.16, consider the associated
basis (𝜔𝑟

𝛾)𝛾∈Γ𝑔 of K and denote by (ℓ𝑟𝛾.𝑟 )𝛾∈Γ𝑔 its pre-image in 𝐿𝑟 . Let us recall another basis of 𝐿𝑟 .

Denote by 𝐸+(T ) the subset of edges of T in �̃�+. For any vertex 𝑣 ∈ �̃� , there is a unique reduced path
in T from r to v, and we identify it with an element [𝑟, 𝑣]T ∈ 𝑃. Then, setting for any 𝑒 ∈ �̃�+ \ 𝐸+(T ),

ℓ𝑟 ,𝑒 = [𝑟, 𝑣]T 𝑒[𝑟, 𝑣]−1
T

defines a free basis of 𝐿𝑟 indexed by �̃�+ \ T . It is easy to check that the family (ℓ𝑟 ,𝑒)𝑒∈𝐸+\T , (𝑒)𝑒∈𝐸+ (T )
forms a free basis of 𝑃. In particular, P is isomorphic to the free product

F(�̃�+) = F(𝐸+(𝑇)) ∗ 𝐿𝑟 .

Consider now freely independent unitary noncommutative random variables indexed by �̃�+, such that a
random variable of this family is Haar unitary if it is indexed by 𝐸+(T ) and is distributed according to
𝜇𝑇 otherwise. Denote by 𝜂𝑇 : C[F(𝐸+)] → C its noncommutative distribution. Since the distribution
of (𝑤𝛾)𝛾∈Γ𝑔 under 𝜏𝑇 is identical to the one of (ℓ𝛾.𝑟 )𝛾∈Γ𝑔 , the next lemma follows.

Lemma 6.5. For any𝑇 > 0, 𝜂𝑇 : C[F(𝐸)] → C is a state, the morphism 𝑝 : F(�̃�+) → F2𝑔 is surjective,
such that 𝑝 : 𝐿𝑟 → 𝐾 is an isomorphism with

𝜂𝑇 (ℓ) = 𝜏𝑇 (𝑝(ℓ)), ∀ℓ ∈ 𝐿𝑟 .
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Extension to the group of reduced loops: Consider a compact surface Σ and r a point of Σ. The
set L𝑟 (Σ) of Lipschitz49 loop of Σ based at r is a monoid with multiplication given by concatenation,
whose unit element is the constant loop at 𝑟. It can be turned into a group through the following quotient
[34, 43]. Following [43, Sect. 6.7], let us say that a loop ℓ ∈ L𝑟 (Σ) is a thin loop if it is homotopic a the
constant loop at r within its own range. For any pair ℓ, ℓ′ ∈ L𝑟 (Σ), let us define a binary relation setting
ℓ ∼ ℓ′ whenever ℓℓ−1 is a thin loop. Let us recall the following.
Theorem 6.6 [43].
1. The relation ∼ is an equivalence relation and RL𝑟 (Σ) = L𝑟 (Σ)/∼ is a group.
2. When Σ = R2 or D𝔥, the master field ΦΣ on Σ satisfies

(a) for any pair ℓ, ℓ′ ∈ L𝑟 (Σ),

ℓ ∼ ℓ′ ⇒ ΦΣ (ℓ) = ΦΣ (ℓ′) (65)

and

ΦΣ (ℓ) = 1 ⇒ ℓ ∼ 1. (66)

Setting ΦΣ (𝑙) = ΦΣ (ℓ) for any ℓ ∈ L𝑟 with quotient image 𝑙 ∈ RL𝑟 (Σ) defines by linear
extension a state ΦΣ on the group algebra (C[RL𝑟 (Σ)], 1, ∗).

(b) For any path 𝑎, 𝑏 ∈ P(Σ) with 𝑎 = 𝑏 and 𝑏 = 𝑎,

ΦΣ (𝑎𝑏) = ΦΣ (𝑏𝑎). (67)

Consider now a compact orientable Riemannian manifold Σ, its foundamental cover 𝑝 : Σ̃ → Σ, a
point 𝑟 of Σ̃ and 𝑟 = 𝑝(𝑟). It is elementary to check that the map

𝜋 : RL𝑟 (Σ) → 𝜋1 (Σ)

sending a based loop to its based-homotopy class is a group morphism and that its kernel is given by

𝐾 = 𝑝(RL𝑟 (Σ̃)).

