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1. Introduction. Several recent papers have dealt with the number of 
solutions of xa = 1 in S„, the symmetric group of degree n. Let us denote this 
number by An_d and let A„,t = Tn. Chowla, Herstein and Moore (1) proved: 

1.1 Tn = r„_! + (» - l)Tn-2 r 0 = Ti = 1 

1.2 »* < TJTn-i < »* + 1 

1.3 Tn = n\tll/{21j\(n-2j)l} 

1.4 £ 7 ^ 7 » ! = ex+hx* 

15 ^ ( « , / « )» / 

1-0 i « ^ 2V / 4 

In §2 we establish a connection between Tn and the Hermite polynomials. This 
will enable us to refine 1.5 and to prove a conjecture concerning Tn/Tn-\ 
made in (1 ). 

Jacobsthal (3) showed that for p a prime 

1.6 t,An,Pxn/nl = ex+xV/p. 
71=0 

This was generalized by Chowla, Herstein and Scott (2) who proved 
CO ^ ^ 

1.7 ^ An,d xn/n\ = exp ] £ xk/k. 
M = 0 k\d 

The problem of finding asymptotic formulae for An>d was proposed in (2). 
In §3 we obtain asymptotic formulae for Tn and An>p by a method which also 
yields results in the general case. 

It was pointed out in (2) that Frobenius' theorem implies 

1.8 An>p = 0 (modp) 

and this, together with an explicit expression for An,p constitutes a generaliza­
tion of Wilson's theorem. Some other arithmetic properties of Tn were devel­
oped in (1). In §4 we obtain still another generalization of Wilson's theorem, 
and also further arithmetic properties of Tn. 

In §5 we show how some corresponding results can be obtained for the 
number of solutions of xd = 1 in alternating groups. 
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2. Tn and the Hermite Polynomials. The recurrence 1.1 is similar to that 
satisfied by the Hermite polynomials, namely 

2.1 Hn(x) = 2xHnr-1(x) - 2(» - 1) £Tn-2(x), H0(x) = 1, Hi(x) = 2x. 

In fact, we prove the following theorem: 

O 9 T _ ±J-n\^l^ ) «2 _ -• 

Since 2.2 is readily verified for w = 0 and n = 1 we may proceed by induction. 
Using the induction hypothesis and 2.1 we obtain, 

Tn-i + (n - l)Tn-2 

#-1(1/2») , (n - l)Hn-î(i/2h) Hn(i/2*) 

which completes the proof. 

From 2.2 we can obtain the asymptotic expansion of Tn. The asymptotic 
expansion of Hn(x) is given by Szegô (4, p. 194) to be 

2.3 \-le-hx*Hn(x) = cos(Nhx - \nv) Z U,(x) N~v 

P - l 

+ Ar~*sin(Arlx - §»*•)]£ Vv(x) N~v + exp{ - N*\S(x)\] 0(n~v), 
i/=0 

where N = 2?z + 1 and 

_ r(n + D or x _ r(w + 2) , 
Are ~ r(i» + l) or Kn ~ r(è» + 3/2) 

according as « is even or odd. The coefficients £/„(#) and Vv(x) are polynomials 
depending on v; they contain only even and odd powers of x, respectively. 
The first two terms of this expansion yield 

2.4 Hn(x) ~ - r
r / r t ^ l e '*' (cos(JV*x - Jnx) + Jc'-tf-* nn(N*x - Jnr)). 

Using 2.2, 2.4 and the asymptotic expansion of the gamma function we obtain 
the theorem 

2^ T .Jn/ere" h i 7 , i 
2.5 J n ~ 0§„i/4 \ 1 + 2 4 ^ + 

(nA)V*fl 
2V/4 V1 

This is a refinement of 1.5. A numerical check of 2.5 and a still more accurate 
formula for Tn derived in §3 will be given later in the paper. 

We next consider Rn = Tn/Tn-\. By 1.1 we have 

2.6 Rn+i = 1 + n/Rn. 

Iterating 2.6 gives the continued fraction expansion 

n n — 1 n — 2 1 
2.7 Rn+1 = 1 + 1+ 1+ 1+ ' " l -
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We now use elementary means to sharpen the bounds for Rn given in 1.2. 
Let an be the positive solution of x2 — x — n = 0, i.e., 

2.8 an = (1 + J (4» + 1)*). 

We prove 
2.9 an_! < R 

Proof. We proceed by induction over w. The result is trivial for n = 1. 
Assume it true for n = K, then 

2fc+1 = 1 + K/RK > 1 + X/ûfr = aK. 

Also, 
ifc+i = 1 + K/RK < 1 + K/aK-i. 

