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We present results of three-dimensional direct numerical simulations of turbulent
Rayleigh–Bénard convection of dilute polymeric solutions for Rayleigh number (Ra)
ranging from 106 to 1010, and Prandtl number Pr = 4.3. The viscoelastic flow is
simulated by solving the incompressible Navier–Stokes equations under the Boussinesq
approximation coupled with the finitely extensible nonlinear elastic Peterlin constitutive
model. The Weissenberg number (Wi) is either Wi = 5 or Wi = 10, with the maximum
chain extensibility parameter L = 50, corresponding to moderate fluid elasticity. Our
results demonstrate that both heat transport and momentum transport are reduced by the
presence of polymer additives in the studied parameter range. Remarkably, the specific
parameters used in the current numerical study give similar heat transfer reduction values
as observed in experiments. We demonstrate that polymers have different effects in
different regions of the flow. The presence of polymers stabilises the boundary layer,
which is found to be the primary cause of the overall heat transfer reduction. In the bulk
region, the presence of polymers slows down the flow by increasing the effective viscosity,
enhances the coherency of thermal plumes, and suppresses the small-scale turbulent
fluctuations. For small Ra, the heat transfer reduction in the bulk region is associated
with plume velocity reduction, while for larger Ra, it is caused by the competing effects
of suppressed turbulent fluctuations and enhanced plume coherency.
Key words: Bénard convection, turbulence simulation, viscoelasticity

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1014 A22-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
28

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0001-7904-1320
https://orcid.org/0009-0008-9261-1701
https://orcid.org/0000-0002-4346-4732
https://orcid.org/0000-0002-9341-0345
https://orcid.org/0000-0002-6773-6464
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.10286&domain=pdf
https://doi.org/10.1017/jfm.2025.10286


C. Xu, C. Zhang, L. Brandt, J. Song and O. Shishkina

1. Introduction
It is well-known that adding a small amount of polymer additives in turbulent flows can
lead to a significant drag reduction (Toms 1948). Extensive studies have been performed
to address this phenomenon in wall-bounded flows through theoretical, experimental and
numerical approaches (Procaccia, L’vov & Benzi 2008; White & Mungal 2008). However,
the effects of polymer additives on heat transport in turbulent thermal convection remain
less understood despite many processes involving heat transfer in nature, e.g. in oils, melts
and molten magma, as well as those prevalent in industrial processes such as polymer
solutions and emulsions, concerning non-Newtonian flows (Denn 2004). These flows
exhibit distinctive rheological properties, like viscoelasticity, plasticity, shear thinning
and shear thickening. Among them, the viscoelastic behaviour of non-Newtonian fluids
determines surprising and complex rheological properties and flow dynamics, which
can lead to different unexpected fluid-flow phenomena, such as elasto-inertial turbulence
(Samanta et al. 2013; Li, Sureshkumar & Khomami 2015; Sid, Terrapon & Dubief 2018;
Song et al. 2021; Dubief, Terrapon & Hof 2023) and elastic turbulence (Groisman &
Steinberg 2000; Steinberg 2021; Datta et al. 2022; Song et al. 2022, 2023a,b). Therefore,
studying the thermal convection in viscoelastic fluids can deepen our understanding of
the interplay between the fluid viscoelasticity and convective processes. Such insights are
crucial for various applications, ranging from geophysical and astrophysical phenomena
such as mantle convection, to industrial processes such as polymer processing and thermal
management systems.

As a canonical system to study thermal convection, Rayleigh–Bénard (RB) convection
of Newtonian fluids has been studied extensively over the past decades (Bodenschatz,
Pesch & Ahlers 2000; Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà &
Schumacher 2012; Xia 2013; Shishkina 2021; Lohse & Shishkina 2024). In RB convection,
the flow is driven by buoyancy forces due to the temperature difference Δ between a
hot bottom plate and a cold top plate. The main dimensionless control parameters in
RB convection are the Rayleigh number Ra, Prandtl number Pr , and aspect ratio of the
container Γ , defined as

Ra = gα�H 3

κν
, Pr = ν

κ
, Γ = D

H
. (1.1)

Here, g denotes the gravitational acceleration, α the thermal expansion coefficient, ν the
kinematic viscosity, and κ the thermal diffusivity, and H and D are the height and width
of the container, respectively. Studies of this system have focused mainly on: (i) the flow
structures, identifying kinetic and thermal boundary layers (BLs), and an approximately
homogeneous bulk flow (Grossmann & Lohse 2000; Ahlers et al. 2009); and (ii) the
dependence of the global heat transport, quantified by the Nusselt number Nu, and
momentum transport, characterised by the Reynolds number Re, on the different control
parameters mentioned above. The Nusselt number is defined as the ratio of the total heat
flux in the flow to the molecular heat conduction, which for an incompressible flow is

Nu = 〈uzθ〉A,t − κ ∂z 〈θ〉A,t

κΔ/H
. (1.2)

Here, uz is the vertical velocity, and θ is the temperature, while 〈· · · 〉A,t denotes the
horizontal-plane and time average at any distance between the heated and cooled plates.

As regards complex fluids, some studies also considered RB convection of viscoelastic
fluids, focusing on the effects of fluid elasticity on two critical Rayleigh numbers: Rac1 for
the transition from conduction to convective flow, and Rac2 for the onset of chaotic flows
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Experiments

Ra Pr c (ppm) Effect
Ahlers & Nikolaenko (2010) 5 × 109 ∼ 1011 4.38 0∼120 HTR
Wei et al. (2012) ∼ 109 4.34 0∼180 HTR in smooth cell,

HTE in rough cell
Xie et al. (2015) 6.18 × 109 4.3 0∼180 HTE for large c in rough cell,

HTR for small c in rough cell
Cai et al. (2019) ∼ 109 5.43 0∼400 HTR
Xu et al. (2025) 5 × 108 ∼ 7 × 109 4.34 0∼20 HTR

Simulations

Ra Pr β Wi Effect
Benzi et al. (2010)
(homogeneous)

1011 ∼ 1013 1 [0,100] HTE for Wi � 1,

HTR for Wi > 1
Benzi et al. (2016a) 2.07 × 105 7 0.9 [0,50] HTE
Cheng et al. (2017) 108 0.7 0.9 [0,10] HTR
Dubief & Terrapon (2020) 105 7 0.9 [0,45] HTE for small L ,

HTR for larger L
Wang et al. (2023) 0 ∼ 105 7 0.9 [0,50] HTR,

HTE for specific cases

Table 1. Parameters in previous studies of turbulent RB convection with polymer additives. The fourth
column gives the polymer concentration c in the experiments or the viscosity ratio β in the simulations. The
Weissenberg number Wi is given only for simulations (except for Benzi et al. (2010), which defines Wi using
the r.m.s. velocity and a large length scale of the flow in the absence of polymers, other data are adapted
to the same definition using the free-fall velocity and domain height), since to measure it in experiments is
challenging. In the last column, HTE means heat transfer enhancement, HTR means heat transfer reduction,
and L is the extensibility parameter. Here, we provide only a list of literature specifically discussing the
modification of the heat transfer in turbulent RB convection with polymers, while omitting numerous studies
focused on pattern formation, onset of convection and other issues.

from stationary conditions. Moreover, pattern formations at small and moderate Ra have
been studied through linear (Green 1968; Vest & Arpaci 1969; Sokolov & Tanner 1972) or
nonlinear stability analysis (Park & Ryu 2001), or via numerical simulations (Wang et al.
2023; Zheng et al. 2023).

The effect of polymer additives on turbulent RB convection has received attention only
in recent years. Table 1 lists the studies of turbulent RB convection with polymer additives,
and the corresponding range of parameters examined. Here, the Weissenberg number Wi ,
which is commonly used in viscoelastic flow to quantify the elastic effects of polymer
solutions, is defined as

Wi = λU
H

, (1.3)

where λ is the relaxation time scale of the polymers, and U is the relevant flow velocity.
In terms of experimental studies, Ahlers & Nikolaenko (2010) did the first experiments at
Ra spanning from 5 × 109 to 1011 to investigate the turbulent heat transport modifications
by polymers. They found heat transport reduction (HTR), and that HTR amount increases
with polymer concentration c up to 10 %. Later, RB convection with polyethylene oxide
(PEO) solutions was studied for Ra ∼ 109 and Pr ≈ 4.34 for both smooth and rough plates
(Wei, Ni & Xia 2012). In the smooth cell, HTR was observed, whereas heat transport
enhancement (HTE) was found in the rough cell. Moreover, a maximum HTR saturation
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state was observed as polymer concentration c increases. Based on these observations, Xie
et al. (2015) further analysed the HTE mechanism within the rough cell. Their analysis
revealed that the polymer additives can enhance coherent heat fluxes while suppressing
incoherent heat fluxes within the bulk region, leading to the HTE. In the BL region,
the plume emission rate is strongly suppressed. Thus whether HTE or HTR takes place
depends on the competition between these two effects. Cai et al. (2019) found HTR in
their experiments at similar Ra ∼ 109, and concluded that the reduction is related to the
smaller size of large-scale circulation (LSC) in polymer solutions. In a recent study, Xu
et al. (2025) also found an HTR in a cylindrical cell, and revealed that the addition of
polymers re-establishes the cylindrical symmetry of the large-scale structures, leading to
a larger flow coherence.

