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Rational functions with maximal radius of absolute monotonicity
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Abstract

We study the radius of absolute monotonicity R of rational functions with numerator and
denominator of degree s that approximate the exponential function to order p. Such functions
arise in the application of implicit s-stage, order p Runge–Kutta methods for initial value
problems, and the radius of absolute monotonicity governs the numerical preservation of
properties like positivity and maximum-norm contractivity. We construct a function with p = 2
and R > 2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine
the maximum attainable radius for functions in several one-parameter families of rational
functions. Moreover, we prove earlier conjectured optimal radii in some families with two or
three parameters via uniqueness arguments for systems of polynomial inequalities. Our results
also prove the optimality of some strong stability preserving implicit and singly diagonally
implicit Runge–Kutta methods. Whereas previous results in this area were primarily numerical,
we give all constants as exact algebraic numbers.

1. Introduction and aims

A real function ψ is said to be absolutely monotonic at a point x ∈ R, if the kth derivative
of ψ at x, ψ(k)(x), exists and is non-negative for each integer k > 0. The radius of absolute
monotonicity R(ψ) ∈ [0,+∞] is defined as

R(ψ) = sup({r ∈ [0,+∞) : ψ is absolutely monotonic at each point of [−r, 0]} ∪ {0}).

The radius of absolute monotonicity of polynomials and rational functions plays an important
role in the analysis of positivity, monotonicity, and contractivity properties of numerical
methods for initial value problems and is often referred to as the threshold factor in this
context [1, 5, 7, 10, 12]. Specifically, the maximal positive or contractive step-size is given by
R(ψ)h0, where ψ is the stability function of the numerical method and h0 is the maximum
step-size under which the corresponding property holds for the explicit Euler method.

It is therefore natural to consider the problem of finding a function ψ that achieves the
maximal radius of absolute monotonicity within a given class. In this work, we study absolute
monotonicity of rational functions that correspond to the stability functions of certain implicit
or singly diagonally implicit Runge–Kutta methods.

A Runge–Kutta (RK) method of s ∈ N+ stages is defined by its coefficients: an s× s matrix
A and an s× 1 vector b [2]. The stability function of the method is

ψ(z) = ψA,b(z) :=
det(I − zA+ z1b>)

det(I − zA)
(z ∈ C), (1.1)

where 1 is a column vector of length s with all unit entries and I is the s× s identity matrix
[6, § IV.3]. The order of a method, denoted by p ∈ N+, indicates how accurately the computed
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solution approximates the exact solution in an asymptotic sense. The stability function of an
RK method of order p must approximate the exponential function to at least order p near the
origin.

In an implicit Runge–Kutta method (IRK), all entries of A may be non-zero. An important
subclass of the IRK methods are the singly diagonally implicit RK (SDIRK) methods, with A
lower-triangular with identical diagonal entries. For explicit RK methods, A is strictly lower-
triangular.

We now define the classes of rational functions to be studied. For m,n ∈ N, let Πm denote
the set of real polynomials of degree at most m,

Πm =

{ m∑
j=0

βjz
j : βj ∈ R, j = 0, 1, . . . ,m

}
,

and let Πm/n,p denote the set of all real (m,n)-rational functions approximating the
exponential to order p near the origin,

Πm/n,p =

{
ψ : ψ =

P

Q
,P ∈ Πm, 0 6≡ Q ∈ Πn, ψ(z)− exp(z) = O(zp+1) as z → 0

}
.

Let Π̂m/n,p denote the elements of Πm/n,p whose denominator has (at most) a single, non-zero
real root

Π̂m/n,p =

{
ψ ∈ Πm/n,p : ψ(z) =

P (z)

(1− az)n
, P ∈ Πm, a ∈ R

}
.

Remark 1.1. Obviously, for every 0 6 m 6 m̃, 0 6 n 6 ñ and 1 6 p 6 p̃, we have
Π̂m/n,p ⊂ Πm/n,p, Πm/n,p ⊂ Πm̃/ñ,p and Πm/n,p ⊃ Πm/n,p̃.

If A and b correspond to an IRK method of s stages and order p, then

ψA,b ∈ Πs/s,p, (1.2)

while for SDIRK methods,

ψA,b ∈ Π̂s/s,p. (1.3)

For explicit RK methods we have ψA,b ∈ Πs.
A thorough study of polynomial approximations to the exponential with maximal radius of

absolute monotonicity can be found in [7, 10]. We are interested in determining the maximal
radius of absolute monotonicity that can be achieved among the stability functions of IRK or
SDIRK methods of a given order p. Therefore, for non-empty sets Πm/n,p and Π̂m/n,p, let us
define the quantities

Rm/n,p := sup{R(ψ) : ψ ∈ Πm/n,p},
R̂m/n,p := sup{R(ψ) : ψ ∈ Π̂m/n,p}.

We will focus on the cases for which m = n = s.

Remark 1.2. Generically, the class Πs/s,p can be written as a family in 2s− p parameters,

while the class Π̂s/s,p can be written as a family in s+1−p parameters. In the cases where there
are zero free parameters, these sets contain a finite number of members. Throughout the paper,
‘finitely many’ in this context is understood in the sense of functions, that is, a normalized
representation is chosen: if ψ = P/Q with ψ(0) = 1, then we can assume P (0) = Q(0) = 1.
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The seminal work on this topic is [5], in which an algorithm is presented for computing the
radius of absolute monotonicity of a rational function, and many properties of the radius of
absolute monotonicity are proved. The determination of R(ψ) is not trivial even for a single

rational function ψ, so the difficulty of obtaining Rm/n,p or R̂m/n,p for a particular (m,n, p)
triple ranges from fairly challenging to currently impossible. Nevertheless, some patterns in
numerically computed values have led to important conjectures.

In order to describe these conjectures, we recall the concept of radius of absolute
monotonicity of a Runge–Kutta method [11], denoted by R(A, b). The quantity R(A, b) is
also referred to as Kraaijevanger’s coefficient [3], or the SSP coefficient [4]. For an RK method
with coefficients A, b, define K ∈ R(s+1)×(s+1) by

K = K(A, b) :=

(
A 0

b> 0

)
.

Now let 1 denote the vector (1, 1, . . . , 1)> ∈ Rs+1. Then the radius of absolute monotonicity
of the RK method is

R(A, b) := sup{r ∈ R : ∀% ∈ [0, r] ∃(I + %K)−1, %K(I + %K)−1 > 0 and %K(I + %K)−11 6 1},

where vector and matrix inequalities are understood componentwise. Notice that R(A, b) > 0.
Absolute monotonicity of a Runge–Kutta method implies absolute monotonicity of its stability
function [11]; thus we have

R(A, b) 6 R(ψA,b). (1.4)

The coefficient R(A, b) plays the same role in numerical preservation of positivity and
contractivity for non-linear problems that the coefficient R(ψA,b) plays for linear problems [4].

The following conjectures served as motivation for our work.

Conjecture 1.3 [5, p. 421]. For m,n ∈ N+, Rm/n,2 = m+
√
mn.

In [5], this conjecture was proved for all m > 1 with n = 1 or 2. In the special case
m = n = s ∈ N+, the conjecture claims

Rs/s,2 = 2s. (1.5)

For A, b corresponding to an RK method with s stages and order p, we have R(ψA,b) 6 Rs/s,p.
Moreover, Rs/s,p is a non-increasing function of p for fixed s; therefore (1.4) and (1.5) together
would imply that R(A, b) 6 2s for all Runge–Kutta methods that are more than first order
accurate. Indeed, evidence in the literature reinforces belief in the bound (1.5); we have the
following conjectures based on numerical searches.

Conjecture 1.4 [3, Conjecture 3.1]. Let A, b denote the coefficients of an SDIRK method
of order p > 2 with s > 1 stages. Then R(A, b) 6 2s.

Conjecture 1.5 [9]. Let A, b denote the coefficients of an implicit RK method of order
p > 2 with s > 1 stages. Then R(A, b) 6 2s.

It is thus very surprising that, as we will see, Conjecture 1.3, and thus equality (1.5), does
not hold for m = n = 3. An immediate consequence is that Conjecture 1.5 cannot be proved
by analyzing Rs/s,2. The following is another conjecture that arises naturally.

Conjecture 1.6. For each s > 1, R̂s/s,2 = 2s.
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We have presented these conjectures in the order they were formulated. By also taking into
account that:
• R̂s/s,p 6 R̂s/s,2 6 Rs/s,2 (p > 2);

• R(ψA,b) 6 R̂s/s,p for A, b corresponding to an SDIRK method;
• there exists an SDIRK method (consisting of the repetitions of the implicit midpoint

method) with R(A, b) = 2s [3, formula (3.1)] whose stability function

ψA,b(z) =

(
1 + z/(2s)

)s(
1− z/(2s)

)s , ψA,b ∈ Π̂s/s,2 ⊂ Πs/s,2

satisfies R(ψA,b) = 2s, we have the following implications for each value of s.

Conjecture 1.3 with m = n = s =⇒ Conjecture 1.6 =⇒ Conjecture 1.4

and

Conjecture 1.3 with m = n = s =⇒ Conjecture 1.5 =⇒ Conjecture 1.4.

As for the p = 3 case, we pose the following new conjecture, which is stronger than
[3, Conjecture 3.2].

Conjecture 1.7. For each s > 2, R̂s/s,3 = s− 1 +
√
s2 − 1.

Conjectures 1.4–1.6 were previously proved only in the cases s = 1 or s = 2. The present
work is devoted to determining the exact values of Rs/s,p and R̂s/s,p for certain 2 6 s 6 4
and 2 6 p 6 7 pairs, as summarized in Tables 2.1 and 2.2. Our results lend some support to
Conjectures 1.4 and 1.6, since we prove each of them for the cases s = 3 (in §§ 2.4 and 6.3)
and s = 4 (in §§ 2.4, 7.4 and A.2)†. We also prove Conjecture 1.7 for 2 6 s 6 4 (the s = 2 case
is a direct consequence of the theorem in § 3, while the 3 6 s 6 4 cases are described in §§ 6.2
and 7.3), simultaneously proving the 3 6 s 6 4 special cases of [3, Conjecture 3.2].

The structure of the paper is as follows. In § 1.1 we recall some theorems from [5, 11] on
which our computations are based. The new results are summarized in § 2, where we also
provide some explanatory remarks. The proofs are given in §§ 3–7. Section 2 has been written
so that the casual reader need not refer to any later sections. Sections 2.4 and 2.5 provide an
introduction to the structure and notation used in the proofs.

The proofs, comprising §§ 3–7, proceed from smaller s values to larger ones, and for each
value of s, from larger p values to smaller ones. Thus sections are ordered roughly in increasing
difficulty within both the Πs/s,p and the Π̂s/s,p classes. These sections represent the fruits of
several dozens of pages of computations, or of a few hundred pages, depending on the level of
detail, so we had inevitably to omit some details of some proofs.

In § 8, we give some auxiliary, but, in our opinion, related and interesting results that we
could not (yet) tie to the main pieces of the puzzle (for example, to Conjecture 1.6), along
with a few remarks about the successful (or failed) proof attempts and techniques.

In the Appendix, a few more algebraic expressions, mentioned only implicitly in the proofs,
are collected to enable the reproducibility of certain longer computations.

Let us close this introduction with a remark explaining why the p = 1 case is exceptional.

†Added in proof: in June 2013, an inductive proof for Conjecture 1.4 covering all s > 1 values was announced
by Adrián Németh and Tihamér A. Kocsis. They believe that their technique can be extended to the DIRK
class as well. However, a proof for the stronger Conjecture 1.6 for any s > 5 value is still out of reach.
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Remark 1.8 (On the p = 1 case). For ψ ∈ Πm/n,p with p > 2, we have R(ψ) < +∞ [12].
On the other hand, for ψ(z) = 1/(1− z), we have ψ ∈ Π0/1,1 and R(ψ) = +∞. Consequently,
we consider only the p > 2 case in this work.