For any 𝑙 ∈ 𝐾 , let 𝑙 ∈ RL𝑟 (Σ̃) be its unique lift starting at 𝑟.
Lemma 6.7. Setting

ΦΣ (𝑙) =
⎧⎪⎪⎨⎪⎪⎩
ΦΣ̃ (𝑙) if 𝜋(𝑙) = 1,

0 otherwise,
(68)

and extending ΦΣ linearly defines a unital state on (C[RL𝑟 (Σ)], 1, ∗).
Proof. Since ΦΣ̃ ◦ 𝑝−1 defines a state on (C[𝐾], 1, ∗), thanks to Lemma 6.1, it is enough to check (63).
The latter follows from (67) applied to ΦΣ̃ . �

6.2. Master field on the torus and t-freeness

Let us give here a proof of Corollary 1.12. For 𝑇 > 0, let us consider the two-dimensional torus T2
𝑇

obtained as the quotient R2/
√
𝑇Z2 endowed with the push-forward of the Euclidean metric, so that it has

total volume T. Denote by 𝛼 and 𝛽 the loop of T2
𝑇 obtained by projecting the segments from (0, 0) to,

respectively, (
√
𝑇, 0) and (0,

√
𝑇). Then, under YMΣ, the law (𝑎, 𝑏) on 𝐺2 is given by (13). Therefore,

for any word w in 𝛼, 𝛽, 𝛼−1, 𝛽−1 denoting by [𝑤] ∈ Z2 the signed number of occurrences of 𝛼 and 𝛽

49Recall the notation introduced in page 40.
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and by �̃�𝑤 the path of R2 starting from (0, 0) obtained by lifting the loop Σ formed by 𝑤, under YMΣ,
the following converge holds in probability as 𝑁 → ∞:

𝜏𝜌𝑁 (𝑤) →
⎧⎪⎪⎨⎪⎪⎩
ΦR2 (�̃�𝑤 ) if [𝛾𝑤 ] = 0

0 if [𝛾𝑤 ] ≠ 0.

The first statement of Corollary 1.12 follows considering the noncommutative distribution Φ𝑇 of 𝛼t
and 𝛽 under the limit of 𝜏𝜌𝑁 as 𝑁 → ∞.

On the one hand, for any word w with [𝑤] = 0, 𝛾𝑤 is a loop, and by continuity of the master field
(Point 1 of Theorem 3.9), Φ𝑇 (𝑤) = ΦR2 (𝛾𝑤 ) → 1 as 𝑇 → 0. On the other hand, for any word w
with [𝑤] ≠ 0, �̃�𝑤 is not a loop, [𝛾𝑤 ] ≠ 0, and for all 𝑇 > 0, Φ𝑇 (𝑤) = 0. Therefore, for any word in
𝛼, 𝛽, 𝛼−1, 𝛽−1, lim𝑇→0 Φ𝑇 (𝑤) = 𝜏𝑢 ★𝑐 𝜏𝑢 (𝑤), since

𝜏𝑢 ★𝑐 𝜏𝑢 (𝑤) =
⎧⎪⎪⎨⎪⎪⎩

1 if [𝑤] = 0,

0 otherwise.

Consider now the second limit of Corollary 1.12. When (G, 𝑎) is an area weighted map embedded
in R2 with v a vertex of G sent to 0 by the embedding, consider the state 𝜏𝑇 on (RL𝑣 (G), ∗) such
that 𝜏𝑇 (ℓ) = ΦR2 (ℓ𝑇 ), where ℓ is the drawing of ℓ, while ℓ𝑇 =

√
𝑇ℓ. Consider a free basis of lassos

ℓ1, . . . ℓ𝑟 of RL𝑣 (G), with meanders given by distinct faces of area 𝑎1, . . . , 𝑎𝑟 . Under 𝜏𝑇 , ℓ1, . . . , ℓ𝑟 are
r independent free unitary Brownian motion marginals at time

√
𝑇𝑎1, . . . ,

√
𝑇𝑎𝑟 . It follows easily from

its definition in moments that the free unitary Brownian motion at time s converges weakly towards a
Haar unitary as 𝑠 → ∞. Since 𝑎 ∈ Δ𝑜 (𝑇), (ℓ1, . . . , ℓ𝑟 ) converges weakly toward r freely independent
Haar unitary variables as 𝑇 → ∞. Therefore, for any reduced loop ℓ, lim𝑇→∞ 𝜏𝑇 (ℓ) = 1 if ℓ is the
constant loop and 0 otherwise. Now for any word w in 𝛼, 𝛽, 𝛼−1, 𝛽−1, with [𝑤] = 0, it follows that

lim
𝑇→∞

Φ𝑇 (𝑤) =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝛾𝑤 ∼𝑟 𝑐 with 𝑐 constant,

0 otherwise.

Since 𝛾𝑤 ∼𝑟 𝑐, where c is a constant loop if and only if w can be reduced to the empty word, it follows
that lim𝑇→∞ Φ𝑇 (𝑤) = 𝜏𝑢 ★ 𝜏𝑢 (𝑤).

