
J. Plasma Phys. (2020), vol. 86, 905860401 c© The Author(s), 2020.
Published by Cambridge University Press
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/S0022377820000653

1

Solving gyrokinetic systems with higher-order
time dependence

A. Y. Sharma 1,‡ and B. F. McMillan 1,†
1Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick,

Coventry, CV4 7AL, UK

(Received 29 January 2020; revised 28 May 2020; accepted 1 June 2020)

We discuss theoretical and numerical aspects of gyrokinetics as a Lagrangian
field theory when the field perturbation is introduced into the symplectic part. A
consequence is that the field equations and particle equations of motion in general
depend on the time derivatives of the field. The most well-known example is when
the parallel vector potential is introduced as a perturbation, where a time derivative
of the field arises only in the equations of motion, so an explicit equation for the
fields may still be written. We will consider the conceptually more problematic case
where the time-dependent fields appear in both the field equations and equations
of motion, but where the additional term in the field equations is formally small.
The conceptual issues were described by Burby (J. Plasma Phys., vol. 82 (3), 2016,
905820304): these terms lead to apparent additional degrees of freedom to the
problem, so that the electric field now requires an initial condition, which is not
required in low-frequency (Darwin) Vlasov–Maxwell equations. Also, the small terms
in the Euler–Lagrange equations are a singular perturbation, and these two issues are
interlinked. For well-behaved problems the apparent additional degrees of freedom
are spurious, and the physically relevant solution may be directly identified. Because
we needed to assume that the system is well behaved for small perturbations when
deriving gyrokinetic theory, we must continue to assume that when solving it, and
the physical solutions are thus the regular ones. The spurious nature of the singular
degrees of freedom may also be seen by changing coordinate systems so the varying
field appears only in the Hamiltonian. We then describe how methods appropriate
for singular perturbation theory may be used to solve these asymptotic equations
numerically. We then describe a proof-of-principle implementation of these methods
for an electrostatic strong-flow gyrokinetic system; two basic test cases are presented
to illustrate code functionality.

PACS: fusion plasma, plasma dynamics, plasma instabilities

1. Introduction
Generally, one would like to be able to model the self-consistent low-frequency

dynamics (below the gyrofrequency) of plasma in general time-varying electromagnetic
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fields. In order for a gyrokinetic approach to be feasible, certain constraints on the
amplitude or wavelength of the fields are implied, but these should ideally be as weak
as possible. We have derived a gyrokinetic formalism, in a Lagrangian formalism,
which allows for quite general fields (McMillan & Sharma 2016): this paper is
motivated by questions of how to derive and implement equations of motion in such
theories. Essentially, the complication relative to more standard gyrokinetic theories
is that the self-consistent electromagnetic fields appear in the symplectic part of the
Lagrangian. Although certain other formalisms share this feature (a review of the
typical theory is found in Brizard & Hahm (2007)), additional issues arise due to the
more general nature of the symplectic scheme in McMillan & Sharma (2016), as well
as in certain drift kinetic theories (Miyato et al. 2009) and higher-order weak-flow
gyrokinetics (Parra & Catto 2008): time derivatives of the field appear both in
the equations of motion and the field equation, unlike in the standard symplectic
electromagnetic (EM) formulation. These additional terms in the field equation, under
investigation here, are formally small, and thus tempting to treat as corrections, unlike
the terms that appear in the standard symplectic EM formulation.

Some somewhat subtle problems then arise in the specification and solution of such
equations, and their relationship to standard gyrokinetic theory (Burby 2016); the
‘auxiliary field’ φ appears as a dynamical variable requiring an initial condition, and
unphysical rapid variation of the solutions to the Euler–Lagrange equations appears.
This is odd because the field φ may be written in terms of the particle distribution
function in Vlasov–Maxwell theory, so should not appear as an extra degree of
dynamical freedom. Burby (2016) explains a method to resolve this; we will explain
a related approach to removing these unphysical degrees of freedom, as well as how
to implement a more direct approach that simply imposes regular behaviour in the
small-perturbation limit. We will first explain how these complications arise in an
electrostatic theory (Sharma & McMillan 2015).

The normalised gyrocentre particle Lagrangian up to first order in this formalism
is

Lp = [A(R)+ v‖b̂+ u] · Ṙ+µθ̇
− ( 1

2v
2
‖
+µB+ 1

2 u2
+ 〈φ〉), (1.1)

where A is the magnetic vector potential, R is the gyrocentre position, v‖ is the
parallel particle velocity, b̂ is the magnetic field unit vector, µ is the magnetic
moment, θ is the gyroangle, B is the magnetic field strength,

〈ψ〉(R, µ, t)=
1

2π

∫
dθ d3rδ(R+ ρ − r)ψ(r, t) (1.2)

defines the gyroaveraging operator, ρ is the gyroradius vector, r is the field position,
φ(r, t) is the electrostatic potential,

u= b×∇〈φ〉/B (1.3)

is the flow velocity and t is time. Note that this formalism is equivalent to standard
symplectic electrostatic drift-kinetic theory if the gyroaveraging is suppressed, and the
drift-kinetic Euler–Lagrange equations are subject to the same complication.