1.1. Some general results on the radius of absolute monotonicity

Let us briefly summarize some useful theorems from [5, 11] that will frequently be used in
this work. In [5], the following assumptions are made on the rational function ψ:

À ψ = P/Q, where P ∈ Πm and Q ∈ Πn with some m,n ∈ N, but ψ is not a polynomial;

Á P and Q have no common roots;

Â P (0) = Q(0) = 1.

Remark 1.9. We will see that removing these assumptions (that is, not excluding removable
singularities a priori, or considering, when setting up the form of the families of rational
functions, the case P (0) = Q(0) = 0 as well as interpreting ψ(0) = 1 as lim0 ψ = 1 in the

order conditions) does not make a difference in the optimal values Rs/s,p and R̂s/s,p in the
classes we are going to consider. Nevertheless, these assumptions are convenient in allowing us
to immediately use results from [5].

Definition 1.10 [5, Definition 3.2]. Suppose that ψ satisfies assumptions À–Â above. Let
A+(ψ) denote the set of poles of ψ with non-negative imaginary part. For α ∈ A+(ψ), we set

I(α) := {x : x ∈ R and α is the unique pole in A+(ψ) closest to x}.

The disjoint union of these intervals is the set R with only finitely many exceptions. Now we
let

B(ψ) :=

{
−inf I(α0) if 0 ∈ I(α0) for some positive real pole α0 of ψ,

0 otherwise.

Note that B(ψ) is determined solely by the location of the poles of ψ. The significance of
this quantity is highlighted by the following theorem.

Theorem 1.11 [5, Theorem 3.3]. Suppose that ψ satisfies assumptions À–Â above. Then

R(ψ) 6 B(ψ).

Theorem 1.12 [5, Corollary 3.4]. Suppose that ψ satisfies assumptions À–Â and ψ has no
positive real pole. Then R(ψ) = 0.

Additionally, the negative real roots of the derivatives of ψ form upper bounds on R(ψ), as
shown by the next theorem.

Theorem 1.13 [5, Lemma 4.5]. Suppose that ψ satisfies assumptions À–Â, and ψ(`)(x) = 0
for some 0 > x ∈ R and 0 6 ` ∈ N. Then R(ψ) 6 −x.

We will also use the fact that under certain assumptions absolute monotonicity at the left
endpoint of an interval implies absolute monotonicity on the whole interval.

Theorem 1.14 [11, Lemma 3.1]. Let ψ = P/Q be absolutely monotonic at some x < 0,
where P and Q are polynomials and Q has no zeros in (x, 0]. Then R(ψ) > −x.
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Remark 1.15. In [5], formula (4.3) introduces an auxiliary quantity

L(x) = max(0,m− n+ 1,max{. . .})

that is used in an algorithm to compute R(ψ) for a given rational function. It may happen
however that the {. . .} set above is empty (corresponding to the SDIRK case, for example),
when a correct interpretation of this max∅ is −∞ (or, say, 0).

2. Main results

In §§ 2.1–2.3 we state our main results about certain newly or exactly determined Rs/s,p and

R̂s/s,p values. In § 2.4 we describe the two strategies we will follow in the proofs of these results;
the proofs themselves are deferred to §§ 3–7 and the Appendix.

2.1. A lower bound on R3/3,2

In § 4.3, we construct a function ψ ∈ Π3/3,2 with R(ψ) > 6.7783 > 6. This shows that
Conjecture 1.3 does not hold for m = n = 3. However, the exact value of R3/3,2 is still unknown,
because in order to describe all rational functions ψ in Π3/3,2, we need four parameters,
rendering the (exact or numerical) optimization within this class impossible with our current

techniques. In contrast, Theorem 2.2 in § 2.3 asserts that R̂3/3,2 = 6.

2.2. The exact determination of certain Rs/s,p values for s 6 4

2.2.1. Known exact values of Rs/s,p. Let us first review what is already known. The class
Π1/1,p is empty for p > 3. The set Π1/1,2 contains only the function z 7→ (1 + z/2)/(1− z/2)
with R = 2, so R1/1,2 = 2.

The class Π2/2,p is empty for p > 5. The set Π2/2,4 consists of a single function ψ: the (2, 2)

Padé approximation to the exponential. This function has ψ(6)(0) = 0 (or, more precisely,
for k > 0 we have ψ(k)(0) = 0 if and only if k is divisible by 6), so Theorem 1.13 implies
R2/2,4 = 0. More generally, each of the classes Πs/s,p with p = 2s contains only the (s, s) Padé
approximation to the exponential. For s even, [5, Theorem 5.1] shows via Theorem 1.12 that
Rs/s,2s = 0.

If ψ = P/Q ∈ Π2/2,2, and P and Q have no common roots, then [5, § 6.3] says that R(ψ) 6 4.
If P and Q have a common root, then it is easily seen that ψ ∈ Π1/1,2 also, hence R(ψ) 6 2.
For the function ψ(z) = (1 + z/4)2/(1− z/4)2 we have R(ψ) = 4, so R2/2,2 = 4.

2.2.2. New exact values of Rs/s,p. For the cases in which p = 2s, a simple new result is
the exact value of R3/3,6. Its approximate value 2.2076 was presented in [5, Table 5.3].

As for the p = 2s − 1 cases, Πs/s,p can be described by a 1-parameter family of rational

functions. The exact value R2/2,3 = 1+
√

3 was previously unknown: our computation confirms
the corresponding numerical result 2.7320 given in [5, Table 6.1]. By using significantly more
computational power, we also determined Rs/s,2s−1 for s = 3 and s = 4.

Decimal approximations of proven optimal Rs/s,p values are summarized in Table 2.1, along
with some other properties. Exact values are given in the sections indicated.

Combining the previously known results in § 2.2.1 and the new results in § 2.2.2, for s 6 4,
the exact Rs/s,p values are now known for:
• p > 2 and s = 1, 2;
• s = 3, 4, and the corresponding Πs/s,p class can be described by at most one parameter.

As for s > 4 with Πs/s,p 6= ∅, currently we have exact information on Rs/s,p only when s is
even and p = 2s.
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Remark 2.1 (On uniqueness). The optimal rational function in the Πs/s,2s class is unique,
since Πs/s,2s has only one element. We prove in §§ 3–7 that the optimal element in each of
the Π2/2,3, Π3/3,5 and Π4/4,7 classes is unique. Regarding the Π2/2,2 class, it was not known
previously whether there is only one element in Π2/2,2 with R = 4. We proved that ψ ∈ Π2/2,2

and R(ψ) = 4 imply that ψ ∈ Π̂2/2,2 (the proof of this statement is not included in the present
paper), but then Theorem 2.2 in § 2.3 asserts that ψ(z) = (1 + z/4)2/(1− z/4)2. Consequently,
the optimal element is also unique in the Π2/2,2 class.

2.3. The exact determination of R̂s/s,p for s 6 4

Since the optimal elements of Π1/1,2 and Π2/2,2, ψ(z) = (1 + z/2)/(1− z/2) and ψ(z) =

(1 + z/4)2/(1− z/4)2, given in § 2.2.1, are also elements of Π̂1/1,2 and Π̂2/2,2, respectively, we

immediately have R̂1/1,2 = R1/1,2 = 2 and R̂2/2,2 = R2/2,2 = 4. Notice that these R̂ values are
the 1 6 s 6 2 special cases of Conjecture 1.6. On the other hand, uniqueness of the optimal
element of Π̂1/1,2 (being a singleton) is trivial, while uniqueness of the optimal element of

Π̂2/2,2 (a new result) will be shown in Theorem 2.2.

As for the Π̂2/2,3 class, it has only two elements:

ψ231(z) :=
− 1

6

(√
3 + 1

)
z2 − z/

√
3 + 1(

1− 1
6

(
3 +
√

3
)
z
)2 (2.1)

and

ψ232(z) :=
1
6

(√
3− 1

)
z2 + z/

√
3 + 1(

1− 1
6

(
3−
√

3
)
z
)2 (2.2)

(the indexing of ψ231 and ψ232 is consistent with the notation described later in § 2.5). It
turns out that the optimal element of Π2/2,3 (uniquely given by (3.1) in § 3) is the same as

ψ232 ∈ Π̂2/2,3, hence R̂2/2,3 = R2/2,3 = 1 +
√

3.
The following theorem dealing with the p = 2 case is of particular interest in light of the

conjectures presented in § 1.

Table 2.1. Optimal Rs/s,p values, together with the algebraic degree of the optimal parameter choice
within the given parametrization, the algebraic degree of Rs/s,p, the section number in which Rs/s,p is
given as an exact algebraic number, and the factor that limits the optimal value (see § 1.1). Superscripts
† and ‡ indicate, respectively, that the optimal Rs/s,p value had already been proved exactly or had
been presented numerically earlier. A − symbol means that the corresponding Πs/s,p class contains
only finitely many elements hence the parameter a is not present, whereas a + symbol denotes that
the class cannot be described by only one parameter. In the (s, p) = (2, 4) case, m is any positive
integer. As for the last column, see Remark 2.3 as well.

(s, p) Rs/s,p deg(a∗) deg(Rs/s,p) Section(s) Obstacle (with R := Rs/s,p)

(2, 2) =4† + 1 2.2.1 ψ(−R) = ψ′(−R) = 0

(2, 3) ≈2.732050‡ 2 2 3 ψ′(−R) = 0

(2, 4) =0† − 1 2.2.1 R = B = 0 or ψ(6m)(−R) = 0

(3, 5) ≈2.301322 6 6 4.2 R = B

(3, 6) ≈2.207606‡ − 3 4.1 R = B

(4, 7) ≈2.743911 30 30 5 and A.1 R = B

(4, 8) =0† − 1 2.2.1 R = B = 0
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Theorem 2.2. Fix 1 6 s 6 4. Then R̂s/s,2 = 2s, and the unique ψ ∈ Π̂s/s,2 that attains
R(ψ) = 2s is

ψ(z) =

(
1 + z/(2s)

)s(
1− z/(2s)

)s . (2.3)

Let us highlight again that the s = 1 case of this theorem is trivial, and in the s = 2 case
the value of R̂2/2,2 = 4 was known previously; the new pieces of information are the 3 6 s 6 4
cases and the uniqueness part for s = 2. Theorem 2.2 confirms Conjecture 1.6 for 3 6 s 6 4
(and extends it with a uniqueness part for 2 6 s 6 4). It also proves Conjecture 3.1 in [3,
§ 3.2] for 3 6 s 6 4 (the truth of this conjecture for 1 6 s 6 2 being already established in [3])
regarding SDIRK methods that are optimal with respect to R(A, b).

Finally, concerning some higher p > 2 values, we determined R̂3/3,3, R̂3/3,4, R̂4/4,3, R̂4/4,4

and R̂4/4,5 as exact algebraic numbers, and proved that the optimal element in each of the

corresponding Π̂s/s,p classes is unique. The R̂s/s,3 values for 2 6 s 6 4 support Conjecture 1.7,
being stronger than [3, Conjecture 3.2]. In other words, we have proved [3, Conjecture 3.2] for
3 6 s 6 4.

The known and newly obtained R̂s/s,p values are summarized in Table 2.2. We also give
some additional information on the structure of the optimal ψ functions in Table 2.3.

As a corollary, the results of this section together with the fact that Π̂s/s,p = ∅ for 1 6 s 6 4

and p > s+ 2 imply that now we have a complete description of the optimal R̂s/s,p values for
all s 6 4 and p > 2.