Let us now recall a way introduced in [5] to compute the evaluation of 𝜏A★𝑡𝜏B given 𝜏A and 𝜏B, solving
systems of ODEs in the parameter t and present an argument for (14). Let us say that a noncommutative
monomial P in (𝑋1,𝑖)𝑖∈𝐼 , (𝑋2, 𝑗 ) 𝑗∈𝐼 is alternated if it is of the form 𝑋𝜀1 ,𝑖1 𝑋𝜀2 ,𝑖2 . . . 𝑋𝜀𝑛 ,𝑖𝑛 with 𝜀𝑘 ≠ 𝜀𝑘+1
for all 1 ≤ 𝑘 < 𝑛. Denote by 𝑑𝑋2 is degree in the variables (𝑋2, 𝑗 )𝑖∈𝐼 . For such a monomial, let us set

Δ𝑎𝑑 .𝑃 = −
𝑑𝑋2 (𝑃)

2
(𝑃 ⊗ 1 + 1 ⊗ 𝑃) +

∑
𝑄1 ,𝑄2 ,𝑖

𝑋2,𝑖 ⊗ 𝑄1𝑄2,

−
∑

𝑃1,1 ,𝑃1,2 ,𝑃2 ,𝑖, 𝑗

[
𝑋2,𝑖𝑃2 ⊗ (𝑃1,1𝑋2, 𝑗𝑃1,2) + (𝑃1,1𝑋2,𝑖𝑃1,2) ⊗ 𝑃2𝑋2, 𝑗

− (𝑃1,1𝑃1,2) ⊗ (𝑋2,𝑖𝑃2𝑋2, 𝑗 ) − (𝑃1,1𝑋2,𝑖𝑋2, 𝑗𝑃1,2) ⊗ 𝑃2
]
,

where the first sum is over all monomials 𝑄1, 𝑄2 and 𝑖 ∈ 𝐼 such that 𝑃 = 𝑄1𝑋2,𝑖𝑄2, while the second is
over all monomials 𝑃1,1, 𝑃1,2, 𝑃2 and 𝑖, 𝑗 ∈ 𝐼 such that 𝑃 = 𝑃1,1𝑋2,𝑖𝑃2𝑋2, 𝑗𝑃1,2. With these notations,
Theorem 3.4 of [5] states that for all alternated noncommutative monomial P in (𝑋1,𝑖)𝑖∈𝐼 , (𝑋2, 𝑗 ) 𝑗∈𝐼 ,
𝜏A ★𝑡 𝜏B (𝑃) is differentiable with

𝜕𝑡𝜏A ★𝑡 𝜏B (𝑃) = (𝜏A ★𝑡 𝜏B)⊗2(Δ𝑎𝑑 .𝑃), ∀𝑡 ≥ 0.
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For instance, assume that for all 𝑡 ≥ 0, (𝑎, 𝑏) is a t-free couple within a noncommutative probability
space (C, 𝜏𝑡 ), such that a and b are Haar unitaries for all 𝑡 > 0. Then for any 𝑛 ≥ 1,

𝜕𝑡𝜏𝑡 (𝑎𝑏𝑛) = −𝜏𝑡 (𝑎𝑏𝑛) + 𝜏(𝑎)𝜏𝑡 (𝑏𝑛) = −𝜏𝑡 (𝑎𝑏𝑛), ∀𝑡 ≥ 0,

and since 𝜏0 (𝑎𝑏𝑛) = 𝜏0(𝑎)𝜏0(𝑏𝑛) = 0,

𝜏𝑡 (𝑎𝑏𝑛) = 0.

Likewise, up to algebraic manipulations,

𝜕𝑡𝜏𝑡 (𝑎𝑏𝑛𝑎∗(𝑏∗)𝑛) = −2𝜏𝑡 (𝑎𝑏𝑛𝑎∗(𝑏∗)𝑛).

Since 𝜏0(𝑎𝑏𝑛𝑎∗(𝑏∗)𝑛) = 𝜏0(𝑎𝑎∗)𝜏0(𝑏𝑛 (𝑏∗)𝑛) = 1, this implies

𝜏𝑡 (𝑎𝑏𝑛𝑎∗(𝑏∗)𝑛) = 𝑒−2𝑡 . (69)

A similar argument together with (12) implies the following lemma.

Lemma 6.8.

1. For any word w in 𝑎, 𝑏, 𝑎−1, 𝑏−1, if [𝑤] ≠ 0,

𝜏𝑡 (𝑤) = 0.

2. For any 𝑛 ≥ 1,

𝜕𝑡𝜏𝑡 ([𝑎, 𝑏]𝑛) = −2𝑛𝜏𝑡 ([𝑎, 𝑏]𝑛) − 2𝑛
𝑛−1∑
𝑘=1

𝜏𝑡 ([𝑎, 𝑏]𝑘 )𝜏([𝑎, 𝑏]𝑛−𝑘 ).