For simplicity, we consider two-dimensional simulations in the plane perpendicular
to the magnetic field. For this geometry, we can find equations of motion and a field
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Solving gyrokinetic systems with higher-order time dependence 3

equation obtained from our first-order gyrocentre Lagrangian from variational theory.
The equations of motion are

Ṙ= u+ v‖b̂+ B∗−1
‖ b̂× u̇1,

v̇‖ = 0 and
µ̇= 0.

 (1.4)

Note that, unlike standard gyrokinetic theory, the polarisation drift now appears in the
drift motion, in terms of the time derivative of the flow (note that the polarisation drift
appears in the equations of motion even in certain weak-flow formalisms (Heikkinen
et al. 2008)).

The field equation is

0=
∫

d6Zδ(R+ ρ − r)(B∗
‖
F+ B−1

∇ · [Fu̇1]), (1.5)

where F is the gyrocentre distribution function and d6Z = B∗
‖

dR dv‖ dµ dθ . We have

B∗
‖
= b̂ · (B+∇× u)= B+ B−1

∇
2
〈φ〉 (1.6)

and
u̇1 = (∂t + u · ∇)u. (1.7)

The first term in the field equation (1.5) contains the effect of polarisation through
the dependence of the phase-space volume on potential (as the polarisation drift is
retained in the gyrocentre trajectory). These equations reduce to drift-kinetic theory if
the gyroaverage is set to an identity.

The third term in the equation for Ṙ (in (1.4)) and the second term in the right-
hand parentheses in our Poisson equation (1.5) contain a partial time derivative of
the potential-dependent flow velocity. These terms, however, are actually of higher
order (in ε = ∇2φ) than the dominant terms in these expressions: this is obvious
for the polarisation drift, but it requires some work to show why the term in the
Poisson equation is small (and the distribution function must not have too strong a
gradient). We would therefore be justified in neglecting them, given the theory is only
valid up to first order. It is nonetheless useful to keep them, in order to derive a
conservative numerical scheme: we are interested in solving over transport time scales
where secular accumulation of small fluxes might potentially be important. Retaining
these formally small terms is also necessary for consistency if higher-order terms are
kept in the Lagrangian.

A difficulty arises because both the field equation and the equation of motion
involve the polarisation drift (as in Heikkinen et al. (2008)), so involve the time
derivative of the electrostatic potential. We will show why for these equations, an
iterative solution approach is justified. Essentially, this is permitted by the formal
smallness of the time derivatives, so they may be treated as corrections; if they
were large, on the other hand, they would fundamentally change the nature of the
equations.

In certain other symplectic electromagnetic formalisms (indeed, in the formalism
often just called symplectic gyrokinetics), the field time-derivative term (of the parallel
vector potential) in the equations of motion is of the same order as the remaining
perturbed motion and, in particular, contains the lowest-order physics of the Alfvén
waves. Thus, a direct iterative approach would not normally converge (Belli &
Hammett 2005); however, where the time derivative of the fields only appears in
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the equations of motion and not the field equation, an explicit equation for the time
derivative of A‖ may be written by taking the time derivative of the field equation
and substituting in the Vlasov equation (Manuilskiy & Lee 2000; Görler et al. 2011;
Mandell et al. 2020). That is, these terms do not actually lead to the conceptual and
numerical problems explored in this paper. In a general setting, a combination of
that approach and the iterative scheme described in this paper may be necessary: an
explicit equation for the lowest-order solution of the time dependence of the fields,
plus an iteration approach to deal with small terms that create a dependence on
higher-order time derivatives.

2. Converting between symplectic and Hamiltonian forms
One approach to solving systems with a symplectic form containing a time-varying

field is to split the symplectic form into a large part and a correction, γi = γ
0
i + εγ

1
i ,

where γ 0
i (Z, t) is independent of the perturbed field, and find a change of variables to

convert to a Hamiltonian approach. The choice of splitting is obvious for perturbative
theories. Another approach is to use a splitting based on an approximate solution φ0

for the fields, which is dependent on the particle positions, but not on Ż (a related
version of this approach is suggested in Burby (2016)). One may then write γ (φ,Z)=
γ (φ0, Z)+ γ (φ − φ0): in our case, φ0 is found by neglecting the second term in the
Poisson equation. We then identify γ 0

= γ (φ0, Z) and γ 1
= γ (φ − φ0).