Remark 2.3. We have seen that the unique optimal rational functions corresponding to the
(s, p) = (2, 2) and (s, p) = (2, 3) rows of Table 2.1 are also elements of the corresponding Π̂s/s,p

classes. Moreover, it is easily checked that both of these optimal functions satisfy assumptions
À–Â given in § 1.1, hence for these functions B = +∞, and so R < B.

Remark 2.4. On the one hand, according to (1.4), if A and b correspond to any SDIRK

method of s stages and order p, then we have R(A, b) 6 R̂s/s,p. On the other hand, an SDIRK
method is constructed in [3] for each pair (s, p) satisfying 2 6 s 6 4 and 2 6 p 6 3 such that

R(A, b) = R̂s/s,p. Based on this, one might suspect that R̂s/s,p is equal to the optimal R(A, b)

Table 2.2. Optimal R̂s/s,p values, together with the algebraic degree of the optimal parameter value

in the given parametrization and the algebraic degree of R̂s/s,p, the section number in which they

are given as exact algebraic numbers, and the first few derivatives of ψ that vanish at −R̂s/s,p (see
Theorem 1.13). The symbols †,‡ ,+,− have the same meaning as in Table 2.1.

(s, p) R̂s/s,p deg(a∗) deg(R̂s/s,p) Section(s) Derivatives vanishing

at −R̂s/s,p

(2, 2) =4† 1 1 2.3 ` = 0, 1

(3, 2) =6 + 1 2.4 and 6.3 ` = 0, 1, 2

(4, 2) =8 + 1 2.4, 7.4 and A.2 ` = 0, 1, 2, 3

(2, 3) ≈2.732050‡ − 2 2.3 ` = 1

(3, 3) ≈4.828427 2 2 6.2 ` = 1, 2

(4, 3) ≈6.872983 + 2 7.3 ` = 1, 2, 3

(3, 4) ≈3.287278 − 9 6.1 ` = 0

(4, 4) ≈5.167265 9 9 7.2 ` = 0, 1

(4, 5) ≈3.743299 − 12 7.1 ` = 1
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radius for s-stage, order p SDIRK methods for each s, p > 2. However, Remark 2.5 shows that
this is not the case in general.

Remark 2.5. There exist exactly three functions in the set Π̂3/3,4. These three rational
functions are also mentioned in [3, § 3.4.1]. The method satisfying the non-negativity condition

K > 0 in [3] is the one whose stability function yields the optimal R̂3/3,4 value. This function

has radius of absolute monotonicity R̂3/3,4 ≈ 3.2872, but the corresponding optimal SDIRK
method has only R(A, b) ≈ 1.7587.

Remark 2.6. The optimal ψ in the Π̂4/4,4 class is different from the stability function of
the optimal method of [3, § 3.4.2] in this class obtained by numerical search. In other words,
according to the numerical tests in [3], the optimal R(A, b) in the SDIRK s = p = 4 case is

≈4.2081 < R̂4/4,4 (cf. Remark 2.5).

2.4. Introduction to the proofs in §§ 3–7.

2.4.1. Proofs in 1-parameter families with unknown optimum. This first approach will be
followed in §§ 3, 4.2, 5, 6.2 and 7.2, when there is only one parameter present, but the optimal
radius of absolute monotonicity is unknown. In these cases, the method of proof we use is the
following procedure (possibly in an iterative manner, because the number of derivatives to be
checked in the first step below is also unknown in advance).

(1) Conjecture an optimal parameter value a∗ by inspection of the graphs of a 7→ B(ψa) or
the first several derivatives of ψa(·).

(2) Rigorously exclude all the parameter values R \ {a∗} by appealing to, for example,
Theorem 1.13.

(3) Explicitly compute a formula for the kth derivative (k ∈ N arbitrary) and prove that

ψ
(k)
a∗ |[−x∗,0] > 0, where x∗ > 0 is as large as possible due to step (1).
As a simple example of this technique, let us prove the s = 2 case of Theorem 2.2. As

mentioned in § 2.3, this case was already known earlier apart from the uniqueness part.

Proof: First proof of Theorem 2.2 in the s = 2 case. Any element of Π̂2/2,2 can be repre-
sented as

ψa(z) =
1
2

(
2a2 − 4a+ 1

)
z2 + (1− 2a)z + 1

(1− az)2

with a ∈ R. First let us perform some preliminary reduction. For a = 0, the rational function
reduces to the second degree Taylor polynomial of the exponential function around 0, which

Table 2.3. Each row shows the appropriate derivative of the optimal element in Π̂s/s,p having
multiple roots. In the (s, p) = (4, 4) case, approximate constants are used. In the (s, p) ∈ {(3, 4),
(4, 5)} cases, no multiple roots were found among the first few derivatives of the optimal ψ functions.

(s, p) Form of the optimal ψ or its derivative

(2, 2) ψ(z) = (1 + z/4)2/(1− z/4)2

(3, 2) ψ(z) = (1 + z/6)3/(1− z/6)3

(4, 2) ψ(z) = (1 + z/8)4/(1− z/8)4

(2, 3) ψ′(z) = (1 + 1
2

(
√

22 − 1− 1)z)/(1 + 1
6

(
√

22 − 1− 3)z)3

(3, 3) ψ′(z) = (1 + 1
4

(
√

32 − 1− 2)z)2/(1 + 1
8

(
√

32 − 1− 4)z)4

(4, 3) ψ′(z) = (1 + 1
6

(
√

42 − 1− 3)z)3/(1 + 1
10

(
√

42 − 1− 5)z)5

(4, 4) ψ(z) = (1 + 0.193526z)2(1 + 0.224416z + 0.0437638z2)/(1− 0.0971331z)4
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has R = 1. So we can assume a 6= 0. The numerator and denominator have a common root if
and only if a = 1

2 , in which case R = 2. For a 6= 1
2 , due to Theorem 1.12, a > 0 is necessary to

have R > 0. So we can consider only the parameter values 0 < a 6= 1
2 .

For a > 3
4 , ψ

(4)
a (0) = −12a2(4a − 3) < 0, implying R = 0 here by definition. The optimal

ψa, having the largest R (=Ropt), will be found when a ∈ (0, 34 ] \ { 12}. It turns out that −Ropt

will be determined by the intersection of certain roots of ψa and ψ′a. (Let us add that a plot
of the roots of the lowest order derivatives of ψa(·) in the region 0 < a 6 3/4 would look very
similar to Figure 7.) For a = 1 − 1√

2
, the leading coefficient of the numerator of ψa vanishes,

and in this case R 6 1 +
√

2, because ψa(x) < 0 for x < −1−
√

2. For a ∈ (0, 34 ] \ { 12 , 1−
1√
2
}

and a > 1
4 , one negative root of ψa(·) is

−1 + 2a+
√

4a− 1

2a2 − 4a+ 1
> −4,

while for a ∈ (0, 34 ] \ { 12 , 1 −
1√
2
} and a < 1

4 , the only root of ψ′a(·) is 0 > 1/(3a− 1) >

−4, implying by Theorem 1.13 that for a 6= 1
4 , R < 4. Finally, for a = 1

4 , ψa(z) =
(1 + z/4)2/(1− z/4)2, and one can now directly check that R = 4.

2.4.2. Proofs based on uniqueness and already conjectured optimal values. This is the
approach we follow in §§ 6.3, 7.3 and 7.4. The strength of the argument is that we can handle
classes that can be described by ν > 1 parameters; the disadvantage is, however, that the
optimal value, Ropt > 0, must be conjectured in advance. With this preliminary information
in hand, we consider the following infinite system of non-linear polynomial inequalities

ψ(k)(−Ropt) > 0 (k > 0)

simply expressing absolute monotonicity of ψ (depending on ν parameters in a non-linear
way) at x = −Ropt. Then we show that the above system admits a unique solution in the ν
parameters. Finally, we directly check that the corresponding optimal rational function, ψopt,
is absolutely monotonic also on (−Ropt, 0], but, by appealing to Theorem 1.13, not absolutely
monotonic on any larger interval (−Ropt − ε, 0] for any ε > 0.

As a simple illustration, let us re-prove the s = 2 case of Theorem 2.2 by using this technique.

Proof: Second proof of Theorem 2.2 in the s = 2 case. Similarly to the first steps of the
first proof, it is enough to consider only functions of the form ψa(z) = ( 1

2 (2a2 − 4a + 1)
z2 + (1− 2a)z+ 1)/(1− az)2 with a > 0, but now, as opposed to the first proof, we conjecture

R̂2/2,2 = 4 in advance. We show that

ψa(−4) > 0, ψ′a(−4) > 0

and

∀k ∈ N, k > 2: ψ(k)
a (−4) > 0 (2.4)

imply a = 1
4 . Indeed, the first two conditions with a > 0 amount to

16a2 − 24a+ 5 > 0 and 12a− 3 > 0,

that is, to a ∈ { 14}∪ [ 54 ,+∞). Then, instead of (2.4), it is enough to require a weaker property
expressing the fact that the leading coefficient of a polynomial in k has to be non-negative, if
the polynomial is non-negative for all k > 2. This now simply reads as 1

2 − a > 0, implying
the unique value a = 1

4 .
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In the rest of this section, we begin the proof of Theorem 2.2 in the s = 3 and s = 4 cases
by performing some of the above-mentioned preliminary reductions.

For s > 3, one easily proves that any ψ ∈ Π̂s/s,2 can be written as

ψ(z) =
1 +

(
1− a

(
s
1

))
z +

(
1
2 − a

(
s
1

)
+ a2

(
s
2

))
z2 +

∑s
n=3 anz

n

(1− az)s
(2.5)

with some a, a3, a4, . . . , as ∈ R. Let us denote the numerator of (2.5) by P (z) and set Q(z) :=
1 − az, so that ψ = P/Qs. The next step is to exclude the non-positive a values. Since
Theorem 2.2 will be proved via the uniqueness argument

R(ψ) = 2s implies the unique form (2.3) of ψ,

and 2s > s− 1, the assumption of the lemma below is justified.

Lemma 2.7. Let ψ ∈ Π̂s/s,2 be given in the form (2.5), and suppose that R(ψ) > s − 1.
Then the parameter a appearing in (2.5) satisfies a > 0.

Proof. For a = 0, ψ is a polynomial approximating the exponential function to order p = 2
near the origin. For such polynomials, R(ψ) 6 s − 1 [10, Theorem 2.1]. For a < 0, ψ has no
positive real poles, so we will apply Theorem 1.12 to show thatR(ψ) = 0. We need only to verify
assumptions À–Â. Assumptions À and Â are automatically satisfied by functions of the form
(2.5) with a < 0, so we are done if assumption Á is also fulfilled. If not, then except at z = 1/a,

ψ can be expressed as P̃ /Q̃, where P̃ and Q̃ have degree s̃P < s and s̃Q < s, respectively, and no

common roots. Clearly, s̃Q > 0, since p = 2 still holds. Moreover, P̃ (0)/Q̃(0) = P (0)/Q(0) = 1,

so we can assume P̃ (0) = Q̃(0) = 1. Now application of Theorem 1.12 to P̃ /Q̃ shows that a < 0
implies R(ψ) = 0.

Now we give the general form of the sign condition on the leading coefficient of the
corresponding polynomial, mentioned in the second proof above. Assumption a > 0 in the
next lemma is guaranteed of course by the previous lemma.

Lemma 2.8. Suppose that ψ = P/Qs given by (2.5) with a > 0 is absolutely monotonic at
some x < 0. Then

s∑
m=0

1

m!

(
1− ax
a

)m

P (m)(x) > 0. (2.6)

Proof. From (2.5) it can be shown by induction that the kth derivative (k ∈ N) of ψ is

ψ(k) =

(
P

Qs

)(k)

=

(
−Q′

)k
k!