As mentioned above, the HTR saturate state was observed in high-Ra experiments (Wei
et al. 2012; Cai et al. 2019). This behaviour is reminiscent of the maximum drag reduction
(MDR) asymptote caused by polymer additives in other wall-bounded turbulent flows,
such as channel, pipe and plane Couette flows (Toms 1948; Lumley 1969; Virk 1975).
The cornerstone work by Samanta et al. (2013) proposed that the dynamics of MDR is
driven by an elasto-inertial instability that can even eliminate the Newtonian turbulence,
and the MDR asymptote flow state can be interpreted as a self-sustained elasto-inertial
turbulence, where the polymer stretching acts to suppress the small-scale vortices and
turbulent fluctuations. This interpretation has gained traction, while it is not yet conclusive
that the MDR asymptote is solely governed by elasto-inertial turbulence (Dubief et al.
2023). In addition, the kinetic energy spectrum in the elasto-inertial turbulence has a
scaling exponent approximately −14/3, which is distinctly different from the Kolmogorov
scaling −5/3 for inertial turbulence, but close to the scaling for elastic turbulence −3.5;
see Groisman & Steinberg (2000), Fouxon & Lebedev (2003), Dubief, Terrapon &
Soria (2013) and Steinberg (2019). However, this spectral universality and associated
turbulent dynamics of elasto-inertial turbulence have not been examined in natural thermal
convection systems so far.

Regarding the numerical studies, polymer chains in turbulent flows are generally
modelled as dumbbells composed of two beads connected by the elastic Hookean linear
spring Oldrold-B model with an infinite extensibility or a nonlinear elastic entropic spring
with finite extensibility, which is known as the finitely extensible nonlinear elastic-Peterlin
(FENE-P) model (Bird et al. 1987). The FENE-P model can overcome several limitations
of the Oldroyd-B model, including: (i) the possibility of singular extensional viscosity
or stress in extensional flows, due to the absence of an upper bound on the polymer
extensibility; (ii) the inability to reproduce the shear-thinning behaviour commonly
observed in most polymer solutions (Dubief et al. 2023).

In the pioneering work of Benzi, Ching & De Angelis (2010), homogeneous turbulent
thermal convection with polymer additives was studied using direct numerical simulations
(DNS) based on the FENE-P model, and then a simplified shell model was used
to understand the phenomenon. The DNS were performed under periodic boundary
conditions driven by a constant temperature gradient, which mimics the bulk region of
RB convection, and the HTE were observed for Wi < 1. With shell model caculations, a
transition from HTE to HTR at Wi > 1 was obtained with increasing Wi . These authors
speculated that the addition of polymers would increase the drag within the BL, leading
to a decrease in Nu. The overall modulation of the heat transfer would then depend
on the balance between the contribution from the BLs and bulk region. Moreover, they
highlighted three intriguing and promising approaches to observe HTE: (i) increasing
Ra, where heat transfer becomes dominated by the bulk region; (ii) artificially reducing
the energy dissipation contribution from the BL, which is the approach explored in
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the experimental work of Xie et al. (2015) and already validated by their studies; and
(iii) utilising a slender domain to shift the the main transport towards the bulk region.

Later, Benzi, Ching & De Angelis (2016a) performed simulations over a range of Wi
from 0 to 50, at Ra = 2.07 × 105, Pr = 7, by using the Oldroyd-B model. They observed
HTE, and that the HTE amount first increases and then decreases with increasing Wi ,
which was attributed to the combined effects of decreasing viscous energy dissipation
and increasing energy dissipation due to the polymers. Cheng et al. (2017) explored a
range of Wi from 0 to 10 within a two-dimensional enclosed RB cell with Oldroyd-B
polymers at Ra = 108 and Pr = 0.7. These authors observed that the HTR behaves non-
monotonically with Wi (first increasing and then decreasing). They concluded that this
non-monotonic behaviour results primarily from the contribution of elastic stresses to the
turbulent kinetic energy, which absorbs energy from the turbulence for small Wi , while
releasing stored energy to small-scale motions for relatively large Wi . Dubief & Terrapon
(2020) investigated the effects of the FENE-P polymer chain extensibility parameter L . In
their simulations, Wi ranges from 0 to 45, and L spans from 10 to 100 at Ra = 105, Pr = 7.
They reported that polymers with small L lead to HTE, whereas polymers with larger
L (L � 50) result in HTR. The mechanism underlying HTE involves an increase in the
number of convection cells, while in the case of HTR, the LSC slows down simultaneously.
Recently, Wang et al. (2023) found similar HTR for additional configurations at lower Ra,
except for some particular parameters where multiple pairs of LSC exist, leading to HTE.

In all these studies, based on simulations and experiments, researchers speculated that
the effects of polymers on the BL and bulk regions differ significantly. Whether the total
heat transfer is enhanced or reduced depends mainly on the contributions of these two
regions. To elucidate the effects of polymers on a laminar BL flow, Benzi, Ching &
Chu (2012) generalised the classical Prandtl–Blasius–Pohlhausen theory to Oldroyd-B
viscoelatic flows at moderate Ra. Their analysis demonstrated that the stretching of
polymers induces a space-dependent effective viscosity, increasing near the plate, and
vanishing away from it. Such an increase leads to an enhancement of friction drag, and
thus results in the reduction of the heat transport in the BL region. Moreover, the effective
viscosity increases with Wi and viscosity ratio γ , therefore the amount of the HTR and
drag enhancement increases as well. Here, γ is the ratio of polymer viscosity to zero-
shear-rate viscosity of polymer solutions (γ = 1 − β, where β is used in our simulation,
as defined below.) Later, Benzi et al. (2016b) extended their theoretical framework to
FENE-P modelled polymer solutions. They suggested that HTR occurs for polymers with
large extensibility parameter L , while HTE should be observed for small L . Moreover,
they concluded that heat transport is enhanced when the region of substantial polymer
stretching moves outside the thermal BL. These conclusions have been confirmed by
Dubief & Terrapon (2020) at low Rayleigh number Ra = 105, where they observed that in
cases of HTE, the first normal stress difference is predominantly concentrated inside the
plumes within the bulk region, while in cases of HTR, the magnitudes of the first normal
stress difference inside the plumes and BL are similar. However, we have not found any
evidence of this phenomenon at high Ra in the literature.

As summarised in table 1, previous experimental investigations have focused primarily
on high-Ra (109∼1010) situations, whereas simulations in the existing literature have been
limited predominantly to lower Ra values, typically smaller than 106, due to the difficulties
associated with the numerical simulations of viscoelastic flows (Alves, Oliveira & Pinho
2021). This leads to a gap in Ra values of several orders between experimental and
numerical studies. Moreover, previous numerical studies on turbulent RB convection
with polymer additives focused mainly on the dependence on Wi , viscosity ratio β, or
extensibility parameter L , while the specific effects of Ra on the heat and momentum
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Hot and cold thermal plumes

Large-scale circulation

Coiled and stretched polymers
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Figure 1. Sketch of viscoelastic RB convection in a parallelepiped geometry.

transfer modifications, flow structures and turbulent velocity, temperature and elastic stress
statistics remain unclear. To fill this gap, we have therefore performed three-dimensional
DNS over a broad range of Ra spanning from 106 to 1010 at Pr = 4.3 while keeping
moderate Wi , namely, Wi = 5 and 10. This work seeks to provide understanding of the
role played by the Rayleigh number in turbulent RB convection of viscoelastic fluids, with
particular interest in the heat-transport modifications, changes of thermal plumes and BLs,
and kinetic and thermal energy dissipation rates.

The paper is organised as follows. The physical problem, governing equations,
numerical methods and computational details are described in § 2. The flow structures
and statistic profiles are shown in § 3. The polymer effects on heat flux, dissipation rate
and energy spectrum are discussed separately in § 4. Finally, the main conclusions are
summarised in § 5.

2. Physical problem and computational details

2.1. Governing equations
A sketch of RB convection with polymer additives in a parallelepiped geometry with
Γ = 1, i.e. a cube, is shown in figure 1. The FENE-P viscoelastic constitutive model is
used to model the contribution of polymer additives to the total stress. The orientation
and extension of polymer molecules are described by the end-to-end vectors qi , and
represented in the statistical model by the phase-averaged configuration tensor denoted
by Ci j = 〈qi q j 〉. The FENE-P model is frequently used in DNS of viscoelastic flows due
to its physical connection with real viscoelastic liquids, specifically dilute solutions of
high molecular weight, finitely extensible flexible polymers in a theta solvent. In this
model, interactions between polymer chains are not considered. Although it is not easy
to compare the relaxation time in the FENE-P model against real experiments, it can
qualitatively capture the relevant experimental results (White & Mungal 2008; Larson &
Desai 2015; Xi 2019; Ching 2024; Serafini et al. 2024). The FENE-P model is closed
by three control parameters: (i) the maximum polymer chain extensibility parameter L;
(ii) the Weissenberg number Wi , here defined by Wi ≡ λU f f /H , where U f f ≡ √

gα�H
is the characteristic free-fall velocity; and (iii) the viscosity ratio β = νs/(νs + νp), which
is the ratio of the solvent viscosity to the total zero-shear rate viscosity of the polymer
solution (subscripts s and p represent solvent and polymer, respectively). The maximum
polymer chain extensibility remains constant throughout all simulations. Thus polymer
chain scission is not captured in our simulations. We choose a commonly used value
L = 50, which implies moderate extensibility. Viscosity ratio can be regarded as a measure
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of polymer concentration by assuming that the viscosity depends only on the polymer
concentration. In our DNS, β is fixed at 0.9 for viscoelastic fluids (β = 1 for Newtonian),
which denotes dilute polymer solutions.