In order to keep the splitting procedure entirely described within the variational
formalism, an additional equation describing the approximate Poisson equation, and
thus φ1, may be added to the system Lagrangian via a Lagrange multiplier. Neither the
splitting nor this additional equation modify the solutions to the dynamical equations,
but simply serve to identify a small term γ1 in the symplectic form. The particle
Lagrangian L may then be transformed to show that

L = (γ 0
i + εγ

1
i ) dZi + (γ

0
0 + εγ

1
0 ) dt

= γ 0
i dZ′i + [γ

0
0 + ε dS/dt+ εγ 1

0

+ ε(γ 1
i − dS/dZi)ω

−1
ij ωj0] dt+O(ε2), (2.1)

where a near-unity transform Z′ = T(Z) has been used to eliminate γ 1 from the
symplectic form, ω is the Poisson matrix associated with γ 0, S is a gauge function
that may be chosen to simplify the Hamiltonian, the implied sums are over indices
i ∈ 1, 6 and all functions in the last line are evaluated at Z′. The Lie transform
approach may be used to eliminate γ 1 from the symplectic form at all orders, but
only the solution at lowest order is shown explicitly.

For standard symplectic EM theories, the transform T amounts to the replacement
p‖ = qA‖ + mv‖. Taking instead p‖ = q(A‖ − A0

‖
) + mv‖, where A0

‖
is an approximate

solution for the vector potential (for example, one may compute its time dependence
using the zero-resistivity limit of Ohm’s law E‖ = 0) is the basis for the partially
symplectic approach of Mishchenko et al. (2017). The transform performed in this
section is a generalisation of the partially symplectic approach for general Lagrangian
forms. As a result of the transform, the perturbed field now appears only in the
Hamiltonian, through γ1. Variation of the potential then results in a field equation
dependent only on the set of particle coordinates Z, but not on Ż (in the standard
symplectic EM case, the result is the integral of the p‖ current). The result is a
solution for φ and thus Ż′ consistent with the original Lagrangian, which may locally
(in a short time window) be expressed as a power-series expansion in ε.
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We do not pursue this approach as a practical way to solve gyrokinetic equations:
the use of an approximate field solution as part of an additional transform appears
likely to lead to particularly messy expressions for general cases. But this approach
does show the existence of a solution (for the particle trajectories Z and φ) which has
a regular power-series expansion, as long as an approximate solution A0 may be found.
We will use a more direct approach to find the terms in the expansion order-by-order.

3. Form of the field equation in this symplectic theory
In general, gyrokinetic theory is an asymptotic theory, constructed on the

assumption that the local dynamics (i.e. over a sufficiently short time interval),
and thus φ and Z, depend smoothly on a small parameter, so they may be written
(over short time intervals) as an asymptotic power-series expansion in terms of the
ordering parameter ε and time. That is, the formalism neglects effects which are
asymptotically small, such as resonances between gyration and drift motion, because
they do not appear in the power-series expansion, as well as effects on short time
scales comparable to the gyration time. Note that the correct ordering of generators in
the Lie transform also depends on the smooth dependence of the dynamics, which is
a requirement to be able to derive gyrokinetic theories using Lie transform methods.
The considerations of the previous section demonstrate that we may convert the
symplectic formalism to a Hamiltonian formulation where there is no time derivative
of the field in the Poisson equation, and solve it in the usual way, to find a solution
regular as ε→ 0. It is more straightforward however to simply determine the terms
in this power series directly without an additional coordinate transform.

Time derivatives appear in the Poisson equation, equation (1.5), multiplied by (some
power of) the ordering parameter with a dependence of the form

0= εA
dφ
dt
+ Bφ +C. (3.1)

A direct solution of this equation coupled to the particle equations of motion requires
an initial condition for φ, which is surprising, since in a low-frequency (Darwin)
theory we expect φ to be a function of the particle positions. Also, if we were to
ignore the required slow time variation of the solutions, the derivative term would be a
singular perturbation, because the ordering parameter multiplies the highest-order term.
Solutions in general would vary in a singular fashion as ε→ 0, rather than smoothly
approaching the ε=0 limit. The typical variation time scale would go as ε−1 as ε→0,
which is not formally compatible with the assumed time-scale ordering of gyrokinetics.
In order to impose that the term multiplied by ε be small, we find a power-series
expansion in ε that satisfies the equation.