Qs+k

min(k,s)∑
m=0

1

m!

(
s− 1 + k −m

s− 1

)(
− Q
Q′

)m

P (m). (2.7)

Suppose that ψ = P/Qs is absolutely monotonic at some x < 0. We now have −Q′(x) = a > 0
and Q(x) = 1− ax > 0, so (2.7) implies

lim
k→+∞

1

ks−1

min(k,s)∑
m=0

1

m!

(
s− 1 + k −m

s− 1

)(
1− ax
a

)m

P (m)(x) > 0. (2.8)

By simplifying the binomial coefficients and multiplying both sides of the inequality by (s−1)!
we easily see that the limit indeed exists and we obtain (2.6).
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After these preparations, the proof of Theorem 2.2 in the s = 3 case is finished in § 6.3,
while the s = 4 case is completed in Sections 7.4 and A.2. We show in both cases that (2.3)
is the unique solution of the following infinite system of non-linear polynomial inequalities in
the variables a > 0 and a3, a4, . . . , as ∈ R:

ψ(k)(−2s) > 0 for k = 0, 1, . . . , s− 1 (2.9)

and
∀k ∈ N, k > s: ψ(k)(−2s) > 0. (2.10)

The formal last step in both cases is given here: R(ψ) for (2.3) is indeed 2s.

2.5. Notation used in the proof sections

For 3 6 n ∈ N, n > m ∈ N+ and aj ∈ R (j = 0, 1, . . . , n) the mth root of the polynomial
equation anz

n + an−1z
n−1 + . . .+ a1z + a0 = 0 will be denoted by

rootm(an, an−1, . . . , a1, a0).

We use the following ordering for the roots: real roots are listed first in increasing order, then
non-real complex roots follow as their real part increases, finally, complex roots with equal real
part are sorted according to increasing imaginary part (in this context, multiple roots will not
be encountered). So for example, the value of rootm(1, 0, 0, 0, 0, 0,−1) for m = 1, 2, . . . , 6 is
−1, 1, (−1− i

√
3)/2, (−1 + i

√
3)/2, (1− i

√
3)/2 and (1 + i

√
3)/2, respectively, corresponding

to the equation z6 − 1 = 0. We will give numerical approximations to these roots as well,
typically to six digits, if they occur only in auxiliary computations, but more digits will be
displayed for significant constants. We will use the ≈ symbol without rounding, that is, in the
sense that all shown digits are correct. However, we underline that these approximations are
only given for the sake of the reader’s convenience, and the proofs are not based upon them.

In our arguments, several exact algebraic numbers (typically denoted by %spn), polynomials
(denoted by Pspn) or other auxiliary functions (fspn) will appear. Here the subscripts s and p

correspond to the ones in Πs/s,p or Π̂s/s,p, whereas the positive integer n serves as a counter
within the actual section and is increased sequentially. Superscript ∗ will often be used to denote
optimal values within the family (for example, a∗sp being the parameter value corresponding
to the rational function with maximal radius of absolute monotonicity in the class Πs/s,p or

Π̂s/s,p). If ψ depends on a parameter, say, on a, then the kth derivative (k ∈ N) of z 7→ ψa(z)

is denoted by ψ
(k)
a . Moreover, we will often use the simpler forms R(a) and B(a) instead of

R(ψa) and B(ψa), based on the bijection a↔ ψa.

Remark 2.9. We note that the function a 7→ R(a) ∈ [0,+∞] can be discontinuous. We will
also see examples when the function a 7→ B(a) ∈ [0,+∞] is non-differentiable, or convex on
an interval and concave on another one.

3. Determination of R2/2,3

Theorem 3.1. We have R2/2,3 = 1 +
√

3, and if ψ ∈ Π2/2,3 with R(ψ) = R2/2,3, then
ψ = ψa∗

23
given by (3.1).

Proof. The functions in Π2/2,3 have the form

ψa(z) =

(
1/3 + a/2

)
z2 + (a+ 1)z + 1(

−a/2− 1/6
)
z2 + az + 1

,
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Figure 1. The figure shows roots of the derivatives ψ
(k)
a (·) as a function of a for 0 6 k 6 5 for

the family of functions in the Π2/2,3 class. The parameter region between the vertical dashed lines
(that is, − 1− 1√

3
< a < −1 + 1√

3
) should be ignored, since here R(ψa) = 0. The black dot indicates

the optimal a parameter value and (the negative of ) the optimal radius of absolute monotonicity
within this class.

with a ∈ R. For any a ∈ R, the fraction cannot be simplified, since the resultant of the
numerator and the denominator with respect to z is 1

12 6= 0. This implies that ψa(·) does not
have removable singularities, only pole(s). This last statement remains valid if ψa(·) is replaced
by its kth derivative (k > 1), since differentiation cannot introduce new removable or pole
singularities, nor annihilate an existing pole. According to Theorem 1.12, R(ψa) > 0 implies
that ψa has a positive real pole. This last condition holds if and only if a 6 −1− 1√

3
≈ −1.57735

or a > −1 + 1√
3
≈ −0.42264. Figure 1 already suggests that the maximal radius of absolute

monotonicity within this class is 1 +
√

3, corresponding to parameter value a∗23 := −1 + 1√
3

(when the rational function has a pole of maximal possible order, that is, of order 2).
Indeed, for a 6 −1 − 1√

3
, we have ψa(− 5

2 ) = −(15a+ 14)/(135a+ 1) < 0, so by definition

R(ψa) 6 5
2 < 1 +

√
3.

On the other hand, ψa has a pole in (−1 −
√

3, 0) for a > −1 + 5
3
√
3
> −1 + 1√

3
, meaning

that R(ψa) < 1 +
√

3 here, since ψa is not defined on the whole (−1 −
√

3, 0]. Now we are
going to exclude the parameter region a ∈ (−1 + 1√

3
,−1 + 5

3
√
3
]. For a = −1 + 5

3
√
3
, we have

R(ψa) 6 2 < 1 +
√

3, because ψ′a(−2) < 0, while for a ∈ (−1 + 1√
3
,−1 + 5

3
√
3
), we have

R(ψa) < 1 +
√

3 due to ψ′a(−1−
√

3) < 0.
Finally, we see that for a = a∗23,

ψa∗
23

(x) =

(
2 +
√

3
)((√

3− 1
)
x2 + 2

√
3 x+ 6

)(√
3 + 3− x

)2 , (3.1)

from which one proves recursively for k > 1 that

ψ
(k)
a∗
23

(x) =
6k!
(
(12k − 3) +

√
3(7k − 2) +

(
3 + 2

√
3
)
x
)(√

3 + 3− x
)k+2

.
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These imply that ψ
(k)
a∗
23

(x) > 0 for all k > 0 and −1 −
√

3 6 x 6 0, but ψ′a∗
23

(x) < 0 for

x < −1−
√

3, proving our claim.

4. Determination of R3/3,p for 5 6 p 6 6 and a lower bound when p = 2

4.1. Determination of R3/3,6

The set Π3/3,6 is a singleton, with the only element being

ψ36(z) :=
(z3/120) + (z2/10) + (z/2) + 1

−(z3/120) + (z2/10)− (z/2) + 1
.

Therefore R3/3,6 = R(ψ36).
The exact value of the above constant is given by the next theorem.

Theorem 4.1.

R(ψ36) = root1(1,−6, 0, 40) = −2 +
3
√

4

(
3

√
3−
√

5 +
3

√
3 +
√

5

)
≈ 2.207606.

Proof. We first determine B(ψ36) (see Definition 1.10). Let α0 := root1(1,−12, 60,−120) ≈
4.64437 and α1 := root2(1,−12, 60,−120) ≈ 3.67781 − i · 3.50876 denote the real and
one of the complex roots of the denominator of ψ36. Then x = x∗ := −B(ψ36) < 0
is the unique real solution of the equation |α0 − x| = |α1 − x|. From this we see that
B(ψ36) = root1(1,−6, 0, 40), and from Theorem 1.11 we know that R(ψ36) 6 B(ψ36). In order

to show that R(ψ36) = B(ψ36), we verify that ψ
(k)
36 (x∗) > 0 for any k > 0. (Then Theorem 1.14

with x = x∗ guarantees absolute monotonicity on [−B(ψ36), 0], since the denominator of ψ36

does not vanish on, say, (−∞, 0].) The partial fraction decomposition of ψ36 is ψ36(x) =
−1 + c0/(α0 − x) + c1/(α1 − x) + c1/(α1 − x), with c0 := root1(1,−24,−1200,−40000) ≈
57.2025 and c1 := root3(1,−24,−1200,−40000) ≈ −16.6012 + i · 20.5831. But ψ36(x∗) =
root1(1,−15, 2127,−233) > 0, and for k > 1 we have

ψ
(k)
36 (x∗) = k!(α0 − x∗)−k−1

(
c0 + c1

(
α0 − x∗

α1 − x∗

)k+1

+ c1

(
α0 − x∗

α1 − x∗

)k+1)
.

Since |(α0 − x∗)/(α1 − x∗)| = |(α0 − x∗)/(α1 − x∗)| = 1 by construction and 52.8874 ≈ |c1|+
|c1| < c0, the positivity of ψ

(k)
36 (x∗) follows.

4.2. Determination of R3/3,5

Theorem 4.2. We have R3/3,5 = B(a∗35) ≈ 2.301322 given by (4.4), and if ψ ∈ Π3/3,5 with
R(ψ) = R3/3,5, then ψ is equal to (4.1) with a = a∗35 given by (4.3).

Proof. The elements of Π3/3,5 can be described by one real parameter a ∈ R as

ψa(z) =

(
a+ 1

60

)
z3 +

(
6a+ 3

20

)
z2 +

(
12a+ 3

5

)
z + 1

az3 +
(

1
20 − 6a

)
z2 +

(
12a− 2

5

)
z + 1

. (4.1)

The numerator and denominator do not have a common root for any a, because their resultant
with respect to z is 1

8640 6= 0.
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Theorem 1.12 tells us that if R(ψa) > 0, then ψa has at least one positive real pole. We
claim that the statement there exists x > 0 : ax3 + ( 1

20 − 6a)x2 + (12a− 2
5 )x+ 1 = 0 implies

a < 0. Indeed, after a rearrangement we get

a =
−x2 + 8x− 20

20x
(
x2 − 6x+ 12

) < 0, (4.2)

since the numerator is negative and the denominator is positive for all x > 0.

Next we prove that ψ
(10)
a (−2) < 0 for a 6 − 1

50 : we have ψ
(10)
a (−2) = P351(a) · (−189) ·

250000000−1(28a − 1)−11, where P351 is a polynomial of degree 11. Clearly, it is enough to

show that P351(a) < 0 for a 6 − 1
50 . But P

(11)
351 is a positive constant, and for k = 10, 9, 8, . . . , 0

one computes that sgn(P
(k)
351(− 1

50 )) = (−1)k+1, showing inductively that for any a ∈ (−∞,− 1
50 ]

and k = 10, 9, 8, . . . , 0 we have sgn(P
(k)
351(a)) = (−1)k+1.

By definition, ψ
(10)
a (−2) < 0 means that R(ψa) 6 2 for a 6 − 1

50 . So in order to get
R(ψa) > 2, it is enough to consider a ∈ (− 1

50 , 0). As it turns out, the maximal radius of
absolute monotonicity for these rational functions will be determined by the (finite) maximum
of the function a 7→ B(a) ≡ B(ψa) according to Definition 1.10 and Theorem 1.11.

First we give the real and imaginary parts of the three poles (even for all a < 0), but due to
symmetry, it is enough to take into account only the closed upper half-plane. For a < 0, the
real pole is located at

%351(a) = root1(20a, 1− 120a, 240a− 8, 20).