3. For any 𝑛 ∈ Z and 𝑡 ≥ 0,

𝜏𝑡 ([𝑎, 𝑏]𝑛) = 𝜈4𝑡 (|𝑛|).

The last equality of Corollary 1.12 follows from the last point of the above Lemma. Besides, for any
𝑡 > 0, 𝑇 > 0

𝜏𝑢 ★𝑡 𝜏𝑢 (𝑋𝑌𝑋∗𝑌 ∗) = 𝑒−2𝑡 and Φ𝑇 (𝑋𝑌𝑋∗𝑌 ∗) = 𝑒−𝑇2 ,

so that if 𝜏𝑢 ★𝑡 𝜏𝑢 = Φ𝑇 , then 𝑇 = 4𝑡. But (69) implies 𝜏𝑢 ★𝑡 𝜏𝑢 (𝑋𝑌2𝑋∗𝑌−2) = 𝑒−2𝑡 > 𝑒−4𝑡 =
Φ4𝑡 (𝑋𝑌2𝑋∗𝑌−2). Therefore, for all 𝑡, 𝑇 > 0, Φ𝑇 ≠ 𝜏𝑢 ★𝑡 𝜏𝑢 .

7. Appendix

7.1. Casimir element and trace formulas

Let us recall some tensor identities instrumental to prove Makeenko–Migdal relations.

Definition 7.1. Consider a Lie algebra 𝔤 endowed with an inner product 〈·, ·〉. The Casimir element of
(𝔤, 〈·, ·〉) is the tensor 𝐶𝔤 ∈ M𝑑 (C) ⊗R M𝑑 (C) defined by

𝐶𝔤 =
∑
𝑋 ∈B

𝑋 ⊗ 𝑋, (70)

where B is an orthonormal basis of 𝔤 for the inner product 〈·, ·〉.
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It is simple to check that the definition of the Casimir element does not depend on the choice of the
basis but only on the inner product 〈·, ·〉. We focus on the setting recalled in Section 3.1; we consider the
Lie algebra 𝔤𝑁 of a compact classical group 𝐺𝑁 with the inner product (1) considered in [20, Section
2.1.]. We set the value 𝛽 to be, respectively, 1 and 4 when 𝐺𝑁 is 𝑂 (𝑁) and 𝑆𝑝(𝑁) and 2 otherwise –
that is, when 𝐺𝑁 is 𝑆𝑈 (𝑁) or 𝑈 (𝑁). We set 𝛾 = 1 when 𝐺𝑁 = 𝑆𝑈 (𝑁) and 0 otherwise.

Most of the following results can be proved by a direct computation using an arbitrary chosen basis.
For any (𝑎, 𝑏) ∈ {1, . . . , 𝑁}2, the elementary matrix 𝐸𝑎𝑏 ∈ M𝑁 (R) is defined by (𝐸𝑎𝑏)𝑖 𝑗 = 𝛿𝑎𝑖𝛿𝑏 𝑗 .

We shall need the following standard result on the Casimir element in this setting, which gives
computation rules for traces of products and product of traces involving elements of B.

Lemma 7.2. For any 𝐴, 𝐵 ∈ 𝐺𝑁 we have∑
𝑋 ∈B

tr(𝐴𝑋𝐵𝑋) = −tr(𝐴)tr(𝐵) − 𝛽 − 2
𝛽𝑁

tr(𝐴𝐵−1) + 𝛾

𝑁2 tr(𝐴𝐵) (71)

and ∑
𝑋 ∈B

tr(𝐴𝑋)tr(𝐵𝑋) = −tr(𝐴𝐵) − 𝛽 − 2
𝛽𝑁

tr(𝐴𝐵−1) + 𝛾tr(𝐴)tr(𝐵). (72)

Proof. We only sketch the proof in order to show where the expressions come from. First of all, remark
that by linearity they only need to be proved for 𝐴 = 𝐸𝑖 𝑗 and 𝐵 = 𝐸𝑘ℓ . We have, for instance,∑

𝑋 ∈B
tr(𝐴𝑋𝐵𝑋) = 1

𝑁

∑
𝑋 ∈B

∑
𝑎,𝑏,𝑐,𝑑

𝐴𝑎𝑏𝑋𝑏𝑐𝐵𝑐𝑑𝑋𝑑𝑎 =
1
𝑁

(𝐶𝔤) 𝑗𝑘ℓ𝑖 ,

where we have set (∑
𝑖

𝑋 𝑖 ⊗ 𝑌 𝑖

)
𝑎𝑏𝑐𝑑

=
∑
𝑖

𝑋 𝑖
𝑎𝑏𝑌

𝑖
𝑐𝑑 .