The chosen reference scales for the non-dimensionalisation are the height of the domain
H , the temperature difference between the plates Δ, the characteristic free-fall velocity
U f f , pressure ρU 2

f f , and stress μpU f f /H . Non-dimensional temperature θ , velocity ui

(where i = x, y, z represent the three coordinate directions), pressure p, polymer stress τi j
and time t are obtained by using these scales. The dimensionless governing equations for
the incompressible FENE-P fluid are as follows:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ u j

∂ui

∂x j
= −∂ P

∂xi
+ β

√
Pr

Ra

∂2ui

∂x j ∂x j
+ (1 − β)

√
Pr

Ra

∂τi j

∂x j
+ θδi z, (2.2)

∂Ci j

∂t
+ uk

∂Ci j

∂xk
= Cik

∂u j

∂xk
+ Ckj

∂ui

∂xk
− τi j , (2.3)

∂θ

∂t
+ u j

∂θ

∂x j
= 1√

Ra Pr

∂2θ

∂x j ∂x j
, (2.4)

where the polymer stress τi j is related to the conformation tensor Ci j via

τi j = f (Ckk) Ci j − δi j

W i
. (2.5)

The function f (Ckk), known as the Peterlin function, is defined as

f (Ckk) = L2 − 3
L2 − Ckk

, (2.6)

and δi j in (2.2) and (2.5) denotes the Kronecker symbol.
In the above equations, the trace of the conformation tensor Ckk represents the square

of the average polymer-chain extension. It should be noted that for dilute polymer
concentrations, the effect of polymer additives on the thermodynamic properties can be
ignored, except for the fluid viscosity (Rubinstein & Colby 2003). No-slip boundary and
constant temperature conditions are applied at the bottom and top plates, whereas periodic
boundary conditions are applied in the wall-parallel horizontal directions.

2.2. Numerical method and validations
The equations introduced above are solved via an in-house viscoelastic solver based on
the open source AFiD code (Verzicco & Orlandi 1996; van der Poel et al. 2015b). The
AFiD code is an energy-conserving second-order finite difference code that has been
proven to be a versatile Navier–Stokes solver for wall-bounded turbulent flows (Verzicco &
Orlandi 1996). Moreover, the code is parallelised using a two-dimensional pencil domain
decomposition strategy, allowing it to effectively handle large-scale computations (van
der Poel et al. 2015b). The code uses a staggered grid for the spatial discretization,
with velocities located on the cell faces, and the other variables (pressure, conformation
tensor and elastic stress) at the cell centre, except temperature, which is collocated
with the vertical velocity uz . In the new version of the code, all spatial derivatives are
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Newtonian
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Figure 2. Comparison of statistics profiles from our simulations with the results of Dubief & Terrapon (2020)
for the Newtonian flow and non-Newtonian flows with an HTE flow state at Wi = 10, L = 25 and an HTR
flow state at Wi = 40, L = 100. The other control parameters are fixed at Ra = 105, Pr = 7, β = 0.9 and
Γ = 16. Root mean square (r.m.s.) of (a) horizontal velocity u′

h,rms , (b) vertical velocity u′
z,rms , (c) temperature

fluctuations θ ′
rms . (d) Mean heat flux 〈uzθ〉 across the half-gap.

approximated by using the second-order central finite differences except for the advection
term in (2.3), where a Kurganov–Tadmor scheme (Vaithianathan et al. 2006; Lin et al.
2022) is used; indeed, the hyperbolic nature of this equation requires a special treatment of
the convective term to ensure numerical convergence, especially at high Wi (Min, Yoo &
Choi 2001). Specifically, the Kurganov–Tadmor scheme is a modified central difference
scheme that ensures the symmetric-positive-definite property of Ci j based on flux limiters.
The tensor Ci j at cell interfaces is constructed from the second-order, piecewise, linear
approximations based on three potential candidates for approximating the gradients at
cell centre: first-order forward and backward schemes, and a second-order central scheme
(Vaithianathan et al. 2006). In addition, a fractional-step third-order Runge–Kutta (RK3)
scheme combined with a Crank–Nicolson scheme for the implicit terms is used for all
the time advancements. Specifically, in (2.3), the linear stress relaxation term is treated
implicitly to strictly enforce the chain finite maximum extension limit (Vaithianathan &
Collins 2003; Dubief et al. 2005; Song et al. 2021). To this end, this algorithm is
numerically stable and preserves the positive definiteness as well as the boundedness of
the polymer conformation tensor (0 < Cii < L2).

To validate the code, we compare our DNS results with the three-dimensional numerical
simulations of Dubief & Terrapon (2020) at Ra = 105, Pr = 7, β = 0.9 and Γ = 16
using the same grid resolutions. The results of the statistical profiles for velocities,
temperature and heat flux are shown in figure 2, which are in good agreement with
their results. Additionally, we compared the heat transfer modification (HTM), defined
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as H T M = (NuV − NuN )/NuN × 100 %. In our simulations, the HTM is 14.4 % for
the HTE flow state, and −31.4 % for the HTR flow state, closely matching their results
11 % and −31 %, respectively. The small quantitative differences may be attributed to the
different numerical schemes, specifically the inclusion of an artificial diffusion term in
their code. Moreover, the present DNS results of the heat transport modification for highly
turbulent thermal convection with polymer additives agree quantitatively with previous
experiments in a similar parameter range. Specifically, our DNS at 109 � Ra � 1010,
Pr = 4.3 give an HTR approximately 9 %∼15 %, which is quite close to the 10 %∼12 %
measured in the experiments by Ahlers & Nikolaenko (2010), Wei et al. (2012) and Cai
et al. (2019) for similar parameters 109 � Ra � 7 × 1010, Pr = 4.3. For further validation
cases and details of the code, we refer to Song, Xu & Shishkina (2025).

2.3. Simulation parameters
In our simulations, we explore the range of Ra spanning from 106 to 1010 at fixed Pr = 4.3,
corresponding to pure water at 40 ◦C. We consider a moderate level of elasticity: Wi = 5
and Wi = 10, with Wi = 0 representing Newtonian flow.

In classical Newtonian RB convection, the mesh resolution should be adequate to
resolve the Kolmogorov η∗

K ≡ (ν3/ε∗
u)1/4 and Batchelor η∗

B ≡ (νκ2/ε∗
u)1/4 length scales,

where ε∗
u represents the kinetic energy dissipation rate, with ∗ indicating dimensional

quantities. The dimensionless forms of these two length scales are calculated by

ηK (x, t) =
(

Pr

Ra

)3/8

εu(x, t)−1/4, ηB(x, t) = ηK√
Pr

, (2.7)

where the dimensionless kinetic energy dissipation rate is given by εu(x, t) =√
Pr/Ra [∂i u j (x, t)]2 (Scheel, Emran & Schumacher 2013). We ensure adequate grid

resolution in all directions by requiring that the maximal value of the ratio of the
mesh size to the local Kolmogorov hmax/ηK and Batchelor hmax/ηB microscales is
smaller than 3, which was found empirically to be acceptable (Verzicco 2003; Shishkina
et al. 2010), where hmax = max(�x, �y, �z). For all the cases, the mesh width fulfils
these requirements (see table 2, hmax/ηK and hmax/ηB). Notably, according to Stevens,
Verzicco & Lohse (2010), higher resolution in the horizontal direction is necessary to
resolve the plume dynamics in the BL. Further, we check the number of mesh points inside
the thermal and viscous BLs (see table 2, Nθ and Nv) to ensure adequate resolutions inside
the BL. The resolutions in our DNS fully satisfy the requirements for minimal mesh points
suggested by Shishkina et al. (2010).

In a viscoelastic flow, the typical length is similar or even larger than those in a
Newtonian fluid (Benzi et al. 2010; Wei et al. 2012; Cheng et al. 2017), therefore, for
viscoelastic flows we use the same mesh resolutions as in the corresponding Newtonian
flows. In table 2, we similarly provide hmax/ηK , hmax/ηB and the mesh points inside the
BL with the minimal mesh points according to Shishkina et al. (2010). The Kolmogorov
and Batchelor length scales are defined using the Newtonian solvent dissipation rate ε

[s]
u ,

excluding polymer dissipation ε
[p]
u , as η∗

K = (ν3
s /ε

[s]∗
u )1/4 and η∗

B = (νsκ
2/ε

[s]∗
u )1/4. Their

dimensionless forms are

ηK (x, t) =
(

Pr

Ra

)3/8

β3/4 ε[s]
u (x, t)−1/4, ηB(x, t) = ηK (x, t)√

β Pr
, (2.8)
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Ra Nx × Ny × Nz Nu Nuh Max-diff Re hmax/ηK hmax/ηB Nθ Nv tavg

Newtonian flow Wi = 0
1 × 106 192 × 192 × 128 10.96 10.96 0.13 % 62.30 0.25 0.51 11/2.2 14/3.6 300
3 × 106 192 × 192 × 128 13.83 13.77 0.24 % 103.84 0.35 0.73 9/2.5 12/4.1 300
7 × 106 256 × 256 × 192 16.71 16.82 0.39 % 155.98 0.35 0.73 14/2.7 19/4.5 300
1 × 107 256 × 256 × 192 17.93 18.08 0.46 % 183.54 0.38 0.78 13/2.8 19/4.7 300
3 × 107 256 × 256 × 192 23.64 23.73 0.44 % 310.95 0.54 1.13 11/3.2 17/5.3 300
7 × 107 384 × 384 × 256 29.94 29.98 0.17 % 467.64 0.55 1.14 13/3.6 23/6.9 300
1 × 108 384 × 384 × 256 32.75 32.69 0.19 % 538.69 0.63 1.30 12/3.8 23/6.3 300
3 × 108 384 × 384 × 256 44.86 44.95 0.39 % 931.59 0.90 1.86 10/4.4 21/7.4 300
7 × 108 512 × 512 × 384 57.17 57.17 0.17 % 1396.45 0.81 1.67 14/5.0 33/8.3 300
1 × 109 512 × 512 × 384 63.44 63.63 0.46 % 1622.95 0.90 1.88 13/5.3 33/8.7 400
3 × 109 576 × 576 × 432 88.98 89.08 0.19 % 2736.58 1.16 2.40 12/6.3 35/10.4 400
1 × 1010 768 × 768 × 512 129.21 128.43 0.28 % 4762.14 1.45 3.01 12/7.5 38/12.5 600