As for the other pole, first we set

%352 = root1(864000, 43200, 360, 1) = − 1
120

(
2 +

3
√

2 +
3
√

4
)
≈ −0.0403944.

Then we consider the denominator of ψa, substitute z = x+iy, separate the real and imaginary
parts and solve the resulting system: for %352 6= a < 0, the upper complex pole is found at

%353(a) +
i

4
√

5|a|

√
14400a2 + 1200a+ 4− (240a+ 1)%353(a)

60a(2− %353(a))− 1

with

%353(a) = root1(1600a2,−9600a2 + 80a, 19200a2 − 400a+ 1,−14400a2 + 400a− 4),

while for a = %352, the upper complex pole is located at 4 − 3
√

4 + i(2 3
√

2 + 3
√

4 − 2) ≈
2.4126 + i · 2.10724. A case separation is necessary in the above formula to avoid a 0/0 under
the square root: geometrically this a = %352 value corresponds to the case when the three poles
have the same real part.

Now with the real and imaginary parts separated, it is easy to find, for any a < 0 the unique
point on the real axis being equidistant from the real pole and the upper complex pole. We
check that for a < %352 the (positive) real pole is strictly smaller than the real part of the
(upper) complex pole, hence, by applying the notation of Definition 1.10 with α0 ≡ α0(a)
being the positive real pole, the equidistant point on the real axis is strictly positive, meaning
that 0 ∈ I(α0(a)) and B(a) = − inf I(α0(a)) = +∞ here. We easily see that B(%352) = +∞
also, but for %352 < a < 0, B(a) will be finite. For %352 < a < 0, the point on the real axis
equidistant from the real pole and the complex pole is found at f351(a)/f352(a) with

f351(a) := %2351(a)
(
60a%353(a)− 120a+ 1

)
− 80a%3353(a)

− (2− 240a)%2353(a)− (240a− 8)%353(a)− 20
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174 l. lóczi and d. i. ketcheson

Figure 2. By substituting z = x + iy (x, y ∈ R) into the fraction in (4.2) and separating real and
imaginary parts, two R2 → R surfaces (Sre and Sim) are obtained. The contour Sim = 0 yields the
equation y(x4 − 16x3 + 2x2y2+ 96x2 − 16xy2 − 240x + y4 + 16y2 + 240) = 0 depicted as red curves
(with three connected components). They describe the locus of the poles of ψa for a ∈ R (including
the limiting case a = ±∞) in the complex plane in the Π3/3,5 class. For a particular, fixed a ∈ R, the
three poles of ψa are found when the red curves intersect the contour curves Sre = a (some of which
are shown as blue curves). The poles in the a = ±∞ limiting case are located at the three singular
points (squeezed in between the white regions), where Sre and Sim are undefined.

and
f352(a) := 2

(
%351(a)− %353(a)

)(
60a%353(a)− 120a+ 1

)
.

Now Reduce establishes that f351(a)/f352(a) has a unique zero in %352 < a < 0: by defining

%354 = root1(13824000, 345600, 2880,−152,−1) ≈ −0.00625485,

it turns out that

f351
f352

∣∣∣∣
(%352,%354)

< 0,
f351
f352

∣∣∣∣
a=%354

= 0,
f351
f352

∣∣∣∣
(%354,0)

> 0.

Knowing the sign of f351(a)/f352(a) implies that the relation 0 ∈ I(α0(a)) on a ∈ (%352, 0) \
{%354} can hold only for a ∈ (%352, %354), so

B(a) = 0 for a ∈ [%354, 0),

and

B(a) = −infI(α0(a)) = −f351(a)

f352(a)
for a ∈ (%352, %354).
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Figure 3. In the Π3/3,5 class the function a 7→ −B(a) is shown as the thick red curve (with −B ≡ −∞
to the left of the long, vertical dashed line). The small dashed rectangle will contain the optimal value

of −B. The other curves are the roots of the derivatives ψ
(k)
a (·) for k = 0, 1, 2, 8, 9, 10, 11, 12, 13. In

this plot window, these are the only roots of ψ
(k)
a (·) for k 6 13. We note that altogether 17 947 digits

are needed just to write down the integer polynomials appearing in the numerators of ψ
(k)
a (·) for these

k values. The structures analogous to pitchfork bifurcations in this figure nicely illustrate Rolle’s
theorem, further, the fact that if a smooth function has a root of multiplicity m at a point, then its
derivative also has a root there (with multiplicity m− 1).

Having completely described the function B, in the next step we will determine its maximal
value on a ∈ (− 1

50 , 0) by differentiation. We check by computing the discriminant of the
denominator of ψa that all roots of the denominator are simple for all a < 0. Moreover, this
denominator is smooth in x and a, so the implicit function theorem yields that the functions
a 7→ %351(a) and a 7→ %353(a) are differentiable with derivatives

%′351(a) = − 20%3351(a)− 120%2351(a) + 240%351(a)

60a%2351(a) + 2(1− 120a)%351(a) + 240a− 8

and

%′353(a) = −3200a%3353(a) + (−19200a+ 80)%2353(a) + (38400a− 400)%353(a)− 28800a+ 400

4800a2%2353(a) + 2
(
−9600a2 + 80a

)
%353(a) + 19200a2 − 400a+ 1

.

Also using these formulae we determine that there are exactly two a values in (− 1
50 , 0) such

that B′(a) = 0; one is a local minimum and the other one is a local maximum of B. But since
we are maximizing B, the local minimum is ignored. The local maximum of B is located at

a∗35

:= root2(13436928000000, 1492992000000, 68428800000, 1427328000, 13867200, 61200, 101)

≈ −0.009257142292762484937472363 (4.3)

with value

B(a∗35) = root2(1, 12, 36,−76,−360, 0, 900) ≈ 2.301322934003485801187482. (4.4)
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Note that Figure 3 depicts −B so that it can be compared with the derivatives of ψa(·). We
note that the local maximum of −B|(− 1

50 ,0)
is described by the same root object as a∗35 but

with root2 replaced by root1.
As a final step, we show that the interval [−B(a∗35), 0] does not contain any roots of the

derivatives ψ
(k)
a∗
35

(·) (k = 0, 1, . . .). In view of Theorem 1.14 with x = −B(a∗35), it is enough to

show that for all k > 0 we have
ψ
(k)
a∗
35

(−B(a∗35)) > 0,

which we check by partial fraction decomposition (also showing that there are no poles of
ψa∗

35
in [−B(a∗35), 0], so Theorem 1.14 applies). The function ψa∗

35
evaluated at x admits the

decomposition

c+
c0

α0 − x
+

c1
α1 − x

+
c1

α1 − x
with some c, c0 ∈ R, α0 > 0 and c1, α1 ∈ C\R. These constants are algebraic numbers of degree
not exceeding 12, and absolute value of the coefficients of their defining integer polynomials
less than 1026. Here we give only their numerical approximations as

c ≈ −0.800411, c0 ≈ 46.829419, α0 ≈ 4.449434,

c1 ≈ −13.750016− i · 16.640148, α1 ≈ 3.475900 + i · 3.492336.

With x = x∗ := −B(a∗35) < 0 we check that

0.09999997 ≈ ψa∗
35

(x∗) > 0.

On the other hand, for k > 1, ψ
(k)
a∗
35

(x∗) takes the form

k!(α0 − x∗)−k−1
(
c0 + c1

(
α0 − x∗

α1 − x∗

)k+1

+ c1

(
α0 − x∗

α1 − x∗

)k+1)
.

Now we make use of the facts that α0 − x∗ > 0 and |(α0 − x∗)/(α1 − x∗)| = |(α0 − x∗)/
(α1 − x∗)| = 1 by construction, further, that c0 > 0 and 43.172096 ≈ |c1| + |c1| < c0. This

proves that ψ
(k)
a∗
35

(x∗) > 0 also for k > 1.

4.3. A counterexample to the conjecture that Rs/s,2 = 2s

A counterexample to Conjecture 1.3 for the case m = n = 3 was found via extensive numerical
search using MATLAB and the Symbolic Toolbox employing the fminsearch function (Nelder–
Mead simplex method); it originally appeared in [8]. For the sake of our presentation, let us

denote this counterexample with rational coefficients by ψ̃32
†. Now we are going to present

a simpler counterexample, in the sense that the rational coefficients have much smaller
numerators and denominators, with slightly improved radius of absolute monotonicity.

By suitably perturbing the rational coefficients into nearby simpler ones and embedding
ψ̃32 into a one-parameter family of rational functions in a way that the order conditions are
satisfied within the family, say, as

ψc(z) =
cz3 + 2289

34970z
2 + 119

269z + 1

− 4
327z

3 + 8
65z

2 − 150
269z + 1

with c ∈ R, we can optimize the radius of absolute monotonicity with respect to c using
Mathematica. It turns out that the optimal parameter c∗ (that is, the one that yields the

†We note that there is a typo in the last digit of one of its coefficients in [8], instead of 7969150767159903,
one should have 7969150767159904.
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maximal R within this chosen class) is an algebraic number of degree 5. By replacing c∗ with
a nearby simple rational number we get, for example,

ψ32(z) =
1246

384649z
3 + 2289

34970z
2 + 119

269z + 1

− 4
327z

3 + 8
65z

2 − 150
269z + 1

.

This function has

R(ψ32) = root1(43572620,−880461561, 5950520030,−13451175530)

≈ 6.778307398562974637718719 > 6.

We note that 6.77823595 ≈ R(ψ̃32) < R(ψ32) < R(ψc∗) ≈ 6.77830907.
Let us briefly give some details that can be used to verify the above value of R(ψ32). The

function ψ32 at x has the partial fraction decomposition

c+
c0

α0 − x
+

c1
α1 − x

+
c1

α1 − x

with c = − 203721
769298 , c0 ≈ 24.8122, α0 ≈ 3.71417, c1 ≈ −8.39838− i · 9.53528 and α1 ≈ 3.17368 +

i · 3.45514. (These are all algebraic numbers of degree 3, and with maximal absolute value of
the coefficients in their defining integer polynomials approximately 1.046 · 1042.) We see that
ψ32 has a unique real root at x∗ := −R(ψ32) ≈ −6.778307, so Theorem 1.13 with x = x∗ and

` = 0 applies. We claim that ψ
(k)
32 (x∗) > 0 holds for all k > 1 as well. For k > 1, we have

ψ
(k)
32 (x∗) = k!(α0 − x∗)−k−1

(
c0 + c1

(
α0 − x∗

α1 − x∗

)k+1

+ c1

(
α0 − x∗

α1 − x∗

)k+1)
.

Now since α0 − x∗ > 0 and |(α0 − x∗)/(α1 − x∗)| = |(α0 − x∗)/(α1 − x∗)| ≈ 0.995991 (an
algebraic number of degree 18, with 92-digit integers as coefficients), we see that the sufficient
condition

2|c1|
∣∣∣∣α0 − x∗

α1 − x∗

∣∣∣∣k+1

6 c0

for the non-negativity of ψ
(k)
32 (x∗) holds for k > 5. Finally, we directly check that ψ

(k)
32 (x∗) > 0

is also valid for 1 6 k 6 4. (We note that now B(ψ32) ≈ 7.59982 is an algebraic number of
degree 3, so for this particular function R(ψ32) < B(ψ32).) Absolute monotonicity in the whole
[x∗, 0] interval is guaranteed by Theorem 1.14, by taking into account that there are no poles
of ψ32 in [x∗, 0].

Of course, it is to be emphasized that the maximal radius of absolute monotonicity in the
whole Π3/3,2 class is still unknown: this class of rational functions can be described by four
parameters. It is a major open challenge to find the maximal R within this 4-parameter family.

