ON THE STRONG SUMMABILITY BY TRIANGULAR MEANS OF
THE DERIVED FOURIER SERIES AND ITS CONJUGATE SERIES

Narendra K. Govil

{received August 10, 1966)

1.1. ' The triangular matrix (A) = (A ), where

n, k

n=0,1,2,...; k=0,1,2,...; and )\nk=0 for k> n is re-

gular (in the sense of defining a regular sequence to sequence
transform) if

(i) im )\n = 0 for every fixed k;

n—>0

» k

n
(i1) = l)\n kl < M, independently of n;

k=0
(iiil) lim X )\n,k =1,
n—+o k
A series
(1.11) a0+a1+a2+...+an+...

is said to be strongly summable (A) or summable [A] to the
sum S, if

n
(1.12) kz_o Mok [sk -S| = o(1) as n—w,

{Sk} being the sum of the first (k+1) terms of the series (1.11).

In the following three cases:
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,k n#i
) A = — (k<) ;
’ 1
(k+1) = :
jzo U
() n_ = S (k< n);
’ 1
(n-k+1) = -
jeo U1

summability [A] becomes respectively summability Cesiro
[C, 1], a Riesz summability equivalent to [R, log n, 1], and

Norlund summability [N, ) ].

Every series with bounded partial sums and summable
[C, r] for some r > 0, is also summable [C, r'] for any
other r'> 0.

1.2. Let f(t) be a function of bounded variation with
period 2w . Let the Fourier series of f(t) be

0
(1.21) 1.4z (a cosnt+b sinnt).
2 o 1 n n

Then the derived Fourier series of f(t) and the series
conjugate to the derived Fourier series are respectively

0
(1.22) Z n(b cosnt- a sin nt)
n n
n=1
and
©
(1.23) Z n(b sinnt +a cos nt).
n n
1
2. In generalization of two theorems proved by Prasad

and Singh [1, 2], the following theorems are established.
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THEOREM 1. Let ()\n k) be a regular sequence to se-

el

quence triangular matrix, satisfying the additional condition

n
(2.1) lm I |ax
n—+w k=0

[=0  (ax_ _=x_ . -\ ).

n, k n,k "n,k “nk+1

Let f(t) be a continuous function of bounded variation with
period 2w , such that

P £
(2.2) G(t) = {) ldg(u)]zo{L(i/t)} ast—0,
where
(2.3) glu) = g(x, u) = f(x+u) +f(x-u) - 2uf'(x),

f'(x) being the first generalized derivative of f(t) at t = x, and
furthermore

©  du

(2.4) L(u)>6>0 (u>u), / T <

Then the series (1.22) for t = x is summable [A] to f'(x),
provided that f'(x) exists.

THEOREM 2. Let the matrix ()\n ) be as in Theorem

,k
1. Let £f(t) be a continuous function of bounded variation with
period 2w , such that

t
t
fo ,dh(u”:o{————-—L(i/t)} as t=>0,
where

h(u) = f(x+u) + f(x-u) - 2f(x),

and furthermore IL(u) satisfies the two conditions of Theorem 1.
Then the series (1.23) for t =x is summable [A] to

™
H(x) = - :}11; f h(x) cosec2 x/2 dx
0
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provided that this integral exists at the lower limit in the usual
Cauchy's sense.

In order to prove the theorems, we need the following
lemma.

LEMMA. [3, theorem 6]. For a function £(t) of bounded
variation with period 2w , continuity is equivalent to

n
lim X ])\n’k[k(lak] + ]bkl):o
n—+w k=0

whenever (\ k) is a regular sequence to sequence matrix
n

’

satisfying condition (2.1).

3. Proof of theorem 1. If Sn(x) denotes the sum of

the first n terms of the series (1.22), at t = x, we get

_ 1 d ,sin(n+1/2)(x-u)
Sn(x) T 2w { dx { sin (x-u)/2

} f(u) du.