Viscoelastic flow Wi = 5
1 × 106 192 × 192 × 128 9.91 9.92 0.11 % 49.82 0.24 0.47 11/2.1 15/3.5 300
3 × 106 192 × 192 × 128 12.92 12.93 0.17 % 86.28 0.35 0.68 10/2.4 13/ 3.9 300
7 × 106 256 × 256 × 192 15.69 15.68 0.09 % 127.49 0.36 0.71 15/2.6 19/ 4.4 300
1 × 107 256 × 256 × 192 16.82 16.84 0.34 % 143.95 0.40 0.78 14/2.7 19/4.5 300
3 × 107 256 × 256 × 192 22.41 22.38 0.21 % 232.08 0.58 1.14 11/3.1 17/5.2 300
7 × 107 384 × 384 × 256 27.85 27.80 0.17 % 340.24 0.52 1.13 14/3.5 24/ 5.8 300
1 × 108 384 × 384 × 256 30.51 30.62 0.18 % 394.24 0.59 1.17 13/3.7 23/6.1 300
3 × 108 384 × 384 × 256 41.28 41.24 0.25 % 647.78 0.85 1.67 10/4.3 21/ 7.1 300
7 × 108 512 × 512 × 384 52.89 52.90 0.20 % 975.66 0.89 1.76 15/4.8 33/8.0 300
1 × 109 512 × 512 × 384 58.38 58.50 0.94 % 1148.39 1.00 1.96 14/5.1 32/8.4 400
3 × 109 576 × 576 × 432 78.78 78.72 0.35 % 1877.12 1.29 2.53 13/5.9 32/9.7 400
1 × 1010 768 × 768 × 512 109.12 108.82 0.18 % 3293.28 1.45 2.85 13/6.9 35/11.5 500

Viscoelastic flow Wi = 10
1 × 106 192 × 192 × 128 9.43 9.43 0.10 % 46.56 0.24 0.47 13/2.0 15/3.4 300
3 × 106 192 × 192 × 128 11.97 11.99 0.20 % 77.77 0.32 0.63 10/2.3 13/3.8 300
7 × 106 256 × 256 × 192 14.61 14.60 0.26 % 112.96 0.33 0.65 15/2.5 20/4.2 300
1 × 107 256 × 256 × 192 16.41 16.49 0.11 % 137.09 0.39 0.76 14/2.7 20/4.4 300
3 × 107 256 × 256 × 192 21.72 21.89 0.32 % 222.47 0.57 1.11 11/3.1 18/5.1 300
7 × 107 384 × 384 × 256 26.92 26.72 0.41 % 322.68 0.51 1.01 14/3.4 26/5.7 300
1 × 108 384 × 384 × 256 29.77 29.86 0.28 % 380.02 0.58 1.15 13/3.6 25/6.0 300
3 × 108 384 × 384 × 256 40.85 40.92 0.53 % 610.02 0.83 1.64 10/4.2 21/7.0 300
7 × 108 512 × 512 × 384 52.42 52.49 0.26 % 934.52 0.84 1.73 15/4.8 34/8.0 300
1 × 109 512 × 512 × 384 58.23 58.42 0.88 % 1077.57 1.00 1.97 14/5.1 32/8.4 400
3 × 109 576 × 576 × 432 78.72 78.37 0.39 % 1814.40 1.30 2.56 13/5.9 32/9.7 400
1 × 1010 768 × 768 × 512 108.75 109.92 0.16 % 3141.61 1.35 2.79 13/6.9 35/11.5 600

Table 2. Simulation parameters. Columns from left to right indicate Ra , grid resolution, spatiotemporal
averaged Nusselt number (Nu) determined by averaging the results from four methods, Nusselt number
Nuh computed by using half of the statistical time (Stevens et al. 2010), maximum difference between
four methods (Max-diff), Reynolds number Re , the maximum value of the ratio of the local mesh size
hmax = max(�x, �y, �z) to the local Kolmogorov ηK and Batchelor ηB length scales, the number of grid
points inside the thermal BL, Nθ , and viscous BL, Nv (actual resolution/requirement; Shishkina et al. 2010),
and the statistical averaging time tavg in the free-fall time units.

where

ε[s]
u = β

√
Pr

Ra
[∂i u j (x, t)]2, ε

[p]
u = −(1 − β)

√
Pr

Ra
ui ∂ jτi j . (2.9)
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To start the simulation of a Newtonian flow, the temperature field is initialised by a linear
profile, and the velocity field is initialised with random fluctuation of maximum amplitude
0.001 to trigger the transition to the chaotic turbulent motion. In the viscoelastic cases,
the temperature and velocity flow fields are initialised with those of the corresponding
Newtonian flows in the statistically stationary state, while the initial conformation tensor
is set to the unit tensor, corresponding to the equilibrium state. Statistical data are collected
after the flow reaches a statistically stationary state, determined by the convergence of Nu
and volume-averaged turbulent kinetic energy, which typically happens after at least 500
dimensionless time units for all cases. Table 2 provides the time span tavg for the statistical
data sampling in free-fall time units. In this paper, the statistic profiles presented in § 3.3
are further averaged over horizontal planes (xy-plane), with a prime indicating fluctuations
around this average.

We use four different methods to calculate the Nusselt number Nu. One is the time
and volume averaged Nu: Nu = 1 + √

Ra Pr〈uzθ〉. The second is derived from the exact
relation for the thermal dissipation rate: Nu = √

Ra Pr〈εθ 〉 (Shraiman & Siggia 1990;
Grossmann & Lohse 2000). The third and fourth values are obtained from the averages of
the temperature gradients at the bottom and top plates, respectively. In table 2, the column
Nu shows the average value obtained from these four methods, and the column headed
‘Max-diff’ shows the maximum difference between the results from these four methods.
Notably, all differences are within 1 %, indicating the convergence of our simulations.
We have also calculated the average Nuh using half of the statistical averaging time. We
observe consistency between Nu and Nuh for all cases, confirming that our simulations
are indeed well converged, and the averaging times are sufficient. Finally, the Reynolds
number Re is defined as Re = Urms

√
Ra/Pr , where Urms =

√
〈u2

x + u2
y + u2

z 〉 is the
r.m.s. of the velocity averaged over time and the entire domain.

3. Results

3.1. Nusselt number and Reynolds number
We start by examining the polymer effects on the macroscopic heat and momentum
transfer. Figure 3(a) presents the Ra dependence of the Nusselt number Nu compensated
with Ra1/3, and figure 3(b) presents the Reynolds number Re compensated with Ra1/2,
where these two specific scaling exponents are suggested by Grossmann & Lohse (2000)
for the classical regime of turbulent RB convection at medium Ra and Pr � 1. It is
evident that within our parameter ranges, both Nu and Re are drastically reduced with
the addition of polymer additives, indicating a reduction of the heat and momentum
transport. Moreover, comparing to the polymer solutions with small Wi (Wi = 5), we
note that the amount of HTR and momentum transport reduction (MTR) increases at
larger Wi (Wi = 10). This effect is more pronounced at the lower Ra under investigation,
while for Ra > 108, Nu is nearly the same at Wi = 5 and Wi = 10, likely indicating the
onset of a saturation regime. A fit to the data of Newtonian flows yields Nu ∼ Ra0.27

and Re ∼ Ra0.47. In general, the data follow the theoretical scaling of the Grossmann and
Lohse theory (Grossmann & Lohse 2000, 2001); see figure 3(a). With polymer additives,
the scalings remain similar: Nu ∼ Ra0.26 and Re ∼ Ra0.45 at Wi = 5, and Nu ∼ Ra0.27

and Re ∼ Ra0.46 at Wi = 10, but the absolute values of Nu and Re are smaller in the
viscoelastic case compared to the Newtonian case. These results are consistent with
previous experiments of Wei et al. (2012) and Cai et al. (2019); these authors found that the
scalings of Nu versus Ra, and Re versus Ra, remain almost unchanged in their parameter
ranges (Ra span from 109 to 1010 at Pr ≈ 4.3).

1014 A22-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
28

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10286


C. Xu, C. Zhang, L. Brandt, J. Song and O. Shishkina

106 107 108 109 1010
0.04

0.06(N
u 

–
 1

) 
Ra

–
1
/
3

N
uV /

N
uN

0.08

0.10

0.12

0.02

0.04

0.06

0.08

0.7

0.8

0.9

1.0

0.6

0.5

0.7

0.8

0.9

1.0

Ra

(a)

106 107 108 109 1010

Ra

106 107 108 109 1010

Ra
106 107 108 109 1010

Ra

Re
Ra

–
1
/
2

Re
V /

Re
N

Wi = 0

Wi = 5

Wi = 10

Wi = 5

Wi = 10

(b)

(c) (d )

Figure 3. (a) Nusselt number Nu − 1 compensated with Ra−1/3. (b) Reynolds number Re compensated with
Ra−1/2. Ratios of (c) Nu and (d) Re for a viscoelastic flow to those for the corresponding Newtonian flow;
N and V represent Newtonian and viscoealstic flows, respectively. The solid line in (a) is the result of the
Grossmann–Lohse (Grossmann & Lohse 2000, 2001) fit for Pr = 4.38 from Ahlers et al. (2022).