Using the expression of 𝐶𝔤 for each value of 𝔤 leads to Equation (71). By similar computations, we also
obtain Equation (72). �

In the unitary case, the formulas in Lemma 7.2 are known as the ‘magic formulas’, as stated in
[25] for instance, and appeared already in [59]; they are crucial to the derivation of Makeenko–Migdal
equations for Wilson loops that we briefly recall in the next section. Although we do not detail it, there
exists a beautiful interpretation of Lemma 7.2 in terms of Schur–Weyl duality; the interested reader can
refer to [41] or [19] for an explanation and discussion of this fact and to [43, Chap. I, Section 1.2] about
the above Lemma.

7.2. Makeenko–Migdal equations

Given a topological map G of genus g with m edges, a vertex of G will be said to be an admissible
crossing if it possesses four outgoing edges labelled 𝑒1, 𝑒2, 𝑒3, 𝑒4 counterclockwise.

Definition 7.3. Let G be map of genus g with m edges, and v be an admissible crossing. A function
𝑓 : 𝐺𝑚 → C has an extended gauge invariance at v if for any 𝑥 ∈ 𝐺,

𝑓 (𝑎1, 𝑎2, 𝑎3, 𝑎4, b) = 𝑓 (𝑎1𝑥, 𝑎2, 𝑎3𝑥, 𝑎4, b) = 𝑓 (𝑎1, 𝑎2𝑥, 𝑎3, 𝑎4𝑥, b), (73)

where 𝑎𝑖 denotes the variable associated to the edge 𝑒𝑖 and b denotes the tuple of other edge variables
than 𝑒1, 𝑒2, 𝑒3, 𝑒4.
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The extended gauge-invariance was first introduced by Lévy in [42] to prove Makeenko–Migdal
equations in the plane, then used in [26] to give alternative, local proofs of these equations, which
allowed in [25] to prove their validity on any surface; these last equations were then applied in [21, 33].

Theorem 7.4 (Abstract Makeenko–Migdal equations). Let (G, 𝑎) be an area weighted map of area T
and genus g with m edges, and 𝑓 : 𝐺𝑚 → C be a function with extended gauge invariance at an
admissible crossing v. Denote by 𝑓1 (resp. 𝑓2, 𝑓3, 𝑓4) the face of G whose boundary contains (𝑒1, 𝑒2)
(resp. (𝑒2, 𝑒3), (𝑒3, 𝑒4), (𝑒4, 𝑒1)). Denote by 𝑡𝑖 the area of the face 𝑓𝑖 , choose an orthonormal basis B
of 𝔤 with respect to the chosen inner product, and set

(∇𝑎1 · ∇𝑎2 𝑓 ) (𝑎1, 𝑎2, 𝑎3, 𝑎4, b) =
∑
𝑋 ∈B

𝜕2

𝜕𝑠𝜕𝑡
𝑓 (𝑎1𝑒

𝑠𝑋 , 𝑎2𝑒
𝑡𝑋 , 𝑎3, 𝑎4, b)

��
𝑠=𝑡=0.

We have (
𝜕

𝜕𝑡1
− 𝜕

𝜕𝑡2
+ 𝜕

𝜕𝑡3
− 𝜕

𝜕𝑡4

) ∫
𝐺𝑚

𝑓 𝑑𝜇 = −
∫
𝐺𝑚

∇𝑎1 · ∇𝑎2 𝑓 𝑑𝜇. (74)

Equation (74) might be confusing, as it involves partial derivatives with respect to variables that do
not appear explicitly in the function

∫
𝐺𝑚

𝑓 𝑑𝜇; it becomes, in fact, clearer after being translated in terms
of the area simplex. We define the differential operator 𝜇𝑣 on functions ΔG(𝑇) → C by

𝜇𝑣 =
𝜕

𝜕𝑎1
− 𝜕

𝜕𝑎2
+ 𝜕

𝜕𝑎3
− 𝜕

𝜕𝑎4
,

using the labelling of 𝑎 = (𝑎1, . . . , 𝑎𝑝) ∈ ΔG(𝑇) such that 𝑎𝑖 corresponds to the face 𝑓𝑖 . Equation (74)
becomes then

𝜇𝑣E( 𝑓 ) = −E(∇𝑎1 · ∇𝑎2 𝑓 ),

and now everything only depends on the areas of the faces. We want to apply these abstract Makeenko–
Migdal equations to functionals of Wilson loops in order to obtain the convergence to the master field.
We define, for k unrooted loops ℓ1, . . . , ℓ𝑘 ∈ L𝑐 (G), the k-point function 𝜙𝐺ℓ1 ,...,ℓ𝑘

: ΔG(𝑇) → C by

𝜙𝐺ℓ1 ⊗...⊗ℓ𝑘 = E(𝑊ℓ1 · · ·𝑊ℓ𝑘 ).

and extend it linearly to C[L𝑐 (G)] ⊗𝑘 . The following proposition offers an estimate of the face-area
variation of the functions 𝜙𝐺ℓ1 ⊗...⊗ℓ𝑘 .