Singular initial-value differential equations may often be solved by separating space
into a transient (inner) region with rapid time variation where the term involving high-
order time derivatives is comparable to other terms, and a smooth outer region, where
the singular term is relatively small (O’Malley Jr. 2013). The outer solution is defined
as the limit of a Picard iteration (and this is generally how it is found in practice).
That is, given φ0 satisfying Bφ0 +C= 0 and, for n> 0,

0= εA
dφn

dt
+ Bφn+1 +C (3.2)

and the outer solution is taken to be φ= limn→∞ φn. These equations need to be solved
simultaneously with the Vlasov equation (or equations of motion in the Lagrangian
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formulation), which also involves the derivative of the field φ and determines the
operators A,B and C (most obviously because the particle distribution determines the
gyrocentre charge density); we have

dZn+1

dt
= Ż0

(φn+1)+ εŻ1
(

dφn

dt

)
, (3.3)

where Z0 and Z1 denote the equations of motion (1.4) split by order of the terms.
If this process converges, φ is a solution to the original equation, with a smooth
dependence on ε near ε = 0. We do not attempt to find conditions under which this
series converges; proving this would require an examination of the spectral properties
of the problem-specific operators. For well-behaved systems, one expects a finite
radius of convergence in ε (because the iteration involves a small parameter, unlike
Belli & Hammett (2005)).

Given that the fast dynamics appears to be spurious, and that the physical dynamics,
at least locally, should smoothly tend to the ε= 0 case in the ε→ 0 limit, we suggest
that this outer solution is the physically relevant one. Because this choice also removes
the extra degrees of freedom (specification of the initial value of φ), this allows an
unambiguous specification of the initial conditions using the particle distribution. The
outer solution then satisfies both the initial condition and the time-evolution equations
(gyroVlasov–Maxwell), and evolves on time scales consistent with the assumed
time-scale ordering, and thus meets the requirements of a correct solution. There may
well be physical transient dynamics that occurs on faster time scales (comparable to
the gyrofrequency), but we have, in any case, chosen to neglect this as part of the
gyrokinetic ordering, so it is consistent to also neglect it here.

4. Numerical solution of outer time-evolution equations
The outer solution to the time-evolution equations is defined using a Picard iteration

method, and numerical methods can directly implement this iteration procedure. As
part of this process, the time derivative of the field must be evaluated and, given
the value of the field on the time-grid points, this may be constructed using standard
finite-difference methods. Numerical methods to solve these asymptotic methods are
not novel (Abrahamsson, Keller & Kreiss 1974; O’Malley Jr. 2013), but will likely
be unfamiliar to most plasma physicists.

We will illustrate how such methods work by describing a simple approach based
on the fourth-order Runge–Kutta integrator. Based on the values at either end of
the Runge–Kutta time step, a time-continuous interpolator for the field (a dense
representation) may be constructed, to allow the time derivative to be calculated for
the next Picard iteration. We represent the equation to be solved as

U
dX
dt
= A(X)+ εB

dX
dt
+ ε2C

d2X
dt2

, (4.1)

where X is some general (e.g. vector) quantity. For the gyrokinetic problem, the
variable X would represent the extended system state (φ, f ), and the operators
U, A, B and C encode the coupled Vlasov–Poisson system.

We choose to construct X0(t) via a standard fourth-order Runge–Kutta scheme,
which we take two steps of, from time point T to T + h/2, then to time point T + h.
Five intermediate values Xi(T), X′i(T), Xi(T + h/2), X′i(T + h/2) and Xi(T + h) are
used, here with i= 0, to construct a fourth-order polynomial interpolant X†(t) on the
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domain t∈ [T,T + h]. Differentiation of X† then yields approximations to the first and
second derivatives on the domain that are accurate to order h4 and h3, respectively.

The Picard iteration procedure then consists of solving

U
dXi

dt
= A(Xi)+ εB

dX†
i−1

dt
+ ε2C

d2X†
i−1

dt2
(4.2)

for each i using Runge–Kutta and then finding the dense approximant X† (with
X−1= 0). The time derivative has accuracy one order in h lower than the Runge–Kutta
solution, but is multiplied by ε in the iteration step, so the overall accuracy of the
method is

∑P
N=0 hNεP−N , where P= 4 is the accuracy of the Runge–Kutta scheme we

have chosen. Also, the formal accuracy does not improve after the fourth iteration.
We illustrate the first two steps of this iteration scheme.

First, we solve the unperturbed system

U
dX0

dt
= A(X0) (4.3)

and find X†
0 ∼ X0. The next iteration is then constructed using

U
dX1

dt
= A(X1)+ εB

dX†
0

dt
+ ε2C

d2X†
0

dt2
(4.4)

and the order ε and ε2 terms involving higher-order time derivatives may be directly
evaluated to yield a time-varying inhomogeneous term on the right-hand side of the
equation; this is a first-order ordinary differential equation for X1.