Next, we directly compare Nu and Re of viscoelastic flows with those of Newtonian
flows, as shown in figure 3(c,d). The ratio NuV /NuN between Newtonian and viscoelastic
flows, lower than 1 for the quenching effect of polymer additives, exhibits a non-monotonic
dependence on Ra. For the Nusselt number ratio (NuV /NuN ), we observe first an increase
between Ra = 106 and Ra = 107, followed by a slight decrease as Ra rises further from
Ra = 107 to Ra = 109, with a more pronounced decrease at large Ra � 109. This non-
monotonic behaviour suggests the existence of different heat transfer mechanisms in the
low-Ra and large-Ra regions. Regarding the ratio of the Reynolds numbers (ReV /ReN ),
a different trend is observed: a gradual decrease is noted for Ra < 109, after which it
eventually reaches a plateau. It can be inferred that the polymer-induced drag enhancement
becomes more pronounced with increasing Ra, and the plateau at higher Ra indicates that
the maximum drag enhancement due to the polymer additives has been achieved. Although
there are some fluctuations in the Nu and Re ratios at the low-Ra regime (Ra � 107),
which should be attributed to the sensitivity of these quantities due to the pseudo-laminar
flow state, the overall trends remain clear and consistent.

In order to compare our results with existing experiments, we note that Benzi et al.
(2016b) provided a reference for extracting the dependence of the viscosity ratio in the
FENE-P model on the polymer concentration c, based on the experimental measurements
of the viscosity of the PEO solution; cf. figure 7 of their paper for details. Since we
have relatively large polymer extensibility, when ignoring the shear-thinning behaviour,
the kinetic viscosity of the polymer solution νsol(c) for different polymer concentrations
c can be simplified as the zero-shear viscosity νs + νp in the model. Thus we have a
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reasonable approximation of the relation between c and β. In our DNS, β = 0.9 would
therefore correspond to the polymer concentration between 90 (ppm) and 120 (ppm). In
our DNS, the ratio of Nu in a viscoelastic flow to that in the corresponding Newtonian flow
at 109 � Ra � 1010 is approximately 0.85−0.91, very close to the findings of Wei et al.
(2012), who observed ratio 0.88 for concentration c = 120 (ppm) at Ra = 8.1 × 109, to the
results reported by Ahlers & Nikolaenko (2010), who found ratio 0.90 for concentration
c = 120 (ppm) at Ra = 6.74 × 1010, and also to the value 0.92 for concentration c = 100
(ppm) at Ra = 2 × 109 reported in Cai et al. (2019).

In what follows, we will focus on two key questions: first, why do the heat and
momentum transport decrease, and second, why are the trends non-monotonic? Given
that the results for Wi = 5 and Wi = 10 yield similar trends, our primary focus will be on
the flow cases with Wi = 10.

3.2. Flow structure
The typical flow structures for both Newtonian and viscoelastic thermal convection are
shown in figure 4. At low Ra (Ra = 106), the Newtonian and viscoelastic flows exhibit
an ascending hot plume and a descending cold plume, which generate an LSC in the bulk
region (see figure 4a,d). These plumes show quasi-periodic wave-like motions (see the
supplementary movies 1 and 2) without visible horizontal sweeping. These oscillations
may be attributed to plume–vortex interactions. The flow structures of the polymeric flow
are similar to those of the Newtonian case, while the plumes become less wavy. With an
increase of Ra to Ra = 108 (see figure 4b), the thermal BL becomes thinner, and more
plumes are ejected from the BL. The comparison between Newtonian and viscoelastic
flows reveals that the polymer additives change the structure of the plumes: they become
thinner, while their stems become elongated and their caps almost reach the opposite
plate; see figure 4(b,e). The waviness of these plumes is substantially weakened. This is
reminiscent of the flow structures characterising drag reduction in turbulent channel flows,
where the near-wall streamwise streaks at the core of the turbulence self-sustaining cycle
become more stable in the presence of polymer additives, a calmer phase also denoted as
’hybernation’ (Xi & Graham 2012).

At an even higher Ra = 1010 (see figure 4c,f ), the polymer additives reduce small-scale
structures, making the plumes more coherent. This polymer-induced stabilisation has been
reported in homogeneous turbulence (De Angelis et al. 2005), channel and pipe flows
(Dubief et al. 2023), plane Couette flow (Teng et al. 2018), Rayleigh–Taylor turbulence
(Boffetta et al. 2010) and Taylor–Couette turbulence (Song et al. 2023b).

Finally, the bottom panels in figure 4(g,h,i) display the trace of the polymer
conformation tensor, which represents the spatial distribution of the elongation of
the polymer chains. We can see that at relatively low Ra, most of the elongation
concentrates inside the plumes, where the velocity gradient is higher, leading to maximum
stretching of the polymer chains; these stretched molecules reach the opposite wall
and form mushroom-like structures when interacting with the thermal BL (see the
supplementary movie 3). As Ra increases, the magnitude of the polymer extension
intensifies, and the region with highly stretched polymers becomes wider. Moreover, we
also note that near the bottom/top wall, the polymers have stronger horizontal stretching
at Ra = 108. For the largest Ra = 1010 case, highly stretched polymers are even more
dispersed, and they can be found throughout the entire flow field.

To continue our analysis of the main flow features, vertical and horizontal cross-
sections (mid-plane) of the temperature and trace fields are shown in figures 5 and 6,
respectively. The temperature fields pertaining to the polymeric flows (second row) are
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Figure 4. Instantaneous temperature fields of (a,b,c) Newtonian flows and (d,e,f ) viscoelastic flows, and (g,h,i)
the corresponding trace fields of viscoelastic flows. The columns from left to right represent Ra = 106, Ra =
108 and Ra = 1010, respectively. (The viewing angle of trace fields is rotated 30◦ along the horizontal x-axis
for a better visualisation.)

directly compared with the corresponding Newtonian flow (top row), whereas the images
in the bottom row depict the trace of the polymer conformation tensor. The figures clearly
show that with polymer additives, the thermal BLs become thicker, and the plumes
become longer, wider and less fragmented. In the core region, the polymers suppress
the small-scale structures, and the temperature is less efficiently mixed, leading to more
distinct plume boundaries, especially at higher Ra. As concerns the polymer stretching, we
note that with increasing Ra, the well-identified slim regions of high polymer stretching
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Figure 5. Instantaneous vertical cross-sections (xz-plane) of the temperature fields for (a,b,c,d) Newtonian
flows, (e,f ,g,h) the corresponding viscoelastic flows, and (i,j,k,l) the trace of the conformation tensor in the same
cross-section. The columns from left to right represent Ra = 106, Ra = 108, Ra = 3 × 109 and Ra = 1010,
respectively.

gradually become wider and more chaotic. They are seen to connect with each other and
spread over the whole domain with higher intensity and finer spatial scales. The reader
is also referred to the supplementary movies to better appreciate the differences in flow
structures due to polymer additives.

Figure 7 presents space–time plots of the temperature in Newtonian and viscoelastic
flows along a horizontal line in the mid-height plane. The images are organised to
show data for increasing Ra in each column. In the left-hand column (figure 7a,c,e,g),
we first see that the Newtonian flow exhibits regular and periodic patterns with a
stable and coherent structure. As Ra increases, the fluctuations increase, and the flow
eventually exhibits a strongly chaotic behaviour. In contrast, the right-hand column
(figure 7b,d,f ,h) shows that the viscoelastic flows maintain more stable and coherent
structures compared to the Newtonian flows, with less variation over time. Although the
turbulence intensity increases for the larger Ra > 108, the viscoelastic flows retain a higher
coherence compared to their Newtonian counterpart. This suggests that the viscoelastic
properties of the fluid help to maintain the flow stability. At an even higher Ra = 1010,
the viscoelastic flow continues to demonstrate a stronger coherence, with reduced chaotic
behaviour. Overall, the flow structures of the viscoelastic solutions exhibit a larger degree
of coherence in their spatiotemporal structures compared to the corresponding Newtonian
flows, as evidenced by more pronounced plume structures and less turbulent flow
patterns.
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Figure 6. Instantaneous mid-height horizontal cross-sections (xy-plane) of the temperature fields for (a,b,c,d)
Newtonian flows, (e,f ,g,h) the corresponding viscoelastic flows, and (i,j,k,l) the trace of the conformation tensor
in the same cross-section. The columns from left to right represent Ra = 106, Ra = 108, Ra = 3 × 109 and
Ra = 1010, respectively.

3.3. Turbulent and polymer statistics
In this subsection, we discuss the turbulent velocity and temperature statistics, polymeric
deformation, and BL thicknesses. Figure 8 depicts the wall-normal profiles of the r.m.s.
vertical u′

z,rms and horizontal u′
h,rms velocity fluctuations for three representative cases.

Both the vertical and horizontal velocity fluctuations are attenuated in the presence of
polymer additives, indicating a reduction of turbulence intensity and an increase in flow
drag. This observation is consistent with the HTR cases reported by Dubief & Terrapon
(2020) at Ra = 105, where the addition of polymer additives resulted in a slowdown of the
LSC and thus a reduction in heat transfer.