Proposition 7.5 (Makeenko–Migdal equations for Wilson loops). Assume that 𝐺𝑁 is a compact clas-
sical group and 〈·, ·〉 is fixed as in Section 3.1. Let (G, 𝑎) be a weighted map of area T and genus g with
m edges, and v be an admissible crossing in G.

1. If v is a self-intersection of a single loop ℓ1 such that the edges (𝑒±1
𝑗 , 1 ≤ 𝑗 ≤ 4) are visited in the

following order: 𝑒1, 𝑒
−1
4 , 𝑒2, 𝑒

−1
3 , then define ℓ11 the sub-loop of ℓ1 starting at 𝑒1 and finishing at 𝑒−1

4 ,
ℓ12 the subloop starting at 𝑒2 and finishing at 𝑒−1

3 . We have, for any loops ℓ2, . . . , ℓ𝑘 that do not
cross v,

𝜇𝑣𝜙
𝐺
ℓ1 ⊗...⊗ℓ𝑘 = 𝜙𝐺ℓ11 ⊗ℓ12 ⊗ℓ2 ⊗...⊗ℓ𝑘 + 𝛽 − 2

𝛽𝑁
𝜙𝐺
ℓ11ℓ

−1
12 ⊗ℓ2 ⊗...⊗ℓ𝑘

− 𝛾

𝑁2 𝜙ℓ1 ⊗...⊗ℓ𝑘 , (75)

𝜇𝑣𝜙
𝐺
ℓ1 ⊗ℓ−1

1
= 𝜙𝐺

ℓ11 ⊗ℓ12 ⊗ℓ−1
1

+ 𝜙𝐺
ℓ1 ⊗ℓ−1

11 ⊗ℓ−1
12

+
𝑅ℓ1

𝑁
, (76)

where the |𝑅ℓ1 | ≤ 10 uniformly on ΔG(𝑇).
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2. If v is the intersection between two loops ℓ1 and ℓ2 such that ℓ1 starts at 𝑒1 and finishes at 𝑒−1
3 , and

ℓ2 starts at 𝑒2 and finishes at 𝑒−1
4 , then define ℓ the loop obtained by concatenation of ℓ1 and ℓ2. We

have, for any loops ℓ3, . . . , ℓ𝑘 that do not cross v,

𝜇𝑣𝜙
𝐺
ℓ1 ⊗ℓ2 ⊗...⊗ℓ𝑘 =

𝑅ℓ1 ⊗ℓ2 ⊗...⊗ℓ𝑘
𝑁2 (77)

with |𝑅ℓ1 ⊗ℓ2 ⊗...⊗ℓ𝑘 | ≤ 3 uniformly on ΔG(𝑇).

It was proved for all classical Lie algebras if G is a planar combinatorial graph by Lévy in [43, Prop.
6.16] when the loops form what he called a skein. If G is a map of genus 0 and 𝔤 is the Lie algebra of
U(𝑁), this result was proved by the first author with Norris in [21, Prop. 4.3]. See also [26, Thm. 1.1]

Proof of Proposition 7.5. Let us start with the first case, which is when v is a self-intersection of a loop
ℓ1. We take 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒

′
1, . . . , 𝑒

′
𝑚−4} as an orientation of E, with 𝑒1, 𝑒2, 𝑒3, 𝑒4 the four outgoing

edges from v. We identify any multiplicative function ℎ ∈ M(𝑃(G), 𝐺) to a tuple (𝑎1, 𝑎2, 𝑎3, 𝑎4, b)
by setting 𝑎𝑖 = ℎ𝑒𝑖 and b = (ℎ𝑒′𝑖 )1≤𝑖≤𝑚−4 the tuple of all other images of edges by h. There are words
𝛼, 𝛽, 𝑤2, . . . , 𝑤𝑘 in the elements of b such that

ℎℓ1 = 𝑎−1
3 𝛼𝑎2𝑎

−1
4 𝛽𝑎1, ℎℓ𝑖 = 𝑤𝑖 ∀2 ≤ 𝑖 ≤ 𝑘.