It remains to show that 
1 + K/aK-i < aK+i 

and this follows from 2.8 and simple algebraic manipulation. An easy conse­
quence of 2.9 is 
2.10 lim (Rn - »*) = | . 

In (1) it was conjectured that 

2.11 Rn ~ n* + A + Btr* + Cn~l + . . . 

for appropriate constants A, B, C, . . . . We shall prove this conjecture and 
obtain the following theorem 

2.12 Rn~nh + \-lrTh + . . . . 

Proof. Let us consider 

2.13 /„(*) = xHn{x)/Hn^{x). 

From 2.2 and 2.13 we have 

2.14 Rn = -fn(i/2*). 

However, it is well known that 

2.15 H'n{x) = 2nHn„1{x). 

Hence, 

2.16 fn{x) = 2nx TT>) : = 7 : — r r , NN '. 
^ iJn(x) (log ££(*)) 

If we restrict x to be pure imaginary, say x = it, t > 0, then the expansion 
2.3 takes the form 

2.17 Hn(x) ~ \\fi*x%?e-w** I S £/,(*) i\T' + -Lj£ V,(x) iT" 1 . 

From 2.15, Hn'(x) is known to have an asymptotic expansion of the form 
2.3. Hence differentiation of 2.3 is justified and leads to 

https://doi.org/10.4153/CJM-1955-021-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-021-8


162 LEO MOSER AND MAX WYMAN 

2.18 (logfl,(*))' ~ x - iN* + E q,{x) N" + - ^ ï Z QÀ») N~* 

where again, qv(x) and Qv(x) are polynomials in x. Since these polynomials 
contain only even powers of x, and odd powers of x respectively, the coeffi­
cients of the various powers of N~v will be real in 2.17 and pure imaginary 
in 2.18. Hence for x = i/2*, 

2hn 
2.19 Mi/2-) ~2i_Ni-+l3i + ^N-i + _ 

where Pi, p2. . . are constants. Hence, 

2.20 *~$(i+# + a + ...) 
where 71, 72. • . . are constants. Since N = 2n+l we may expand in terms of 
n and find 

*—'0+S+Ï+-) 2.21 *—'0+S+Ï+-) 
where 5i, Ô2. . . are constants. We have calculated the first three terms to be 
those given in 2.12. 

3. Asymptotic Expansions. Previously in this paper we obtained an 
asymptotic expansion of Tn by recognizing the relationship between Tn and 
the Hermite polynomials. This method of course does not help us when con­
sidering the more general problem involving Antd. In this section we shall ob­
tain an asymptotic expansion for Tn by a different method. This method not 
only applies to An>d, but also to many other problems, some of which will be 
discussed in a later paper. 

In our method we make use of a result, indicated in the following lemma, 
which is probably known. Since we have been unable to find a reference we 
include, for completeness, a proof of the 

LEMMA. Letf(z) be a function of a complex variable z regular in a neighborhood 
ofz = 0. If 
(a) /(0) = 0, 
(b) the Maclaurin expansions of f{z), ef(z) are 

00 en 

/(*) = Z akz\ etu) = 1 + E bkz\ 
k=l fc=l 

(c) \ak\ < Kak, 
where K, a are positive numbers, then 

3.1 |&*| <Kak(l+K)k~K 

Proof. By Taylor's Theorem, 

3 3 b* = kiVd?-)u 
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Since bi = ax the result is trivially true for k = 1. From 3.3 we may write 

Expanding the £th derivative of a product we have 
k 1 

3.5 bk+i = , v 2 M*-s+i(& — 5 + 1), 00 = 1. 
(^ -+- I j 5=o 

Hence 
3.6 |^+1| < X) l^lk_s+i|. 

s=0 

From (c) we obtain 

3.7 |&,+1 |<^/+1(i+ £\ba\<ra). 

From 3.7 the result follows easily by induction. 
We now proceed to outline our method for finding an asymptotic expansion 

of Tn. By 1.4 and Cauchy's theorem, 

3.8 Tn = ^ f (e°+in z-<»+1)dz, 
Zirt J c 

where C is the circle z = Reie. Hence Tn can be expressed as 

3.9 Tn=Hj emdd, 

where 
3.10 H= (n\eR+hR')/2wRn 

and 

3.11 f(fi) = R{eiB - 1) + \R\eUB - 1) - ind. 

If we let 
3.12 e = RTZ/4 

and 

3.13 / = f e/(%20 r 
jw~ 

then a simple calculation shows that \I\ = 0(e~R ). Since we shall show that 
our asymptotic expansion of the integral in 3.9 involves only powers of 1/R 
we may drop 3.13 and write 

3.14 Tn~HJ e* 
Expanding f(6) in a Maclaurin expansion we obtain 

3.15 f{6) = i(R2 + R-n)0- 62(R2 + *#) + £ (R + 2 * " 1 i ? 2 ) ^ . 