The profiles of the mean temperature θ and r.m.s. temperature fluctuation θ ′
rms for

the same representative cases as in figure 8 are shown in figure 9. As Ra increases,
an enhanced convection leads to the contraction of the thermal BL region, resulting in
a steeper temperature gradient near the wall, and more efficient mixing within the bulk
region, for both Newtonian and viscoelastic flows. From figure 9(a), we observe that the
differences of mean temperature between polymeric (dashed lines) and Newtonian flows
(solid lines) are small in the bulk region, where the temperature remains almost constant.
Within the thermal BL, polymeric flows exhibit a slightly smoother increase of the mean
temperature compared to Newtonian flows, suggesting that the addition of polymers affects
the stability and structure of the thermal BL. More pronounced differences are seen in
the temperature fluctuation data: in viscoelastic flows, the r.m.s. values are smaller than
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Figure 7. Temperature space–time plots for (a,c,e,g) Newtonian and (b,d,f ,h) viscoelastic flows along a
horizontal line x ∈ [0, 1], y = 0.5 in the mid-height plane for (a,b) Ra = 106, (c,d) Ra = 108, (e,f ) Ra =
3 × 109, (g,h) Ra = 1010.
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Figure 8. Intensity of the velocity fluctuations: r.m.s. profiles of (a) vertical u′
z,rms and (b) horizontal u′

h,rms
velocity fluctuations for Newtonian (Wi = 0) and viscoelastic flows with Wi = 10 for different values of Ra.

in Newtonian flows near the wall, and larger than those in Newtonian flows in the bulk
region. The peaks of θrms are lower in viscoelastic flows and located further away from
the wall (which supports the idea of a thicker BL in polymer solutions). This behaviour
is consistent with previous studies on polymer solutions in homogeneous turbulence
(De Angelis et al. 2005), where the polymer-induced suppression of small-scale motions
is found to lead to increased fluctuations at larger scales. The reduction in temperature
fluctuation near the wall implies an enhanced stability of the thermal BL, which could
potentially reduce the frequency of the plume release.
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Figure 9. Profiles of (a) the average temperature θ and (b) the temperature fluctuations θ ′
rms for different

values of Ra. The inset shows the profile in the near-wall region.
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Figure 10. Profiles of (a) mean trace 〈Cii 〉 normalised by L2, and (b) first normal stress difference N1 of
viscoelastic flows at different Ra for Wi = 10.

Next, we explore the impact of polymer additives on the deformation of polymer
molecules. Figure 10(a) presents wall-normal profiles of the mean trace of the polymer
conformation tensor, representing the average polymer length, normalised by the square
of the polymer extensibility parameter, 〈Cii 〉/L2. The data in the figure reveal that the
polymer extension increases with Ra, indicating stronger polymer–flow interactions due
to the enhanced turbulent intensity. Moreover, as expected, the maximum values of the
trace are observed near the wall, whereas in the bulk region, especially far from the
wall, the polymer stretching remains relatively uniform. A classic measure of the non-
Newtonian character of a suspension is the first normal stress difference, defined as
N1 = (1 − β)

√
Pr/Ra(〈τzz〉 − 〈τxx 〉), the normalised difference between two compo-

nents of the normal stresses. Note that with our definition of N1, we consider z the
principal flow direction (which is the case in the bulk but not in the thermal BLs). The
wall-normal profiles of N1 are depicted in figure 10(b). Near the wall, N1 is negative
except for case Ra = 106, whereas in the bulk region, it becomes positive, with positive
values smaller than the absolute values of the negative ones. This validates the conclusion
in Benzi et al. (2016b), who showed that when the stretching of polymers occurs
predominantly within the BL, HTR could be observed. Also it implies that near the wall,
τxx dominates and the polymer undergoes greater stretching in the horizontal direction,
while in the bulk, τzz dominates and the stretching is more pronounced in the vertical
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Figure 11. Visualisation of the definitions of (a) thermal and (b) viscous BL thicknesses using the example of
the flow for Ra = 108 and Wi = 10.

direction. This observation is intuitive, as the polymer chains align with the primary
flow direction. Indeed, a positive normal stress difference indicates that polymer chains
are becoming oriented in the direction of the flow, in agreement with the visualisations
shown above. For the case Ra = 106, the polymer stretching is mainly in the vertical
direction, which is expected since the flow is laminar, and the plumes become less wavy
with polymers, resulting in reduced horizontal motion. Furthermore, an increase in Ra
results in a monotonic decrease of the magnitude of N1. Since the flows become more
chaotic and turbulent as Ra increases, the polymers are not able to maintain significant
stretching in one specific direction due to the increasingly isotropic and fluctuating nature
of the flow. To conclude, we note that from a dynamics perspective, we therefore retrieve
a positive value of N1 for the average flow direction, as typically observed in shear flows.
This indicates the presence of elasticity, polymer molecules trying to return to their coiled
state.

Next, we investigate the effects of polymer additives on the BL thickness. We adopt the
frequently used slope method to define the edge of the thermal BL. That is, the thermal
BL is defined as the depth where the linear fit to the mean temperature profile θ near
the bottom (or top) wall intersects the linear fit to the mean temperature profile at mid-
height, as illustrated in figure 11(a). The viscous BL, instead, is defined as the distance
between the wall and the maximum value of the horizontal velocity fluctuations, u′

h,rms ;
see figure 11(b). The thermal and viscous BL thicknesses and their scaling behaviours are
presented in figure 12. Figure 12(a) shows that the thermal BL thickness increases when
adding polymer additives, suggesting an enhanced thermal BL stability. For smaller Ra,
this increase is more pronounced with higher Wi = 10. On the contrary, at larger Ra, the
thermal BL thicknesses remain nearly constant for both Wi = 5 and Wi = 10, indicating
that the thermal BL thickness becomes less sensitive to polymer extensibility as Ra
increases. However, the polymer additives do not modify the scaling of λθ with respect to
Ra. Moreover, all the data collapse on the line 0.5Nu−1 (see figure 12b), fitting well with
the theoretical prediction: λθ = H/(2Nu) for turbulent thermal convection. Interestingly,
the viscous BL thickness exhibits a different behaviour. Specifically, the viscous BL
thickness scales differently in flows with polymers than in Newtonian flows, displaying a
steeper decrease of λu with increasing Ra. The intersection of the λu curves in Newtonian
and viscoelastic flows happens at approximately Ra = 108. The scaling of λu with Re
yields λu ∼ Re−0.24 for Newtonian flows, as found previously in both simulations (Breuer
et al. 2004; King, Stellmach & Buffett 2013) and experiments (Lam et al. 2002). For the
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Figure 12. The thermal BL thickness λθ versus (a) the Rayleigh number Ra and (b) the Nusselt number Nu.
The viscous BL thickness λu versus (c) Ra and (d) Re. The dashed lines depict a polynomial fitting to the data.
For better visualisation, in (a) and (c) we present only the fitting lines corresponding to Wi = 0 and Wi = 10.

viscoelastic cases, the scaling becomes steeper, λu ∼ Re−0.30, indicating a modification of
the kinetic BL dynamics.

4. Discussion

4.1. Effective viscosity
It is generally argued in the literature that HTR is related to the enhanced stability of
the thermal BL, which can be attributed to two primary factors (Xie et al. 2015): (i) the
reduced bulk velocity fluctuations that constantly perturb the BL, as depicted in figure 8;
(ii) the increased effective viscosity of the polymer solutions that reduces the convection
velocity. In order to verify this, we examine the relative effective viscosity of the polymer
solutions. According to Benzi et al. (2016a), the relation between the space-dependent
effective viscosity νeff and the solvent viscosity νs can be expressed as

νeff

νs
= E p

ε
[s]
u

, (4.1)

where E p is the rate of energy transferred to polymer elastic energy, calculated by
E p = (1/2)(1 − β/Re)τi i (Min et al. 2003), and ε

[s]
u is the solvent viscous dissipation

rate defined in (2.9).
Figure 13 depicts the wall-normal profiles of the effective viscosity νe f f normalised

by the solvent viscosity νs for the polymeric flows. The data show that the normalised
effective viscosity exhibits a local maximum in the near-wall region, with a smaller value
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Figure 13. Wall-normal profiles of the effective viscosity νe f f normalised by the solvent viscosity νs for
different values of Ra.

compared to the bulk region. As one moves away from the wall, the effective viscosity
increases (more dramatically at lower Ra) and then remains almost constant inside the
bulk region. This indicates that the interaction between polymers and the turbulent flow
is more pronounced in the bulk, leading to a more pronounced enhancement of viscosity
in that region. The non-monotonic behaviour observed near the wall is difficult to explain
only from the definition in (4.1) and the complex interactions between turbulence and
viscoelastic effects. The local maxima near the wall may be related to the peak of the
polymer elastic energy (profiles of E p), and are similar to the trace 〈Cii 〉 presented in
figure 10(a).

More importantly, we observe that νe f f is correlated with the ratio of Reynolds numbers
ReV /ReN shown in figure 3(d). With increasing Ra, the effective viscosity ratio increases,
leading to a decrease in Re up to Ra = 109. Beyond this threshold, the effective viscosity
remains nearly unchanged, resulting in an almost constant Re. We then can conclude
that for Ra < 109, the increased viscosity causes a slower circulation, as corroborated by
the supplementary movies, thus decreasing the heat transfer rate. Further, the effective
viscosity ratios are almost equal for higher Ra � 109, meaning that there may exist a
maximum drag enhancement. The additional HTR for Ra > 109 is therefore caused by
other factors, which we discuss below.