5. Determination of R4/4,7

Theorem 5.1. We have R4/4,7 = B(a∗47) ≈ 2.743911, and if ψ ∈ Π4/4,7 with R(ψ) = R4/4,7,
then ψ is equal to (5.1) with a = a∗47. The exact values of a∗47 and B(a∗47) are found in §A.1.

Proof. Elements of the set Π4/4,7 can be described by one real parameter a ∈ R as

ψa(z) =
1

840 (7a+ 4)z4 + 1
210 (21a+ 13)z3 +

(
− 1

14 (7a+ 2) + a+ 1
2

)
z2 + (a+ 1)z + 1

− 1
840 (7a+ 3)z4 + 1

210 (21a+ 8)z3 − 1
14 (7a+ 2)z2 + az + 1

. (5.1)

https://doi.org/10.1112/S1461157013000326 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000326
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The numerator and denominator do not have common factors for any a, since their resultant
with respect to z is 1

870912000 6= 0. In order to have R(ψa) > 0, ψa needs to have at least one
positive real pole (Theorem 1.12). To obtain some preliminary information on the location of
the real poles of x 7→ ψa(x), we apply the same trick as at the beginning of § 4.2. This time
the denominator of ψa(x) (with x ∈ R) vanishes if and only if

a =
−3x4 + 32x3 − 120x2 + 840

7x
(
x3 − 12x2 + 60x− 120

) .
Then, by analyzing the range of this rational function on the right-hand side (under the
restriction x > 0), we prove that ψa has at least one positive real pole precisely if

a 6 %471 ≈ −0.843194 or a > %472 ≈ −0.471357,

so in the rest of the proof we can consider only the above parameter set. We note that the
exact values of these and the following algebraic numbers are listed in the Appendix.

Now we show that in the left unbounded component, that is for a ∈ (−∞, %471], we have

R(a) ≡ R(ψa) = 0. Indeed, a ∈ (−∞, %471] ⊂ (−∞,−
√

11
21 ) implies ψ

(9)
a (0) = 66

35 −
18a2

5 < 0.

Hence it is enough to focus our attention on the right unbounded component a ∈ [%472,+∞).
In this region we are going to explicitly compute the function a 7→ B(a) ≡ B(ψa) (according
to Definition 1.10).

As a first step, Reduce was able to give a complete description of the locus of the poles in the
complex plane with real and imaginary parts separated as a is varied. For a = %472 we have a
real pole of order 2 at %473 ≈ 7.64527. For %472 < a < − 3

7 , it bifurcates into two real poles (of
order 1) located at %4711(a) ∈ (%474, %473), and %4712(a) ∈ (%473,+∞), with %474 ≈ 5.64849. For
a = − 3

7 there is a unique real pole of order 1 at %474. Finally, for a > − 3
7 the smaller (negative)

real pole is located at %4711(a) < 0, while the larger (positive) pole is found at %4712(a).
As for the complex poles, due to symmetry, it is enough to describe only the one with

positive imaginary part. For a ∈ [%472,− 3
7 ], the complex pole in the upper half-plane has real

part %477(a) and imaginary part√
(7a+ 3)%3477(a)− (63a+ 24)%2477(a) + (210a+ 60)%477(a)− 210a

(7a+ 3)%477(a)− 21a− 8
.

For a > − 3
7 the expressions for the real and the imaginary parts of the upper complex pole

are obtained as above, but with root1 in the definition of %477(a) (see the Appendix) replaced
by root2.

Figure 4 depicts the locus of the poles of ψa as a is varied. For the sake of completeness, we
have also included the poles corresponding to the interval a ∈ (−∞, %472).

Now we combine the above formulae on the locus of the poles, real and imaginary parts
separated, to determine B(a) for each a ∈ [%472,+∞). With the help of Reduce (and by
applying some geometric reformulations to be able to obtain the results in a reasonable amount
of computing time, but now omitting the details here) we can prove that for −0.471357 ≈
%472 6 a < %478 ≈ −0.469514 the point on the real axis equidistant from the smaller (positive)
real pole and the upper complex pole is positive (that is, 0 lies strictly closer to the non-
real upper complex pole for a ∈ [%472, %478)), hence (in the sense of Definition 1.10) 0 /∈
I(α0), so B(a) = 0 here. The larger real pole, existing for a ∈ (%472,− 3

7 ), clearly cannot
influence the value of B(a) now. For a ∈ [%478,− 3

7 ], the equidistant point on the real axis
from the smaller positive real pole and the upper complex pole is non-positive, and is given
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Figure 4. The trajectory of the four poles of ψa in the complex plane in the Π4/4,7 class as parameter
a traverses through the real line from −∞ to +∞. As a → −3/7− and passes through this point,
the larger real pole is repelled to +∞, then it enters the real line again from −∞ and approaches to
0−. (In order to create the figure, we have used an equidistant grid on a ∈ [−3, 3] and Mathematica’s
NSolve approximated the roots of the resulting 6001 quartic equations appearing as denominators in
a few seconds.) Compare these curves with the corresponding red curves in Figure 2.

by f471(a)/f472(a) with

f471(a) := 2(7a+ 3)%3477(a)− 4(21a+ 8)%2477(a) + 30(7a+ 2)%477(a)

+ (21a+ 8− (7a+ 3)%477(a))%24711(a)− 210a

and

f472(a) := 2((7a+ 3)%477(a)− 21a− 8)(%477(a)− %4711(a)).

(Of course, as already noted earlier, the expression ‘smaller positive real pole’ in the previous
sentence should be interpreted as the ‘unique real pole’ for a = − 3

7 . Moreover, the expression
‘non-positive’ can be replaced by ‘zero’ for a = %478, and by ‘negative’ for a ∈ (%478,− 3

7 ].)
Finally, we study the interval a > − 3

7 . Now one should take into account the newly created
negative real pole as well. It can be proved that for a = %479 ≈ −0.358565 there is a
unique negative real number, root1(1,−21, 165,−520, 0, 3600,−6000) ≈ −2.40614 such that
it is equidistant from all the four poles. For a ∈ (− 3

7 , %479] the negative real pole is still too far
on the left to have an effect on B(a), so for these a values B(a) is obtained as the absolute value
of the point on the real axis equidistant from the positive real pole and the upper complex
pole. Here B(a) will be given in terms of f473(a) and f474(a). Expression f473(a) is defined
just as f471(a), but with each root1 occurring in the definition of %477(a) replaced by root2,
further, with %4711(a) replaced by %4712(a). Expression f474(a) is obtained from f472(a) via the
same two replacement rules. For a > %479, the

(equidistant point on the real axis from the positive real pole and the upper complex pole)1

is smaller than the

(equidistant point on the real axis from the positive real pole and the negative real pole)2,
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hence here B(a) is determined solely by the two real poles. Notice that quantity (...)2 is simply
the midpoint between the two real poles. For

−0.358565 ≈ %479 < a 6 %4710 ≈ −0.274796,

the expression (...)2 is non-positive, so its absolute value gives B(a). But for a > %4710, (...)2
is strictly positive, so 0 /∈ I(α0) again, thus B(a) = 0 here.

We now summarize the above information in one formula for B(a). (For completeness’
sake we also provide some additional information on B(a) in the interval a ∈ (−∞, %472]
already investigated earlier. We note that a = %475 ≈ −0.850052 corresponds to the geometric
configuration when ψa has three poles, one positive real and two complex poles, with equal
real part, and the fourth, real pole lies to the right.) We have

B(a)



= +∞ for a ∈ (−∞, %475],

> %476 for a ∈ (%475, %471],

= 0 for a ∈ (%471, %472),

= 0 for a ∈ [%472, %478],

=

∣∣∣∣f471(a)

f472(a)

∣∣∣∣ for a ∈
(
%478,− 3

7

]
,

=

∣∣∣∣f473(a)

f474(a)

∣∣∣∣ for a ∈
(
− 3

7 , %479
]
,

=
1

2

∣∣%4711(a) + %4712(a)
∣∣ for a ∈

(
%479, %4710

]
,

= 0 for a ∈
(
%4710,+∞

)
with %476 ≈ 21.5907.

After describing the function B, we find its maximal value on a ∈ [%472,+∞), or, equivalently,
on [%472, %4710], see Figure 5. Mathematica’s Maximize was able to locate this unique point. It
turns out that B

∣∣
[%472,%4710]

attains its maximal value at

a∗47 ≈ −0.4398493860002001824004494,

where a∗47 is the smaller real root of a polynomial with integer coefficients and of degree 30.
The corresponding maximal value is

B
(
a∗47
)
≈ 2.743911895676330804848228,

expressible as the larger real root of a polynomial with integer coefficients and again of degree
30, see the Appendix.

As a last step, we check that no roots of the derivatives of the function ψa∗
47

(·) can enter
the interval [−B(a∗47), 0], so its radius of absolute monotonicity is as large as it can be
(Theorem 1.11), based exclusively on the location of the poles: in view of Theorem 1.14 with
x = −B(a∗47), it is enough to show that for all k > 0 we have

ψ
(k)
a∗
47

(
−B

(
a∗47
))

> 0.

Again, the most convenient form to use is the partial fraction decomposition of ψa∗
47

(x)

(this decomposition also reveals that ψa∗
47

has no poles in the interval [−B
(
a∗47
)
, 0], hence

Theorem 1.14 is applicable). However, in this case, due to the high degree polynomial involved
in the definition of a∗47, Mathematica could not find the exact partial fraction decomposition
of ψa∗

47
(x) in a reasonable amount of time (that is, expressing the poles and the coefficients
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Figure 5. The graph of the function a 7→ −B(a) (red, thick curve carrying the black dot) for
%472 6 a 6 0 is depicted together with the roots of the 0th and 1st derivatives of ψa(·) in the Π4/4,7

class. Notice that B(a) = 0 also between the two vertical dashed lines on the left. The distance between
the black dot and the horizontal axis is the optimal radius of absolute monotonicity.

of the partial fractions as explicit and exact algebraic numbers). In order to overcome this
difficulty, we have employed complex interval arithmetic with rational endpoints. We started
from good enough lower and upper rational bounds on a∗47, B(a∗47) and the four poles: we
applied validated numerical algorithms (such as IsolatingInterval, with tolerance 10−20) in
the case of real algebraic numbers, and higher precision evaluation in the case of complex roots,
which have been previously shown to be the unique roots within larger rational rectangles in
the complex plane by IsolatingInterval. Then we also expressed the coefficients of the
partial fraction decomposition in terms of the poles and a∗47 symbolically in advance. At the
end, we were able to give rigorous lower and upper rational bounds on the (absolute value
of the) coefficients using only rational arithmetic without any difficulty. These computations
produced quite lengthy outputs, since the numerators and denominators of some intermediate
rational numbers in the bounding intervals consisted of integers with more than 220 digits.
Nevertheless, with the above simple interval technique we were able to completely reproduce
the numerical partial fraction decomposition of ψa∗

47
(x) obtained directly in a much simpler

manner.
The partial fraction decomposition of ψa∗

47
(x) has the form

c+
c0

α0 − x
+

c1
α1 − x

+
c2

α2 − x
+

c2
α2 − x

,

with some c, c0, c1 ∈ R, α0, α1 > 0 and c2, α2 ∈ C \ R, further, the following numerical
approximations are valid (to simplify our presentation, we now omit listing any exact rational
bounds):

c ≈ 11.666934, c0 ≈ 202.617318, α0 ≈ 5.779490, (5.2)

c1 ≈ −1084.668490, α1 ≈ 47.331517, (5.3)

c2 ≈ −19.880058− i · 86.974803, α2 ≈ 4.778363 + i · 4.007962. (5.4)
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For k > 1, ψ
(k)
a∗
47

(x) can be written as

k!(α0 − x)−k−1
(
c0 + c1

(
α0 − x
α1 − x

)k+1

+ c2

(
α0 − x
α2 − x

)k+1

+ c2

(
α0 − x
α2 − x

)k+1)
.