Although this provides a method to construct a solution to the order of accuracy
desired, the computational expense scales like P + 1. A more efficient approach is,
apart from at the first time step, to reuse the polynomial interpolant from the previous
time step. This is most obviously compatible with the use of multi-step methods
where the maximum step size is small compared to Runge–Kutta-type methods, so
the amount of extrapolation required is small. If stability is not significantly modified
due to finite-ε effects, the computational expense is not significantly worse than the
ε = 0 case.

Note that this approach may also be used as a way of speeding up various iterative
schemes found in certain gyrokinetic codes (Mishchenko, Könies & Hatzky 2005;
Bottino et al. 2010). That is, we can use polynomial extrapolation to find an accurate
‘starting’ value for these schemes.

4.1. Two example problems
Two problems are considered. The first is a first-order nonlinear problem (which
tests the nonlinear behaviour of the scheme) and the second is a linear second-order
ordinary differential equation with constant coefficients and a forcing (demonstrating
that we can find the outer solution to a singular perturbation problem).

First, consider the equation
ẏ= e−y

+ εẏ, (4.5)

which has the solution

y= log
[

t
1− ε

+ ey0

]
. (4.6)
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(a) (b)

FIGURE 1. Absolute error per unit time, versus time step h, of the augmented RK4
scheme used to solve (4.5), for (a) ε = h and ε = h2, and (b) ε = h1/2. These are plotted
in black with the expected scaling shown as a red trace.

We will solve this problem using the iterative approach discussed in the previous
section. To check that the implementation matches the theoretical scaling, we perform
a single step of this augmented RK4 scheme and examine the dependence of the error
on ε and h. Three scans are performed in the range h= [0.01, 0.1], with ε = hα for
α ∈ {1/2, 1, 2}. The dominant errors per unit time should scale as O(εbh4−b) with
b∈ [0, 4]. Therefore, we expect that for α ∈ {1, 2} the error should scale as O(h4) and
for α = 1/2 it should scale as O(h2); this is confirmed numerically in figure 1.

Second, take the equation

ε
d2y
dt2
+

dy
dt
= cos(t), (4.7)

which has the solution

y=C1 exp(−t/ε)+C2 +
1

1+ ε2
(sin(t)− ε cos(t)), (4.8)

where the outer solution with C1= 0 does not exhibit the rapid transient. We solve for
the outer solution using the same iterative numerical method with ε = 0.1 and time
step h= 1/3. The analytical solution and the error as a function of time are plotted
in figure 2. Adequate numerical performance is seen.

5. Numerical scheme for implicit Vlasov–Poisson

To demonstrate that this methodology may be practically implemented in a
gyrokinetic code, we discretise the Vlasov–Poisson equations (equations (1.4) and
(1.5)) using a δf particle-in-cell (PIC) method (Lanti et al. 2020) and use the
resulting code for two example applications. Monte Carlo markers are used to
represent distribution function quanta, employing the splitting F=F0+ δF, where we
choose the equilibrium part F0 = n0(2πT)−3/2e−((1/2)v

2
‖
+µB)/T to be Maxwellian, n0(R)

is the background density, T(R) is the temperature, v is the particle velocity and the
fluctuating part δF is discretised as follows.
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FIGURE 2. Numerical solution to (4.7) (solid trace), and the difference between this and
the exact solution (dashed trace), multiplied by 104, for ε = 0.1 and h= 1/3.

5.1. Discretisation
We define

δF = NpN−1
N∑

n=1

2πB∗−1
‖

wn(t)δ(R−Rn(t))δ(µ−µn(t))

× δ(v‖ − v‖n(t)), (5.1)

where Np is the number of particles, N is the number of markers and wn is the marker
weight. Integrating both sides of (5.1) over a region Q of volume Vn associated with
a single marker (the marker phase-space volume) and considering the limit where this
volume is small, so quantities may be considered constant in this volume, we have

δFnVn =NpN−1wn(t), (5.2)

where δFn is the average value of δF over Q, with

Vn =

∫
Q

d6zn (5.3)

and d6zn=B∗
‖

d3R dµ dv‖ dθ . The value of Vn depends on how the markers are loaded.
More specifically, based on the algorithm chosen for sampling phase space, we can
compute the distribution of markers g(Z), which is defined so that over some volume
the total number of markers is

N =
∫

gB d3R dµ dv‖ dθ. (5.4)

We then have
Vn = B∗

‖
/gB. (5.5)

If we load our markers uniformly in some region of R and (µ, v‖), then we have
g constant in this region and zero elsewhere. The magnitude of g is then the total
number of markers divided by the volume of the phase-space region where markers
are loaded.
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5.2. Initialisation: phase-space volume
Since B∗

‖
, defined in (1.6), is potential-dependent, we cannot directly find Vn (5.5)

even though g is known. Instead, we use the approximation B∗
‖
= B as an initial

approximation to Vn. We can then set wn from the specified initial distribution
using (5.2).