4.2. Heat flux from plume and turbulence background in the mid-height plane
In this subsection, we aim to investigate why the heat transport is reduced and why the
HTR shows a non-monotonic trend with Ra. Since plumes are the primary carrier of
heat in turbulent thermal convection, we consider the contribution from the plumes and
the turbulent background separately. First, we calculate the probability density functions
(PDFs) of the vertical heat flux (uzθ

′) at the mid-height plane. It should be noted
that Nucentre = √

Ra Pr 〈uzθ
′〉A,t (Kaczorowski & Xia 2013). The negative part of the

vertical heat flux PDF is due to turbulent background fluctuations, known as incoherent
heat flux, while the positive part contains both incoherent heat flux and coherent heat flux
arising from plumes (Shang et al. 2003; Xie et al. 2015). The large positive value of uzθ

′
should be related to plumes. For each case presented in figure 14, the dataset includes
flow field information for at least 300 dimensionless time units. Intriguingly, the PDFs
exhibit different characteristics for small Ra (Ra < 109) and relatively high Ra (Ra � 109)
regimes.
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Figure 14. Probability density functions (PDFs) of the vertical heat flux uzθ
′ at the mid-height plane for

(a) Ra < 109 and (b) Ra � 109.

In the low Ra < 109 regime, as depicted in figure 14(a), the addition of polymer
additives leads to a significant suppression of both negative and positive tails, particularly
for very large values of the positive vertical heat flux – those related to the plumes,
suggesting a suppression of both incoherent turbulent background fluctuations and
coherent heat transport. This effect is more pronounced for smaller Ra. The suppression
of incoherent heat flux is confirmed by the significant decrease in horizontal turbulent
fluctuations in the central plane discussed above (see figure 8). This substantial
suppression of the coherent flux is attributed to a slower circulation speed, which is
more evident for Ra = 106, where we observe a pair of convection cells of lower LSC
speed (see supplementary movies 1 and 2). Since the relative effective viscosity ratio
increases significantly with Ra, one would intuitively expect a stronger suppression of
the coherent motions at higher Ra. However, the figure shows the opposite trend, which
may indicate that polymers have a twofold action. For higher Ra � 109 (see figure 14b),
our observations align with the Xie et al. (2015) finding that the negative part of the PDF
is suppressed, and the probability of large positive values is significantly higher for the
polymer solutions. Given the slight increase in temperature fluctuations (see figure 9) and
the halving of the velocity fluctuations at mid-height (see figure 8), this enhancement is
most likely due to the increased correlation between velocity and temperature, in other
words, to the increasing coherence of the thermal plumes. In summary, the data suggest
that in the laminar or weakly turbulent regime, Ra < 109, polymers reduce the plume
intensity, whereas at larger Ra � 109, they enhance the coherent transport by the plumes
by reducing the effect of the background fluctuations.

To assess more quantitatively the effect of polymers additive on plumes, it is crucial
to detect plumes and then separate them from the background fluctuations. In previous
studies, various methods have been employed to extract plumes based on their distinct
characteristics, such as high temperature (Zhou & Xia 2002), high thermal dissipation rate
(Shishkina & Wagner 2006, 2008), high vertical heat flux (Ching et al. 2004), and negative
horizontal divergence of the horizontal velocity field (Shevkar et al. 2022). Here, we adopt
the criteria that combine both temperature and heat flux conditions (Huang et al. 2013; van
der Poel et al. 2015a). That is, in a certain horizontal cross-section, the plume is the area
satisfying ±[θ(x, y) − 〈θ〉xy] > c〈θrms〉xy and

√
Ra Pr uz(x, y) θ ′(x, y) > c(Nu − 1),

where ‘+’ indicates a hot plume, and ‘−’ indicates a cold one.
Note that we use the factor (Nu − 1) to exclude conductive heat transfer. The remaining

part of the cross-section is defined as background. We choose the same empirical constant
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Figure 15. Plumes extraction at (a,b,e,f ) the edge of the thermal BL (z = 0.5H/Nu) and (c,d,g,h) the middle-
height xy-plane for (a,b,c,d) Newtonian and (e,f ,g,h) viscoelastic (Wi = 10) flows at Ra = 108, Pr = 4.3.
The temperature shown in (a,c,e,g) has the same colour bar as in figure 6, and the red and blue colours in
(b,d,f ,h) denote the extracted hot and cold plumes, respectively.

c = 1.2 as in van der Poel et al. (2015a). The choice of c influences the absolute value of the
plume area and plume mean velocity, but the trends presented below remain independent
of c. The results of this plume-extraction procedure are displayed in figure 15 for both
Newtonian and viscoelastic flows at Ra = 108. One can see that this criterion successfully
extracts both hot and cold plumes in the thermal BL and bulk regions. We use this
procedure to calculate the mean temperature and vertical velocity of plumes, as well as
the heat flux contributions from both plumes and background, in the middle-height plane
by averaging over 300 free-fall time units.

Figure 16(a,b) show the mean temperature and mean vertical velocity differences
between viscoelastic and Newtonian flows for hot and cold plumes. These are defined
as �θp = 〈θ〉V

p,t − 〈θ〉N
p,t and �uz,p = 〈uz〉V

p,t − 〈uz〉N
p,t . Interestingly, we observe that,

compared to the Newtonian flow, the hot plumes are less hot, and the cold plumes are
less cold, in viscoelastic flows at small Ra < 108. However, for Ra � 108, this trend
reverses, with hot plumes becoming hotter, and cold plumes becoming colder. Moreover,
the magnitude of this difference increases with Ra. The vertical velocity of the plumes in
viscoelastic flows is lower than in Newtonian flows, and the magnitude of this decrease
becomes smaller with increasing Ra until Ra = 109, beyond which it reaches a plateau,
which aligns with the trend for Re shown in figure 3, and the effective viscosity shown
in figure 13. The data seem to confirm our interpretation above: at small Ra, the
addition of polymers dampens the intensity of thermal plumes by increasing the effective
viscosity of the flow. Consequently, the effective thermal diffusivity increases, which
leads to a decreased temperature of the hot plumes, and increased temperature of the
cold ones. Conversely, at high Ra, the stabilised BL in the viscoelastic flows makes the
released plumes more coherent. Additionally, the presence of polymer additives reduces
the turbulence intensity, leading to weaker mixing. This reduced mixing slows down the
horizontal heat transport, causing heat to remain more concentrated inside the plumes.
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Figure 16. Results of plume extraction: difference in (a) plume mean temperature �θp = 〈θ〉V
p,t − 〈θ〉N

p,t

and (b) plume vertical velocity �uz,p = 〈uz〉V
p,t − 〈uz〉N

p,t between Newtonian flows and viscoelastic flows
at Wi = 10. (c) Contributions to the total Nu from the plumes and background chaotic flow. (d) Difference
�Nu = NuV − NuN between Newtonian and viscoelastic flows at Wi = 10, considering the heat flux in
plumes, background, and the total value.

To further investigate the heat transfer mechanisms, we now discuss the heat flux
contributions from the plumes and the background chaotic flow, still focusing on the mid-
plane. Figure 16(c) displays the total Nu = √

Ra Pr 〈uzθ
′〉, as well as the heat flux from

the turbulent background and plumes. We note that the heat flux from both turbulent
background and plumes increases with increasing Ra, and plumes serve as the main
heat carriers for both Newtonian and viscoelastic flows. Focusing on the differences,
figure 16(d) presents the HTM between viscoelastic and Newtonian flows �Nu = NuV −
NuN , considering the total flux, and the plume and background contributions. First, we
observe that the heat flux reduction increases with the Rayleigh number, and that this
difference can be ascribed to the plumes for Ra � 107, when the flow is in a laminar-like
regime. Further increasing Ra, instead, the reduction is mainly due to the reduction of the
background turbulence. The contributions from the plumes actually increase at the largest
values of the Rayleigh number under consideration. Nevertheless, the increased heat flux
associated with more coherent plumes is not enough to balance the reduction associated
with the background fluctuations.

The results therefore confirm the observations made when examining the PDFs. That is,
the heat flux in the mid-plane from the background generally decreases with polymer addi-
tives, while the heat flux from the plumes first decreases for Ra < 109, and then increases.
While at small Ra the reduction in the total heat flux arises mainly from the plumes,
at large Ra, even though the heat flux from the plumes region increases, the significant
decrease in the heat flux from the turbulent background determines the total HTR.
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Figure 17. Difference between the Nusselt numbers of Newtonian and viscoelastic flows,
�Nu = NuV − NuN , in different regions: BLs, plumes and background.

Overall, the polymer additives affect the turbulent background and plumes in different
ways. That is, polymers act to suppress turbulence in the background flow, leading to
lower turbulence intensity. As concerns the plumes, the net effect of polymer additives
varies with the Rayleigh number: (i) they reduce the vertical velocity of strong plumes,
thereby leading to the suppression of strong heat transport events, and this effect is more
pronounced at lower Ra when the background flow is laminar-like; (ii) they enhance
the coherence of the plumes, thus increasing the heat flux. These two effects are in
competition, with the latter becoming dominant as Ra increases. In the following, we
investigate how the flow in the BL is affected by the polymers, and how this reflects in the
heat fluxes.