Now we evaluate the above expression at x = x∗ := −B(a∗47) < 0. We see by construction
that |(α0 − x∗)/(α2 − x∗)| = |(α0 − x∗)/(α2 − x∗)| = 1, and it can also be proved that 0 <
(α0 − x∗)/(α1 − x∗) < 1/5. So by taking into account α0 > 0,−x∗ > 0 and c0 > 0, a sufficient

condition for the positivity of ψ
(k)
a∗
47

(x∗) (k > 1) is that |c1| · (1/5)k+1 + 2|c2| · 1 < c0, or, by

using the rigorous bounds |c1| < 1085, |c2| < 90 and c0 > 202, a weaker sufficient condition is
given by 1085 · (1/5)k+1 + 180 < 202, which is seen to hold for k > 2. But for k = 0 and k = 1
one checks directly (with simple rational bounds on a∗47 and −B

(
a∗47
)
, and even without using

partial fraction decomposition) that ψ
(k)
a∗
47

(−B(a∗47)) > 0.

6. Determination of R̂3/3,p for 2 6 p 6 4

6.1. Determination of R̂3/3,4

Theorem 6.1. We have R̂3/3,4 = |x∗| ≈ 3.287278 with x∗ given by (6.2), and if ψ ∈ Π̂3/3,4

with R(ψ) = R̂3/3,4, then ψ is of the form (6.1) with

a = root1(24,−36, 12,−1) ≈ 0.128886, a1 = root3(8, 12,−12, 1) ≈ 0.613341,

a2 = root2(64,−48, 0, 1) ≈ 0.163176, a3 = root2(1536,−1152,−24, 1) ≈ 0.021031.

Proof. Any element of Π̂3/3,4 can be represented in the form

ψ(z) =
a3z

3 + a2z
2 + a1z + 1

(1− az)3
(6.1)

with suitable real parameters a, a1, a2 and a3. One directly computes that there are exactly
three solutions (a, a1, a2, a3) ∈ R4 to the system

ψ(k)(0) = 1, k = 0, 1, 2, 3, 4

(we note that we would get the same three real solutions if we allowed (a, a1, a2, a3) ∈ C4).
For all of these three solutions, condition a > 0 is automatically satisfied (cf. Theorem 1.12),
and we have for m = 1, 2, 3 that a = rootm(24,−36, 12,−1), a1 = root4−m(8, 12,−12, 1),
a2 = root 1

2 (3m
2−11m+12)(64,−48, 0, 1) and a3 = root 1

2 (3m
2−11m+12)(1536,−1152,−24, 1). Let

us denote the corresponding rational functions by ψ34m (m = 1, 2, 3). We can check that 1/a
is a pole of order 3 in each case, so no cancellation between the numerator and denominator
occurs. We are going to prove that

max
m=1,2,3

R(ψ34m) = −x∗

with

x∗ := root1(1, 12, 60, 120,−144,−1152,−1536, 1152, 2304,−1536)

≈ −3.287278451851993925371346 (6.2)

and the maximum occurring at m = 1.
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Let us consider the m = 2 case first. Then ψ
(6)
342(0) = root1(8,−3540, 600, 4625) < 0, so

R(ψ342) = 0 by definition.

Next for m = 3, ψ
(5)
343(root5(1, 66, 1242, 7008, 1872,−648,−72)) = 0, so Theorem 1.13 with

` = 5 says that R(ψ343) 6 −root5(1, 66, 1242, 7008, 1872,−648,−72) ≈ 0.0943315 < |x∗|.
Finally, for m = 1 the partial fraction decomposition of ψ341 reads as

ψ341(x) = c+

3∑
`=1

c`
(α0 − x)`

,

where c = root1(1, 9,−9,−9) ≈ −9.82294, c1 = root3(1,−288,−5184, 13824) ≈ 304.856,
c2 = root1(1, 3168,−243648,−235008) ≈ −3243.10, c3 = root3(1,−11808,−684288, 110592) ≈
11865.6, and α0 = root3(1,−12, 36,−24) ≈ 7.75877. Then ψ341(x∗) = 0, so by Theorem 1.13
with ` = 0 we have R(ψ343) 6 |x∗|. On the other hand, since now trivially B(ψ341) = +∞,
Theorem 1.14 with x := x∗ proves absolute monotonicity of ψ341 on [x∗, 0] provided that we
show the point conditions

ψ
(k)
341(x∗) > 0

for all k > 1 (the theorem is applicable due to the lack of poles in (−∞, 0]). Indeed, for such
k values we have

ψ
(k)
341(x∗) = (k + 2)!(α0 − x∗)−k−3

[
c3
2

+
c2

k + 2
(α0 − x∗) +

c1
(k + 1)(k + 2)

(α0 − x∗)2
]
.

Clearly, because of α0−x∗ > 0, it is enough to verify that the [. . .] expression is non-negative,
but since limk→+∞[. . .] = c3/2 > 0, only finitely many k values should be checked. We easily
see that [. . .] > 0 holds if, for example,

α0 − x∗

k + 2

(
|c2|+

c1
k + 1

(α0 − x∗)
)
<

23/2

k + 2

(
3250 +

305

k + 1
· 23

2

)
< 5500 <

c3
2
.

Now the second inequality above is satisfied for k > 6, and we determine directly that [. . . ] > 0
holds for each k = 1, 2, . . . , 5 as well, completing the argument that the maximal radius of
absolute monotonicity within the Π̂3/3,4 class is |x∗|.

Remark 6.2. Partial fraction decomposition in the m = 2 case shows that the corresponding
‘dominant coefficient’ c3 is negative, immediately implying R(ψ342) = 0 (cf. Remark 8.12).

6.2. Determination of R̂3/3,3

Theorem 6.3. We have R̂3/3,3 = 2 +
√

8 ≈ 4.82842, and if ψ ∈ Π̂3/3,3 with R(ψ) = R̂3/3,3,

then ψ is determined by (6.3) with a = a∗33 := (2−
√

2)/4.

Proof. Now the one-parameter family of rational functions takes the form

ψa(z) =
1
6

(
−6a3 + 18a2 − 9a+ 1

)
z3 + 1

2

(
6a2 − 6a+ 1

)
z2 + (1− 3a)z + 1

(1− az)3
(6.3)

with a ∈ R. For a = 0 the rational function reduces to the third degree Taylor polynomial
of the exponential function around 0, which has R = 1. So we can assume a 6= 0. Let us
exclude two more exceptional parameter values as well. It is easily seen by computing the
corresponding resultant that the numerator and denominator have a common root if and only
if a = 1

6 (3 ±
√

3). In any of these cases, ψa is either ψ231 or ψ232 from the Π̂2/2,3 class (see

(2.1)–(2.2)), hence R 6 1 +
√

3 < 2 +
√

8.
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Figure 6. Each curve (corresponding to different k values between 0, 1, . . . , 36) shows a root of ψ
(k)
a (·)

as the parameter a is varied in the Π̂3/3,3 class. The red curve (k = 0) is obtained as a solution of a
parametric cubic polynomial, whereas the other curves are derived from quadratic ones.

Now we can apply Theorem 1.12 saying that a > 0 is necessary to have R > 0. So in the
following we can suppose that 0 < a 6= 1

6 (3±
√

3).
One can prove by induction that for k > 1

ψ(k)
a (x) =

ak−3k!

2
(1− ax)−k−3

×
(

(2a− 1)(6a− 1)a2x2 + (8a3(k − 2) + a2(9− 7k) + a(k − 1))x

+

(
a2(k − 3)(k − 2)− a(k − 3)(k − 1) +

1

6
(k − 2)(k − 1)

))
. (6.4)

Let us consider first the k = 5 special case of the above explicit formula with a > 1
3 . From

this we see that one of the roots of ψ
(5)
a (·) is − 1

3 for a = 1
2 , and

−12a2 + 13a− 2−
√

72a4 − 168a3 + 123a2 − 28a+ 2

a(2a− 1)(6a− 1)

for 1
3 6 a 6= 1

2 . But this last expression has values in, say, (−1, 0] for 1
3 6 a 6= 1

2 , implying, by
Theorem 1.13 with ` = 5, that R(ψa) 6 1 for 1

3 6 a.

We focus on the remaining a ∈ (0, 13 ) \ {(3−
√

3)/6} parameter set now. For 0 < a <

(2−
√

2)/4, ψ′′a(·) has a root of the form

5a− 1 +
√
−48a3 + 57a2 − 14a+ 1

2a(2a− 1)(6a− 1)

in the interval (−2−
√

8,−1), meaning (see Theorem 1.13) that R(ψa) < 2 +
√

8 here. On the
other hand, for (2−

√
2)/4 < a < 1

3 (the exceptional (3−
√

3)/6 value can safely be added
again), ψ′a(·) has a root of the form

4a− 1 +
√
−8a2 + 8a− 1

(2a− 1)(6a− 1)
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Figure 7. Zooming in on Figure 6 (with some curves omitted) reveals the location of the optimum

(depicted as a black dot) in the Π̂3/3,3 class.

in the interval (−2 −
√

8,−1 −
√

7), so (again by Theorem 1.13) R(ψa) < 2 +
√

8, too, for
these a values. (The a = 1

6 case is a removable singularity of the above root expression with
value −3.)

Finally, for a = a∗33 := (2−
√

2)/4, ψa∗
33

(−2−
√

8) = 1− 2
√

2/3 > 0, and, by using (6.4), for
any k > 1 we have

ψ
(k)
a∗
33

(−2−
√

8) = 4
3

(
3
2 −
√

2
)k
k!(k − 1)(k − 2) > 0,

showing that ψa∗
33

is absolutely monotonic at x = −2−
√

8. But then Theorem 1.14 (applicable
because there are no poles in (−∞, 0]) guarantees absolute monotonicity on the whole interval
[−2−

√
8, 0], and Theorem 1.13 with, say, ` = 1 shows that R(ψa∗

33
) 6 2 +

√
8, completing the

proof.

6.3. Determination of R̂3/3,2

In this section we finish the proof of Theorem 2.2 in the s = 3 case.
As we have seen in § 2.4.2, (2.5) and Lemma 2.7 imply that now we can restrict our attention

to rational functions of the form

ψa,c(z) =
cz3 +

(
1
2 − 3a+ 3a2

)
z2 + (1− 3a)z + 1

(1− az)3

with suitable parameters a > 0 and c ∈ R. For simplicity, we have used and will use the letter
c instead of a3. We are going to show that

ψa,c(−6) > 0, ψ′a,c(−6) > 0, ψ′′a,c(−6) > 0

and

∀k ∈ N, k > 3: ψ(k)
a,c (−6) > 0

imply that a = 1
6 and c = 1

216 , see Figure 8.
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Figure 8. The Π̂3/3,2 class. Depicting the roots of ψ
(k)
a,c(·) for k = 0, 1, 2 as a function of (a, c), the

optimal point is obtained as the intersection of these three surfaces at (a, c, x) = ( 1
6
, 1
216

,−6).

First, by using (2.7) evaluated at x = −6, we see that these inequalities are equivalent to

108a2 − 90a− 216c+ 13 > 0, (6.5)

108a3 − 108a2 + 42a+ 108c− 5 > 0, (6.6)

108a4 − 126a3 + 72a2 − 12a+ 1/2 + (108a− 18)c > 0, (6.7)

k2(a3 − 2a2 + a/2 + c) + k(−36a4 + 57a3 − 8a2 − 36ac− a/2− 3c)

+ 36ac+ 2c+ 216a5 − 180a4 + 26a3 + 216a2c > 0, (6.8)

where, of course, (6.8) should hold for all k > 3 integers. We will also use the necessary
condition (2.6), which now reads as

a3 − 2a2 + a/2 + c > 0 (6.9)

(being just the leading k-coefficient of (6.8)).
Let us express the linear parameter, c from (6.5), (6.6) and (6.9), then combine the resulting

inequalities to eliminate c and get

−108a3 + 108a2 − 42a+ 5

108
6

108a2 − 90a+ 13

216
>
−2a3 + 4a2 − a

2
.