It appears that 𝜙𝐺ℓ1 ,...,ℓ𝑘
= 𝐸 ( 𝑓 ), where f is the extended gauge-invariant function

𝑓 :
{

𝐺𝑚 → C

(𝑎1, 𝑎2, 𝑎3, 𝑎4, b) ↦→ tr(𝑎−1
3 𝛼𝑎2𝑎

−1
4 𝛽𝑎1)tr(𝑤2) · · · tr(𝑤𝑘 ).

Then, by the abstract Makeenko–Migdal equation (74), we get

𝜇𝑣E( 𝑓 ) = −E(∇𝑎1 · ∇𝑎2 𝑓 ),

and by definition,

∇𝑎1 · ∇𝑎2 𝑓 =

(∑
𝑋

tr(𝑎−1
3 𝛼𝑎2𝑋𝑎−1

4 𝛽𝑎1𝑋)
)
tr(𝑤2) · · · tr(𝑤𝑘 ),

where X runs through an orthonormal basis of 𝔤. A straightforward application of (71) from Lemma 7.2
yields (75), by noticing that ℎℓ11 = 𝑎−1

4 𝛽𝑎1 and ℎℓ12 = 𝑎−1
3 𝛼𝑎2.

Similarly, we have 𝜙𝐺
ℓ,ℓ−1 = 𝐸 ( 𝑓 ′), where

𝑓 ′ :
{

𝐺𝑚 → C

(𝑎1, 𝑎2, 𝑎3, 𝑎4, b) ↦→ tr(𝑎−1
3 𝛼𝑎2𝑎

−1
4 𝛽𝑎1)tr(𝑎−1

1 𝛽−1𝑎4𝑎
−1
2 𝛼−1𝑎3).

We have

∇𝑎1 · ∇𝑎2 𝑓 ′ =
∑
𝑋

{
tr(𝑎−1

3 𝛼𝑎2𝑋𝑎−1
4 𝛽𝑎1𝑋)tr(𝑎−1

1 𝛽−1𝑎4𝑎
−1
2 𝛼−1𝑎3)

− tr(𝑎−1
3 𝛼𝑎2𝑎

−1
4 𝛽𝑎1𝑋)tr(𝑎−1

1 𝛽−1𝑎4𝑋𝑎−1
2 𝛼−1𝑎3)

− tr(𝑎−1
3 𝛼𝑎2𝑋𝑎−1

4 𝛽𝑎1)tr(𝑋𝑎−1
1 𝛽−1𝑎4𝑎

−1
2 𝛼−1𝑎3)

+ tr(𝑎−1
3 𝛼𝑎2𝑎

−1
4 𝛽𝑎1)tr(𝑋𝑎−1

1 𝛽−1𝑎4𝑋𝑎−1
2 𝛼−1𝑎3)

}
,

and a simultaneous application of (71) and (72) leads to the result. We detail the case of SU(𝑁) and
leave the others as an exercise: if we set 𝐴 = ℎℓ11 and 𝐵 = ℎℓ12 , then
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∑
tr(𝐴𝑋𝐵𝑋)tr(𝐵−1𝐴−1) = −tr(𝐴)tr(𝐵)tr((𝐴𝐵)−1) + 1

𝑁
tr(𝐴𝐵)tr((𝐴𝐵)−1)∑

tr(𝐴𝐵𝑋)tr(𝐵−1𝑋𝐴−1) = − 1
𝑁2 tr([𝐴, 𝐵]) + 1

𝑁
tr(𝐴𝐵)tr(𝐴−1𝐵−1)∑

tr(𝐴𝑋𝐵)tr(𝑋𝐵−1𝐴−1) = − 1
𝑁2 tr([𝐴, 𝐵]−1) + 1

𝑁
tr(𝐵𝐴)tr(𝐵−1𝐴−1)∑

tr(𝐴𝐵)tr(𝑋𝐵−1𝑋𝐴−1) = −tr(𝐴−1)tr(𝐵−1)tr((𝐴𝐵)) + 1
𝑁

tr(𝐴𝐵)tr(𝐴−1𝐵−1),

where all sums are over X in the orthonormal basis. We can then take the expectation of the alternated
sum of these expressions, and as all traces are bounded by 1 because they apply to special unitary
matrices, we find that all terms with a coefficient 1

𝑁 or 1
𝑁 2 fall into 𝑂

( 1
𝑁

)
which does not depend on

any loop,50 so that

𝜙SU(𝑁 )
ℓ1 ⊗ℓ−1

1
= 𝜙SU(𝑁 )

ℓ11 ⊗ℓ12 ⊗(ℓ11ℓ12)−1 + 𝜙SU(𝑁 )
ℓ−1

11 ⊗ℓ−1
12 ⊗(ℓ11ℓ12)

+ 𝑂
( 1
𝑁

)
.