4.3. Volume-averaged heat flux from plumes, BLs and background
To further elucidate the impact of viscoelasticity on the HTM of the entire system, we
examine the contributions of the BLs, plumes and turbulent background to the volume-
averaged heat flux derived by the exact relation between Nu and the thermal dissipation
rate. The decomposition is based on the criterion for plume extraction, as mentioned
previously. The BLs are defined as the regions within distance 0.5H/Nu from the top
and bottom walls exclusion plume region. The remaining area is classified as turbulent
background. Figure 17 displays the differences between the Nusselt numbers of Newtonian
and viscoelastic flows across these regions, with all results averaged over 100 free-fall
time units. We observe that the total �Nu shows a non-monotonic trend as the HTR;
also, the heat flux contributions from the plumes and background follow trends similar
to those observed in the mid-plane, i.e. the total heat transferred by the plumes first
decrease and then increase with Ra in the viscoelastic flows while it decreases in the
background flow, with the latter decrease being more pronounced. Most interestingly,
we note that the largest part of the reduction in viscoelastic flows is associated with the
heat flux in the BLs, and it increases with Ra. In the experiments by Xie et al. (2015)
at similar Ra = 6.18 × 109, Pr = 4.3, it was found that polymer additives enhance heat
transport in the turbulent thermal convection bulk flow by increasing the coherency of
thermal plumes and suppressing turbulent background fluctuations. On the other hand, the
polymer additives stabilise the thermal BLs and reduce plume release. Xie et al. (2015)
explained the observed HTE in their experiments by saying that the effect of enhanced
plume coherency overcomes the effect of reduced plume emission. Their observations on
the effects of polymers are consistent with our study. The qualitative difference in heat
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Figure 18. (a) Viscous (circle) and elastic (triangle) energy dissipation rates in Newtonian and viscoelastic
(Wi = 10) flows versus Ra. (b) The fraction of viscous (green circle) and elastic (yellow triangle) contributions
to the total kinetic dissipation rate in viscoelastic flows.

transport modification – i.e. HTE in their experiments and HTR in our simulations –
is attributed to rough walls in their experiments, which makes both kinetic energy and
thermal dissipation rates bulk-dominated.

4.4. Kinetic energy dissipation rate and energy spectra
In this subsection, we focus on the contribution from turbulence and polymers to the
kinetic energy dissipation rate. In viscoelastic flows, the fluid kinetic energy is partly
dissipated by the viscous stresses at small scales, and partly transferred to the polymers,
which is called the elastic dissipation rate. By taking the dot product of the momentum
equation (2.2) with the velocity ui , and averaging over time and over the entire volume
(Benzi et al. 2016a), the exact balance between energy production rate by buoyancy,
viscous dissipation rate in the Newtonian solvent ε

[s]
u and elastic dissipation rate due to

the polymer additives ε
[p]
u is given as

ν3

H4 Ra Pr−2 (Nu − 1) = ε[s]∗
u + ε

[p]∗
u . (4.2)

After normalisation using U f f and H , this can be rewritten as

Nu − 1√
Ra Pr

= ε[s]
u + ε

[p]
u = β

√
Pr

Ra
[〈∂i u j (x, t)〉V,t ]2 − (1 − β)

√
Pr

Ra
〈ui ∂ jτi j 〉V,t . (4.3)

The value of Nu can thus be directly related to ε
[s]
u and ε

[p]
u .

The dissipation rates ε
[s]
u , ε

[p]
u and total dissipation rate are displayed in figure 18(a).

As expected, both ε
[s]
u and ε

[p]
u increase with Ra, and the total energy dissipation rates

εu = ε
[s]
u + ε

[p]
u of polymer solutions decrease compared to Newtonian flows, leading to

the HTR. Here, the increasing ε
[p]
u is related to the amount of the polymer stretching, as

indicated by the trace shown in figure 10(a).
The relative contributions of the viscous and elastic dissipation to the total energy

dissipation rate of polymer solutions are reported in figure 18(b). The data in the figure
reveal that when increasing Ra, the contribution of the elastic part increases monotonically
and becomes dominant over the viscous dissipation at Ra � 107, which indicates the
growing importance of elastic stresses in the flow. In addition, at higher Ra, more of
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Figure 19 (a) Turbulent kinetic energy spectra normalised by u2
i /2, Eu(k), and (b) temperature energy spectra

normalised by θ2/2, Eθ (k), sampled at the mid-height of the domain, and averaged over the plane and over
time. The spectra are plotted as functions of normalised wavenumber k for different Ra, comparing Newtonian
flows (solid lines) with viscoelastic flows at Wi = 10 (dashed lines). The solid and dashed black lines show the
scaling laws −5/3 and −14/3, respectively.

the kinetic energy is transferred into elastic potential energy as the polymers are stretched
by the turbulent flow. This elastic energy is released back to the flow once the polymer
stretching reduces. The effect of this mechanism in thermal convection, and how the
kinetic energy redistributes at different spatial scales, deserve further investigation.

To shed some light on these energy transfer mechanisms, we consider the one-
dimensional turbulent kinetic energy Eu(k) and temperature energy spectra Eθ (k). The
one-dimensional energy spectra are calculated by the fluctuations from the three velocity
components and temperature at the middle-height plane. The spectra in figure 19 are
obtained by first computing the Fourier transform in the x (or y) direction, then averaging
in the orthogonal horizontal direction, i.e. y (or x). Finally, averages are performed over
the two horizontal directions and over at least 300 dimensionless time units. As depicted
in figure 19(a), with increasing Ra, the classical inertial scaling k−5/3 is gradually reached
in the Newtonian flows in the intermediate wavenumber range. When polymer additives
are added, the large-scale content decreases (energy in the low wavenumber range), while
the small-scale energy content increases (high wavenumber range). Moreover, the spectra
tend to follow the power-law decay with exponent nearly −14/3 at high Ra � 108, as
also reported in other flow configurations with elasto-inertial turbulence (Dubief et al.
2013; Sid et al. 2018; Song et al. 2021). The suppression of large-scale motions and the
activation of small-scale fluctuations observed here may be related to polymer stretching
(see enhanced polymer dissipation in figure 18), and is consistent with the typical features
of elasto-inertial turbulence, where the small-scale motions are sustained by a significant
polymer stretching (Sid et al. 2018). Note that a similar activation of small-scale motions
is also observed in other multiphase systems, for example, in emulsions, where the
small-scale motions are induced by surface tension releasing energy to the flow upon
relaxation and coalescence (Crialesi-Esposito, Chibbaro & Brandt 2023; Moradi Bilondi
et al. 2024).

Finally, examining the temperature fluctuation spectra of polymeric flows in figure 19(b),
we note, as for the temperature fluctuations, that the large-scale content increases slightly,
while small-scale content decreases in the presence of polymer additives. It is also worth
noticing that the polymeric temperature spectra do not follow the same scaling law k−14/3

observed for turbulent kinetic energy spectra, indicating a lower correlation between
velocity and temperature fluctuations in the polymeric turbulent thermal convection.
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5. Conclusions
In this work, three-dimensional DNS are performed to explore the effects of polymer
additives on turbulent RB convection by using the FENE-P constitutive model with fixed
polymer extensibility parameter L = 50 and viscosity ratio β = 0.9. The Prandtl number
is set to 4.3, and two moderate Weissenberg numbers (Wi = 5 and 10) are considered. The
simulations are conducted for a broad range of Ra from 106 to 1010, which is much broader
than any of the existing numerical simulations of RB convection with polymer additives.
This parameter range is encompassing the Ra range explored in experiments.

Our results show that within our parameter range, the heat and momentum transfer
are reduced by polymer additives. The effects of polymers are different in different flow
regions. Specifically: (i) within the BL region, polymers stabilise the thermal BL, leading
to an apparent HTR, which serves as the primary mechanism for HTR in all cases of our
study; (ii) in the bulk region, the polymers slow down the flow velocity by increasing the
effective viscosity, enhance the plume coherency, and suppress the small-scale turbulent
fluctuations. We observed a non-monotonic behaviour of heat transfer by plumes in the
range 108 � Ra � 109, where it initially decreases and then increases. By separating the
plumes from the turbulent background in the mid-height plane, we find that at small Ra,
in a laminar-like regime, the HTR is due mainly to the decreased plume velocity. As Ra
increases, the effect of enhanced plume coherency gradually overcomes the slowdown in
velocity, allowing plumes to transport more heat. The reduction in heat transfer in the bulk
region is thus the result of the competition between suppressed background fluctuations
and enhanced plume coherency.

Comparing to Newtonian flows, the main features of RB convection of polymeric flows
can be summarised as follows: (i) a significant reduction in both vertical and horizontal
turbulent velocity fluctuations; (ii) an increase in temperature fluctuations within the bulk
region, and a decrease in temperature fluctuations within the BL; (iii) an enhancement
of the thermal BL thickness, which still follows the classical scaling; (iv) an increase
(Ra < 108) and then decrease (Ra > 108) of the viscous BL thickness, which yields a
steeper scaling relation with Re; (v) a decrease in the turbulent kinetic energy content at
the large energy-containing scales, while increasing at the small scales, in agreement with
other multiphase flows, e.g. emulsions and particle-laden flows.

Our simulations support the experimental findings of Xie et al. (2015): the increased
coherence of the thermal plumes, the suppression of turbulent fluctuations, and the
enhanced BL stability. The differences in heat transport modulation between their
experiments and our simulations are attributed to the side walls and rough surfaces of
the the container used in their study, which alter the BL stability. While our study provides
a more detailed view of the flow structures modifications in RB convection with polymer
additives, further investigations are required to explore the effect of rough walls or of
modifications of the boundary conditions on the heat and momentum transfer in the
convection cell. In particular, it remains to investigate why the viscous BL thickness
decreases at high Ra > 108 despite the turbulence intensity being reduced by the polymers.
Moreover, it would be interesting to better understand how the stored elastic energy
is released to the flow at the different length scales by a scale-by-scale analysis. In
conclusion, this study has started to fill the gap between previous experimental and
numerical studies on turbulent thermal convection with polymers, and shed some insights
on the flow physics and heat transport mechanisms, focusing on the coherent structure
modification of turbulent convection in complex fluids.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10286.
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