We now choose R so that 
3.16 i?2 + R - n = 0 
and define <£ by means of 
3.17 <t> = 0(R2 + *£)». 
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We may then write 3.14 in the form 

3.18 Ttt~jjCe-*'+FM)d<t> 

where 

3.19 c = e(i?2 + £R)* 

3.20 2 = 1/R 

3.21 J = H/{R* + J2Î)* 

3.22 F(s, 4>) = Ë (̂  + 2s-1) (1 + fc)-*V-' - ^ . 

Since e = R~z/\ c = 0(R1/4) and c —• oo as R —> » . Further for any fixed 
0, F(3, 0) is regular in the neighborhood \z\ < 2 and eF(z4) will have a 
Maclaurin expansion of the form 

3.23 eF = Ê ^(</>)*w, 

where ^m($) is a polynomial in <j>. Hence 

3.24 Tn ~ j [ jg ( J* e^M^d </>) zw + i?sJ 

where 

3.25 2Î. = P ( ^ ' Ë tm(<t>)zm) d4>. 
*J—c \ m—s / 

Since ^m(<£) is a polynomial in 0 and c = 0(R1/4) one can place 

3.26 P «"*>„(*) ^0 = P «"*>*(*) ^0 

with an error that is of exponential order. Hence we write 

3.27 rn - j [JC ( £ ° «-*>„(*) ̂ ^ )*m + je.J. 

In order to complete our proof we merely have to show that, for fixed 
5, \R,\ = o(M')- a 

If the Maclaurin expansion of ^(z, </>), as a function of 2, is written 

3.28 F(z, 0) = Z ar{<t>) z\ 

then by 3.22 

3.29 «,<*> - ± g [ £ C + *")d + J •r*T']j£. 
By using Cauchy's theorem for derivatives one may easily show, for | s |< l , that 

3.30 I -. j-r (s + 2*-1) (1 + **)-* V11 < 22\ 
\ r\az 1 2 = a .o 
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Hence 

3.31 M*)l < Z 
r+2(4kD* 
*=3 k\ • 

From 3.31 it is easy to show by induction that 

3.32 \ar(4)\ < (4|«|*(1 + 4\<j>\y. 

Making use of our lemma with K = (4|<£|)2, a = 1 + 4|tf>| we have 

3.33 !*„(*)| < (4|<*>|)2(1 + 4|*|)"(2 + m\)T-1-

Hence 

(4kl ) 2 ( l + 4 k [ ) 8 ( 2 + ( 4 k [ ) 2 ) ' - 1 H > 

3.34 

where 
3.35 

Z *«(*)f < M 

M = 1 (1 + 4|0 |)(2+(4|* |)») |* | . 

Now z = 1/R and in 3.25 fo|< c = 0(R^). Therefore \z\ \<fi\3 = 0(R-v*) 
—> 0 as R —> oo. Hence for sufficiently large R, Af > §. Thus one can say 

CO 

3.36 Z ^ ( * ) s m <P.(|*|)|*r, 
I m=s I 

where Ps(\4>\) is a polynomial in |<£|. From 3.25 

3.37 |iî f | < ( §\-**Ps{\4>\)d<})\z\s < £ e^Ps(\d>\)d<t>\z\\ 

Since the integral exists for each fixed 5 we must have 

3.38 \Rs\=0(\z\s) 

for a fixed s. This completes the proof of the theorem. Hence, an asymptotic 
expansion of Tn is given by 

co f " *~*V*(*) <** 
3.39 Tn 

Rm 2wRn(R2 + è#) è 

where R2 + R - n = 0. 
We have used 3.39 to show that up to and including terms of the order \/n 

3.40 Mf«'i>+ 119 
+ 

• • ) 2*el/*\e/ v V ' 24 V ^ 1 1 5 2 ^ 

Numerically Tioo is given by 3.39 to be 2.40537 . . . X 1082. Correct to six 
significant figures T100 = 2.40533 . . . X 1082. 

The method outlined here can be easily generalized, and can be used to find 
an asymptotic expansion for Antd. For example, the first term of the asymp­
totic expansion of AntP is given by 

3.41 An,p ~ p~ . ( ? ) • ' " ' " / " , p > 2. 
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4. Arithmetic properties of An>d. Let a permutation x, on n letters, be 
represented as a product of disjoint cycles. It will also be convenient to repre­
sent x by a diagram in the following way: Let a unit circle have n equi-spaced 
points on its circumference, labelled 1, 2, . . . , n. If x takes i into j , join i and j 
by a directed line segment. Thus a permutation x will be represented by a circle 
and a set of directed inscribed polygons. For example, the permutation (1253) 
(4) (67) corresponds to Figure 1. 