Following Prasad and Singh [1], we get

1 .
Sn(x) - 2+ fn sin(n+1/2)t dg(t) +£'(x) |
o

sin t/2

where f'(x) denotes the generalized differential coefficient of
f(t) at t=x, and g is given by (2.3).

Therefore, putting ¢ =¢ (x) = +1 in such a way as to
v v -

make € {S (x) - f'(x)} >0 for v=1,2,3, ..., we have
v v -

n
= o |S(x) - f'(x)]
n,vy v

v=1 !
4 02 sin(v + 1/2)t
= = e\ L dg(t)
(3.1) 2T { V=1 v n,v sin t/2
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1 ™
= — f cott/2 = A ¢ sin pt dg(t)
2w nv v
o v=1
1 2
-— z
> { x )\n,v sv cos vt dg(t)
= P+ Q, say.

Following Prasad and Singh [1, p.283] and [2]
Il fﬂ cos vtdg(t)|<v(la | + |b |) +o(1) as v—= o,
LA = v v

where a , b are the Fourier coefficients of f(t), so that
v v

n ™
[Q’s% z %lf cos vt dg(t)[[x_ vl
1 0 '
n n
(3.2) <z = fullal+ b h+o(= [ D)
1 » V 14 v 1 n,v

= o(1) as n=- @, by the lemma and by regularity
of ()\n k) .

Let €> o be given; then by (2.2), §' can be chosen in
0< §'< m and sufficiently small that

(3.3) G(t)L(ti)<et for o< t< 8! .
To estimate P, we then write

1:;.=2_1 f + f + fw)cot t/2 )\n(t)dg(t)
1/n 5!

"

1
- + P.),
2w (P1 PZ * 3)

where
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My
™

1N sin yt.

(3.4) )\n(t) = v n,v

v=1

But

n
ol = I Tvlsint]
v=1

n
5_n|51ntl z l)\n {

v=1 v

< Mn [sin t|, by regularity of (Xn k) .

Therefore

1/n

[Pil <M f n sin t cot t/2 |dg(t)|
o
1/n
<2M [ =nldgt)]

o

(3.5) = 2Mn G(1/n)

1
o{Tm?}  bv(22)

o(1) as n—- o, by (2.4) .

Also (3.4), and the regularity of ()\n ) , gives at once

, k

n
<z I <M,
n n,

v=1

so that

6]
[P_| < M cot t/2 |dg(t) | .
2 2w {/n

2
Noting that t2 /2 cosec t/2 <5 for o< t<mw, and using

(2.4) and (3.3), integration by parts gives, for all n> % ,
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5
f cot t/2 ldg(t)l

1/n
= [G(t) tt/2]6' + 6'1 Z-t-G(t)dt
= [G(t) co 1/n f 5 cosec S
1/n
6|
< G(§') cot&'/Z-G(i)cotZ—in + 5¢ dt1
n 1/n tL(})

A

2 . L{1/s")
5 S8 Tiyeny TEE

2
< —e+Ke ;
s €

thus

(3.6) |P2[<K e for fixed §' and for any n> 1/§"'.

1
Lastly define B(t) to be an even function, vanishing for
o< t<§', and such that
1 L 1 ”
= = t);
Py=7 {' cot t/2 \_(t) dg(t) = 5= { x_(t) dB(t)

thus p(t) is a continuous function of bounded variation in
[-w, =], and

n
lP,ls;_f; = lxMHITr sin vt dp(t) |
v=E (o]
n
1 1] 1
<50 I ])\n’v,v(lav}+lbv|),

1 1

where a , b are the Fourier coefficients of g(t). It then
v v

follows by the lemma that

(3.7) P3=o(1) as n—+ o, for a fixed §'.
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Substitution of (3.2), (3.5), (3.6), (3.7) into (3.1), and
reference to the definition of strong summability in (1.12), com-
pletes the proof of theorem 1.

We omit the proof of the theorem 2.

I am thankful to Professor Q.I. Rahman for his kind help
in the preparation of this note.
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