Upon computing the potential to lowest order in ε, we compute B∗
‖

and then find the
corrected value for Vn (at first order in ε). To keep φ constant when correcting Vn, we
do not alter wn. This means that although the state of the initialisation is internally
consistent, the actual initial δFn in the simulation is slightly modified compared to
the nominal value specified in the input file. Note that higher-order corrections to the
potential depend on Vn, so this update would need to be included in the iterative loop
at the first time step to allow higher-order consistency: the current implementation
does not account for this.

5.3. Time evolving the Vlasov–Poisson system
We have discussed general methods for solving coupled time-evolution equations like
our Vlasov–Poisson equations. For our proof-of-principle code, however, we use a
simplified low-order method. Our Poisson equation (1.5) and the Euler–Lagrange
equation (1.4) contain an implicit term involving u̇1, which cannot be directly
computed from the system state (marker weights and positions). We use a single-step
method in order to compute u̇1. We begin by taking a small Euler time step of
length h′ with the terms involving u̇1 neglected. We may then approximate u̇1 via
finite differences as

u̇1(t) = h′−1 (u{R(t)+ h′u[R(t), t], t+ h′}
−u{R(t), t}) . (5.6)

In order to evolve our markers, we use a fourth-order Runge–Kutta time-integration
scheme. This requires evaluating the time derivative of the trajectories for each
substep, at time points within the interval [t, t + h]. At each substep, an Euler time
step of length h′ is used to evaluate the implicit time derivatives, which are correct
to first order in ε and h′. Overall, the error per unit time of this method (analysed
in the same way as the methods described above) is O(h4

+ εh′ + ε2).

6. Gyrokinetic simulations
6.1. Kelvin–Helmholtz instability

6.1.1. Weak flows
In the weak-flow and cold-ion limits, our Vlasov–Poisson system is equivalent to

the Hasegawa–Mima equation (Hasegawa & Mima 1977; Horton & Hasegawa 1994).
The Hasegawa–Mima equation exhibits cascade and inverse cascade phenomena, and
describes perpendicular modes that lie in the plane perpendicular to a slab magnetic
field. Analytic linear growth rates may be computed by assuming a three-wave
coupling, for which

|φk1 | � |φk2 | ∼ |φk3 | � |φkn |, n 6= 1, 2, 3, (6.1)

where φkm is the complex Fourier mode amplitude, km is a wavevector and n,m∈Z+.
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Weak-flow code verification was performed by comparing linear Kelvin–Helmholtz
instability growth rates computed from gyrokinetic simulations with the analytic and
semi-analytic results.

The converged simulations used gyrokinetic hydrogen ions, 224 markers, adiabatic
electrons, uniform background densities, uniform ion and electron temperatures, an ion
to electron temperature ratio of Ti/Te= 10−4 and a time step equal to the ion thermal
gyroperiod. The doubly periodic, two-dimensional spatial simulation domain used a
64× 32 grid in (x, y) and a length πρti in the y direction.

The potential was initialised to contain background and perturbation sinusoidal
components in the y and x directions, respectively. This was achieved by initialising
δf as

δf = A[sin(kyRy)+ 10−4 cos(kxRx)]F0, (6.2)

where A= 47.5 is the δf amplitude and kx and ky= 2ρ−1
ti are the wavenumbers in the

x and y directions, respectively (a scan over kx was performed at fixed ky).
As multiple unstable modes are present in the simulation, we do not expect

agreement with the analytic, three-wave-coupling result (6.1), but do expect agreement
with a semi-analytic result derived in a similar manner to that of Rogers & Dorland
(2005) as follows.

During the linear period of the simulation, the potential is given by

φa = A sin(kyy)+ eγ t+ikxx
∞∑

n=−∞

φneinkyy, (6.3)

where γ is the linear growth rate and i in an exponent is the imaginary unit. By
substituting this potential (6.3) into the Hasegawa–Mima equation, we obtain the
eigenvalue equation

∞∑
n=−∞

{γ (n2k2
y + k2

x + 1)+ iAkxky[(n2
− 1)k2

y + k2
x ]

× cos(kyy)} φneinkyy
= 0. (6.4)

By using a change of basis via

∞∑
n=−∞

φneinkyy
=

∞∑
n=0

an cos nkyy+
∞∑

n=1

bn sin nkyy (6.5)

and the orthogonality of sine and cosine, the eigenvalue equation (6.4) can be written
in the form

Ma= γ a, (6.6)

where M∈Cn×n is an infinite square matrix, n∈Z+, a=am and m∈Z∗. The eigenvalue
equation in this form (6.6) can be solved numerically by computing the maximum
real eigenvalues of a truncation of M that corresponds to our finite discretised spectral
range.