A rotation of the circle through 2win/n (m = 1, 2, . . . n — 1) leaving the 
labels fixed will, in general, yield a new permutation having the same order 
as the old one. If n = p, p a prime, the only diagrams left unaltered by a rota­
tion of the form mentioned above will be those corresponding to either the unit 
permutation i", or the regular directed p-gons, of which there are p — 1. 
We now use these concepts to prove 

4.1 APtd s= 1 (mod p), d ?£ p, APtP = 0 (mod p). 

Since APtP is easily seen to be (p — 1) ! + 1, the result may be viewed as still 
another generalization of Wilson's theorem. 

Proof. Suppose xd = 1, d ^ p. Apart from x = / , all solutions (diagrams) 
must come in sets of p by rotation through 2wtn/p, m = 0, 1, . . . , / > — 1. 
This proves the first part of 4.1. If xv = 1, then x = I or the diagram for x 
must consist of a directed £-gon (of which there are (p — 1) !). If we eliminate 
the diagram for i", and the p — 1 directed regular £-gons, then the remaining 
Ap,p — p diagrams must again come in sets of p, by rotation. Thus the proof 
is complete. 

In (1) it was shown that 

4.2 Tn+m = Tn (mod m) m odd. 

We next derive a similar theorem in which m is unrestricted, namely 

4.3 Tn+m = Tn.Tm (mod m). 
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Proof. For n = 0 the theorem is trivial and for n = 1 it follows immediately 
from 1.1. Assuming it true for n < k we have 

Tk+m = rA+m_i + (k + m — i)rfc+m_2 

= 7V_i. Tm + (k - 1) 7V 2 .Tm = Tk.Tm (mod ra). 

5. The alternating group. Let 2?nfd denote the number of solutions of 
xd = 1 in the alternating group on n letters. Further, let Bn,2 = Un. Define 
Vn and Wn by 

5.1 Un + Vn = Tn, Un- Vn= Wn. 

To study Un it clearly suffices to consider Wn. The analogue of 1.1 is given by 

5.2 Wn = "Wn-i - (n - 1)WV-,, Ŵo = Wx = 1. 

Proof. The only elements of order two in the alternating group on n letters 
are those which are the product of an even number of disjoint transpositions 
and the unit element. Hence the number of even elements of order two which 
can be obtained from the permutations of the digits 1, 2, . . . , n — 1 alone is 
Un-\. Further, since a single transposition is odd, the only other such elements 
are obtained by involving the digit n in a transposition with some other digit, 
and multiplying by any other odd permutation of order two, involving the 
remaining n — 2 digits. Their number is clearly (n — 1) Fn_2. Thus 

5.3 Un = Un-i+ ( n - l)7n_2 . 

Similarly we obtain 

5.4 Vn = Fw_x + (n - 1) Un-t. 

Subtracting 5.4 from 5.3 yields 5.2. 
Following the lines of the proof of 1.3 given in (1) we easily obtain 

5.5 É Wnx
n/n\ = ex~hx\ 

The analogue of 2.2 is given by 

5.6 W.-Zg&. 
Since the proof is essentially the same as that of 2.2 we omit it. The well-known 
explicit formula for Hn(x) yields the following analogue of 1.4: 

5.7 Wn = » . ' £ ( - l ) 7 2 ' j ! ( » - 2/)L 

Combining 1.3 and 5.7 yields 

[»/4] 

5.8 Un = »!]£ l/{4*(2*)!(n - 4*)!}. 
k=0 
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From the asymptotic formula for Hn(x) and 5.6 we obtain 

5.9 Wn ~ {n/e)*n 2* e1^ cos {(n + §)* - ±mr}. 

The arithmetic properties of Tn and An>d also have direct analogues. Thus 
we obtain without difficulty, 

5.10 BPtd = 1 (mod p), d ^ p, BP>P = AVtP. 

Finally, the analogue of 4.3 is given by 

5.11 Wn+m^Wn.Wm (mod«) . 

The following is a short table of Tn, Uni Wn. 

n Tn Un Wn 

0 1 1 1 
1 1 1 1 
2 2 1 0 
3 4 1 -2 
4 10 4 -2 
5 26 16 6 
6 76 46 16 
7 232 106 -20 
8 764 281 -132 
9 2620 1324 28 
10 9496 5356 1216 

In concluding we wish to thank F. L. Miksa for computing for us the exact 
values of Tn up to and including 7\52. These values have been of value to us 
in checking different forms of our asymptotic formulae. 
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