Let us now turn to the second case, when v is the intersection of ℓ1 and ℓ2. We take 𝐸 =
{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒

′
1, . . . , 𝑒

′
𝑚−4} as an orientation of E, with 𝑒1, 𝑒2, 𝑒3, 𝑒4 the four outgoing edges from

v. There are words 𝛼, 𝛽, 𝑤2, . . . , 𝑤𝑘 in the elements of b such that

ℎℓ1 = 𝑎−1
3 𝛼𝑎1, ℎℓ2 = 𝑎−1

4 𝛼𝑎2, ℎℓ𝑖 = 𝑤𝑖 ∀3 ≤ 𝑖 ≤ 𝑘.

We have 𝜙𝐺ℓ1 ,...,ℓ𝑘
= 𝐸 ( 𝑓 ), where f is the extended gauge-invariant function

𝑓 :
{

𝐺𝑚 → C

(𝑎1, 𝑎2, 𝑎3, 𝑎4, b) ↦→ tr(𝑎−1
3 𝛼𝑎1)tr(𝑎−1

4 𝛽𝑎2)tr(𝑤2) · · · tr(𝑤𝑘 ),

then

𝜇𝑣𝐸 ( 𝑓 ) = −𝐸 (∇𝑎1 · ∇𝑎2 𝑓 ),

where

∇𝑎1 · ∇𝑎2 𝑓 =

(∑
𝑋

tr(𝑎−1
3 𝛼𝑎1)tr(𝑋𝑎−1

4 𝛽𝑎2𝑋)
)
tr(𝑤2) · · · tr(𝑤𝑘 ).

The result follows then from (72). �

By letting 𝑁 → ∞ in Proposition 7.5, one immediately gets the following.

Corollary 7.6 (Makeenko–Migdal equations for a master field). Assume for some some sequence (𝐺𝑁 )𝑁
of compact classical groups, we have for all maps G of genus 𝑔 ≥ 1 and ℓ ∈ L(G), lim𝑁→∞ Φ𝐺𝑁

ℓ and
lim𝑁→∞ Φ𝐺𝑁

ℓ⊗ℓ−1 = |Φℓ |2 uniformly on ΔG(𝑇). Then Φ defines an exact solution of the Makeenko–
Migdal solution as defined in Section 3.5.

To address uniqueness questions, it is convenient to work with centered Wilson loops. Define, for any
ℓ1, . . . , ℓ𝑘 in an area-weighted graph (G, 𝑎),

𝜓𝐺
ℓ1 ⊗...⊗ℓ𝑘 = E

[
𝑘∏
𝑖=1

(𝑊ℓ𝑖 −Φℓ𝑖 )
]
.

50We add up a finite number of terms, 6 to be precise, which are bounded by 1
𝑁 , so their sum is bounded by 6

𝑁 which is indeed
independent from the loops or the face-area vector.
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Proposition 7.7 (Makeenko–Migdal equations for centered Wilson loops). Assume 𝑔 ≥ 0, 𝑇 > 0,
ℓ ∈ 𝔏𝑔, 𝑣 ∈ 𝑉ℓ with 𝛿𝑣ℓ = ℓ1 ⊗ ℓ2. Then for any compact classical group 𝐺𝑁 ,

𝜇𝑣𝜓
𝐺
ℓ⊗ℓ−1 = 𝜓𝐺

ℓ1 ⊗ℓ2 ⊗ℓ−1 + 𝜓𝐺
ℓ−1

1 ⊗ℓ−1
2 ,ℓ

+ 𝜓𝐺
ℓ1 ⊗ℓ−1Φℓ2 + 𝜓𝐺

ℓ−1
1 ⊗ℓΦℓ−1

2

+ 𝜓𝐺
ℓ2 ⊗ℓ−1Φℓ1 + 𝜓ℓ−1

2 ⊗ℓΦℓ−1
1

+ 𝑅ℓ
𝑁

,
(78)

where the |𝑅ℓ | ≤ 10 uniformly on ΔG(𝑇). There is a constant 𝐶ℓ independent of 𝐺, such that for all
𝑋 ∈ 𝔪ℓ ,

𝜇𝑣𝜓
𝐺
ℓ⊗ℓ−1 = 𝜓𝛿𝑋 (ℓ) ⊗ℓ−1 + 𝜓𝐺

ℓ, 𝛿𝑋 (ℓ−1) + 𝜓ℓ1 ⊗ℓ−1Φℓ2 + 𝜓ℓ−1
1 ⊗ℓΦℓ−1

2

+ 𝜓𝐺
ℓ2 ⊗ℓ−1Φℓ1 + 𝜓ℓ−1

2 ⊗ℓΦℓ−1
1

+ 𝑅ℓ
𝑁

,

with |𝑅ℓ | ≤ 10 uniformly on ΔG(𝑇).
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