The simulated, semi-analytic (6.6) and analytic (6.1) linear Kelvin–Helmholtz
instability growth-rate spectra are shown in figure 3. As expected, we only have good
quantitative agreement between the simulated and semi-analytic (6.6) spectra.
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FIGURE 3. Linear Kelvin–Helmholtz instability growth-rate spectra for the gyrokinetic
simulation (points) and semi-analytic result (solid curve). The analytic, three-wave-
coupling result (dashed curve) is shown for comparison. The simulation parameters are
described in § 6.1.1.

6.1.2. Strong flows
The growth rate of the conventional Kelvin–Helmholtz instability is symmetric with

respect to the sign of the parallel vorticity. However, for extended magnetohydrody-
namics (MHD) that includes finite-Larmor-radius effects (Nagano 1978), an asymmetry
appears (this effect has also been seen with hybrid codes (Gingell et al. 2012)).

The simulations used gyrokinetic hydrogen ions, 223 markers, constant electron
density, uniform background ion density, uniform ion and electron temperatures,
Ti = Te and a time step equal to the thermal gyroperiod. The doubly periodic,
two-dimensional spatial simulation domain used a 64× 64 grid in (x, y) and a length
Ly = 40πρti in the y direction. The potential was initialised to contain a shear layer
dominated by a single sign of the parallel vorticity with u∼ 1 in the y direction, and
a sinusoidal perturbation in the x direction. This was achieved by initialising δf as

δf = A{exp[− 1
2(y− Ly/2)2/σ 2

] + c+ 10−4 cos(kxx)}F0, (6.7)

where A=±2.54×10−4 is the δf amplitude (the sign of which allows the initialisation
to be dominated by the corresponding sign of parallel vorticity), σ = Ly/13.43, kx is
the wavenumber in the x direction and c = −

√
π/13.43 is chosen to enforce the

requirement that the total charge density in the simulation domain is zero.
The implicit term u̇1 (1.7) is a polarisation drift term that contains the centrifugal

drift (Brizard 1995). Without the sinusoidal perturbation in δf (6.7), this initialisation
corresponds to a laminar flow, for which u̇1 is zero. However, the seeding of a Kelvin–
Helmholtz instability of the background shear layer corresponds to a non-zero u̇1 that
increases in magnitude as the amplitude of the perturbation grows and large curved
flows arise.

The dependence on the sign of the vorticity enters through the second term in
B∗
‖

(1.6). Therefore, due to the presence of B∗
‖

and u̇1 in the last term in Ṙ (in (1.4)),
this term is a strong-flow term that is asymmetric with respect to the sign of the
parallel vorticity.
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FIGURE 4. The difference between the growth-rate spectra for positive and negative
parallel vorticity for the gyrokinetic simulation and analytic extended MHD (Nagano
1978). The simulation details are given in § 6.1.2 and ky = 2π/Ly.

The difference between the growth rate spectra for positive and negative parallel
vorticity is plotted in figure 4 for both extended MHD that assumes a thin
incompressible shear layer (Nagano 1978) and the gyrokinetic simulation. There
is good qualitative agreement between the two models and the asymmetry is of the
same order of magnitude in both cases.

The dependence on the sign of the parallel vorticity is due to the chirality of
gyromotion (Nagano 1978; Gingell et al. 2012). That is, the net flow depends on
whether the shear flow and gyromotion are correspondent.

6.2. Blob motion
We examine the motion of a self-advecting blob of plasma, which initially consists
of a pair of vortices of opposite sign. This is intended to be representative of the
plasma blobs that form in the tokamak edge, driven by gradients in the plasma and
magnetic field; as we are considering a simulation with a homogeneous B field, we
will be simulating only the late-time behaviour of these blobs and ignoring the drive
process itself (Krasheninnikov 2001). In the long-wavelength limit, the solutions
of gyrokinetics are related to the Euler equation, which has solutions in terms of
trajectory equations for localised vortices.

The simulations used gyrokinetic hydrogen ions, 226 markers, constant electron
density, uniform background ion density, uniform ion and electron temperatures,
Ti = Te and a time step equal to the thermal gyroperiod. The doubly periodic,
two-dimensional spatial simulation domain used 256 grid points and a length of
L= 80πρti in each direction. The initialisation of δf was given by

δf = AF0[d(R− p0 + d)− d(R− p0 − d)],

d(R)= exp
{
−

R2

2σ 2
d

}
.

 (6.8)

For the simulations presented, we choose A= 2.09× 10−6, yd = L/16, σd = L/23.04,
the pair centre p0 = (L/10, L/2) and the vortex separation d= (0, yd).
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(a)

(d)

(b)

(e)

(c)

(f)

FIGURE 5. Electrostatic potential of the plasma blob on the doubly periodic, two-
dimensional spatial simulation domain perpendicular to the slab magnetic field, for weak
flows (a–c) and strong flows (d–f ). Simulation details are described in § 6.2.

The blob propagation for weak and strong flows is shown in figure 5. For weak
flows, the dipole potential propagates in a straight line. An interpretation in terms
of point vortices is that each vortex pulls the other around its centre, resulting in
propagation. In the weak-flow limit, this motion is symmetrical, so each vortex is
displaced an equal amount perpendicular to the line between the two vortices and
the result is straight-line motion. For strong flows, the dipole propagates in a circle,
instead: this is due to the effective E×B drift speed being somewhat dependent on the
sign of the parallel vorticity, so the top and bottom vortices move at different speeds.
As the motion of each vortex stays perpendicular to the inter-vortex line, the resulting
motion is on a curve. These effects are also observed with gyrofluid models (Madsen
et al. 2011; Wiesenberger, Madsen & Kendl 2014).

The radius of curvature of the curved path of the strong-flow blob Rb may be
computed based on the relative speed of the two vortices and the distance between
them. For circular motion about a common point collinear with the vortex pair, the
velocities of the two vortices are (Rb ± yd)vb0/Rb, where vb0 is the lowest-order
blob speed (excluding the parallel vorticity dependence) and we solve to find Rb.
We assume that the initial motion (figure 5) of the blob in the y direction is small
compared to that in the x direction. This gives

Rb

vb0
=

yd

δv
, (6.9)

where δv is half the difference between the two vortex velocities.
The lowest-order blob velocity may be calculated by determining the electric field

produced by each vortex and evaluating the E×B motion on the other vortex, which
is equal for the two vortices due to the symmetry of the setup. Assuming that the
vortices retain their initial circular symmetry (which is justified for sufficiently small
vortices), the velocity field outside a vortex at the origin in free space may be found
as v= θ̂K/R, where θ̂ is the angular unit vector, K is a constant and R is the distance
from the vortex centre.
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We have
vb0 = uxi − uxs, (6.10)

where uxi is the bulk inter-vortex flow speed in the x direction, uxs is the bulk single-
vortex flow speed in the x direction,

ux = B−1∂yφ ∼ B−1φ/Ly (6.11)

and Ly is the local length scale of variation of φ in the y direction.
The strong-flow correction to the plasma equation of motion may be found by

evaluating the third, strong-flow term in Ṙ (in (1.4)), by using that B∗
‖
− B (1.6) is

small,
δv ∼ B−2(B∗

‖
− B)u̇1, (6.12)

where
B∗
‖
− B∼ u̇1 ∼

uxs

Lu
(6.13)

and Lu is the local length scale of variation of uxs in the y direction.
The radius of curvature of the circular motion of the strong-flow blob expected

from analysis is 2.36× 103ρti and we have reasonable agreement with the radius of
curvature measured in simulations of 2.69× 103ρti.

7. Conclusions

We have described methods for the solution of gyrokinetic evolution equations
where the field equations have a dependence on the time derivative of the field.
Solutions consistent with the gyrokinetic ordering and the assumed smooth behaviour
of trajectories in the limit of small ε may be defined in terms of the limit of a Picard
iteration procedure. Usually it will be possible in principle to transform coordinates
so that the implicit dependence on the field does not arise, where a direct solution
of the differential equation and the usual method of numerical solution are valid. It
is, however, usually simpler to use the assumed asymptotic behaviour of the solution
to directly construct solutions of equations derived from the symplectic form of the
Lagrangian.

Implementation of this method for an electrostatic gyrokinetic formalism (Sharma
& McMillan 2015) is relatively straightforward, and we have illustrated that the
code reduces to the usual weak-flow limit, and is also able to resolve dynamically
evolving self-consistent strong flows. Although allowing time-evolving strong flows
is interesting in itself, e.g. to allow the study of astrophysical structures and tokamak
pedestals, this is mostly intended as a pathway to generalised electromagnetic
gyrokinetic simulations. That is, implementing codes that allow large-scale MHD
motion to be solved self-consistently together with microturbulence in a unified
fashion; appropriate formalisms exist (McMillan & Sharma 2016) that seem to be
amenable to this approach, but have not yet been translated into numerical codes.
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