Rearranging both inequalities to 0, the two cubic polynomials can be nicely factorized
(containing factors 2a− 1, 6a− 1, 6a+ 1 and 36a2 − 60a+ 13), so this, together with a > 0,
implies that

0 < a 6
1

6
or a >

5 + 2
√

3

6
. (6.10)

Now let us consider (6.7) and separate two cases according to the coefficient of c.
If it vanishes, that is, for a = 1

6 , then (6.5) and (6.6) yield c = 1
216 , and we are ready.
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Hence the proof is finished as soon as we have shown that (6.10) and a 6= 1
6 lead to a

contradiction.
First suppose that 0 < a < 1

6 . Then an elementary calculation shows that (6.7) (whose
left-hand side is just (6a− 1)(36a3− 36a2 + 18a− 1 + 36c)/2) and (6.6) contradict each other.

Consequently, it is sufficient to exclude a > (5 + 2
√

3)/6. Let us express c (again) from (6.9)
and (6.5) to have

−2a3 + 4a2 − a
2

6 c 6
108a2 − 90a+ 13

216
, (6.11)

and let us abbreviate the left-hand side of (6.8) by λ(k, a, c). The lemma below completes the
proof.

Lemma 6.4. For each a > (5 + 2
√

3)/6 and each c satisfying (6.11), there is an integer k > 3
such that λ(k, a, c) < 0.

Proof. Let us pick and fix throughout the proof an arbitrary a > (5 + 2
√

3)/6 and c satisfying
(6.11). Since ∂cλ(k, a, c) = k2− (36a+ 3)k+ 216a2 + 36a+ 2, we see that ∂cλ(k, a, c) < 0 holds
if and only if

%−321(a) < k < %+321(a), (6.12)

where %±321(a) := 3
2 (12a+ 1)± 1

2

√
432a2 + 72a+ 1. It is also easily seen that, for the allowed a

values, (6.12) automatically implies k > 3. So, if k satisfies (6.12), then due to (6.11) we have
that

λ(k, a, c) 6 λ

(
k, a,

−2a3 + 4a2 − a
2

)
= a(6a+ 1)

(
(1− 2a)k + 36a2 − 8a− 1

)
.

Since a > 1
2 now, this very last factor is negative if and only if

k >
36a2 − 8a− 1

2a− 1
. (6.13)

These mean that (6.12) and (6.13) imply λ(k, a, c) < 0. But %−321(a) < (36a2 − 8a− 1)/(2a− 1)
holds precisely if a ∈ (0, 16 ) ∪ ( 1

2 ,+∞), which is now true by the assumption on a, so to finish
the proof, it is enough to show that the set(

36a2 − 8a− 1

2a− 1
, %+321(a)

)
∩ N

is not empty: an elementary computation yields that for a > (5 + 2
√

3)/6 we have

%+321(a)− 36a2 − 8a− 1

2a− 1
> 9. 2

Remark 6.5. We add that this last integer in the proof, 9, could not be replaced by, say,
10 on the whole interval a ∈ ((5 + 2

√
3)/6,+∞).

Remark 6.6. It is possible to finish the proof of Lemma 6.4 by using the ∂cλ(k, a, c) > 0
case, but this would result in more difficult computations and would provide (asymptotically)
an interval of length 6 (instead of 9) in the last step.

7. Determination of R̂4/4,p for 2 6 p 6 5

For the sake of brevity and due to the fact that the techniques used in §§ 7.1–7.3 are very
similar to the corresponding earlier ones, we provide only brief (indication of the) proofs there.
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However, the complete proof in § 7.4 is presented, because that result, similarly to the one in
§ 6.3, is a special case of Conjecture 1.6.

7.1. Determination of R̂4/4,5

Theorem 7.1. We have R̂4/4,5 = |x∗| ≈ 3.743299 with x∗ given by (7.3), and if ψ ∈ Π̂4/4,5

with R(ψ) = R̂4/4,5, then ψ is of the form (7.1) with a4, a3, a2, a1, a defined by (7.2) and
m4 = m3 = m2 = 3, m1 = 4, m0 = 1.

Proof. The proof is completely analogous to the one in § 6.1. There are exactly four rational
functions in this Π̂4/4,5 class:

ψ(z) =
a4z

4 + a3z
3 + a2z

2 + a1z + 1

(1− az)4
, (7.1)

where

a4 = rootm4
(2160000, 4032000,−93600,−120, 1), a3 = rootm3

(18000, 24000,−1800, 0, 1),

a2 = rootm2
(1200,−7200, 120, 200, 3), a1 = rootm1

(15, 60,−30,−20, 7),

a = rootm0
(120,−240, 120,−20, 1), (7.2)

with

(m4,m3,m2,m1,m0) ∈ {(1, 1, 4, 1, 4), (2, 2, 2, 3, 2), (3, 3, 3, 4, 1), (4, 4, 1, 2, 3)}.

First we note that in all four cases the only pole of ψ is positive real.
For m4 = 1 the corresponding ψ satisfies ψ(5)(−1/2) < 0, hence R(ψ) < 1/2.
For m4 = 2 the corresponding ψ satisfies ψ(8)(0) < 0, hence R(ψ) = 0.
For m4 = 4 the corresponding ψ satisfies ψ(7)(−1/2) < 0, hence R(ψ) < 1/2.
For m4 = 3 the corresponding ψ satisfies ψ′(x∗) = 0 with

x∗ := root1(1, 12, 48,−32,−864,−2016, 2784, 13248,−9072,−35136, 44928,−20736, 3456)

≈ −3.743299247417768882803493, (7.3)

hence by Theorem 1.13 with ` = 1, it has R(ψ) 6 |x∗|. By using partial fraction decomposition,

we can show that R(ψ) = |x∗|, therefore R̂4/4,5 = |x∗|.

7.2. Determination of R̂4/4,4

Theorem 7.2. We have R̂4/4,4 ≈ 5.167265 (given exactly by (7.5)), and if ψ ∈ Π̂4/4,4 with

R(ψ) = R̂4/4,4, then ψ is determined by (7.4) and (7.6).

Proof. We refer to § 6.2 for an analogous treatment and for further details on the theorems
used. Elements of this class can be written as

ψa(z) = (1− az)−4
((

a4 − 4a3 + 3a2 − 2a

3
+

1

24

)
z4 +

(
−4a3 + 6a2 − 2a+

1

6

)
z3

+

(
6a2 − 4a+

1

2

)
z2 + (1− 4a)z + 1

)
(7.4)
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with a real parameter a. Here also we can assume that a > 0 and ψa does not have removable
singularities (indeed, a = 0 implies R = 1; a < 0 without removable singularities implies
R = 0; while if the numerator and denominator have a common root, then ψa is one of the
three rational functions in § 6.1, hence R 6 R̂3/3,4 < 5). By applying the same techniques as
earlier in the one-parameter families, we can prove that

R̂4/4,4 = root3(1,−24, 240,−1168, 1848, 7008,−30528, 7488, 71568, 36864)

≈ 5.167265421277419938673374, (7.5)

with the unique optimal rational function corresponding to the parameter value

a = a∗44 := root1(147456,−546624, 799488,−601344, 258432,

− 66576, 10400,−960, 48,−1)

≈ 0.09713312764144710280835106. (7.6)

7.3. Determination of R̂4/4,3

This class can be described by two real parameters. We can prove along the lines of the
uniqueness-type proof in § 6.3 that

R̂4/4,3 = 3 +
√

15 ≈ 6.872983

and the unique optimal rational function in this class is given by

ψ(z) :=

1
900

(
52
√

15− 201
)
z4 +

(
1
6 −

1
5

√
3
5

)
z3 +

(
9
10 −

√
3
5

)
z2 +

(
2
√

3
5 − 1

)
z + 1(

1− 1
10

(
5−
√

15
)
z
)4 .

Interestingly, the first derivative of ψ has a simple structure, see Table 2.3.

7.4. Determination of R̂4/4,2

In this section we finish the proof of Theorem 2.2 in the s = 4 case. We will apply the
same principles as in § 6.3, but, this time, we could eliminate the ‘linear’ parameters d and c,
recursively via monotonicity, only at the cost of a little bit more computation.

By appealing to formula (2.5) and Lemma 2.7 again, it is sufficient to consider rational
functions of the form

ψa,c,d(z) =
dz4 + cz3 +

(
1
2 − 4a+ 6a2

)
z2 + (1− 4a)z + 1

(1− az)4

with suitable parameters a > 0 and c, d ∈ R. (Again, for easier readability we have used and
will use c instead of a3, and d instead of a4.) We show that

ψa,c,d(−8) > 0, ψ′a,c,d(−8) > 0, ψ′′a,c,d(−8) > 0, ψ′′′a,c,d(−8) > 0

and

∀k ∈ N, k > 4: ψ
(k)
a,c,d(−8) > 0

imply a = 1
8 , c = 1

128 and d = 1
4096 .
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Let us use (2.7) at x = −8 (dropping the always positive factors again) and write out the
above inequalities in detail to get

1− 8(1− 4a) + 64
(
6a2 − 4a+ 1

2

)
− 512c+ 4096d > 0, (7.7)

(8a+ 1)
(
1− 4a− 16

(
6a2 − 4a+ 1

2

)
+ 192c− 2048d

)
+ 4a

(
1− 8(1− 4a) + 64

(
6a2 − 4a+ 1

2

)
− 512c+ 4096d

)
> 0, (7.8)

10a2
(
1− 8(1− 4a) + 64

(
6a2 − 4a+ 1

2

)
− 512c+ 4096d

)
+4a(8a+ 1)

(
1− 4a− 16

(
6a2 − 4a+ 1

2

)
+ 192c− 2048d

)
+ 1

2 (8a+ 1)2
(
2
(
6a2 − 4a+ 1

2

)
− 48c+ 768d

)
> 0, (7.9)

10a2(8a+ 1)
(
1− 4a− 16

(
6a2 − 4a+ 1

2

)
+ 192c− 2048d

)
+2a(8a+ 1)2

(
2
(
6a2 − 4a+ 1

2

)
− 48c+ 768d

)
+ 1

6 (8a+ 1)3(6c− 192d)

+ 20a3
(
1− 8(1− 4a) + 64

(
6a2 − 4a+ 1

2

)
− 512c+ 4096d

)
> 0, (7.10)

k3(6a4 − 6a3 + a2 + 2ac+ 2d)

+ k2(−384a5 + 324a4 − 42a3 − 144a2c− 6ac− 192ad− 12d)

+ k(4608a6 − 3072a5 + 618a4 + 2304a3c− 36a3 + 144a2c+ 4608a2d

− a2 + 4ac+ 576ad+ 22d)

+ 4608a6 − 2688a5 − 6144a4c+ 300a4 − 24576a3d− 4608a2d− 384ad− 12d > 0, (7.11)

with (7.11) valid for any integer k > 4. The necessary condition (2.6) now reads as

6a4 − 6a3 + a2 + 2ac+ 2d > 0. (7.12)

The domain of the ‘non-linear’ parameter a > 0 will be divided at the following ‘natural’
points (determined by the requirement that denominators in the proof below have constant
sign on the corresponding intervals)

0 <
3−
√

5

16
<

1

12
<

1

8
<

3

16
<

3 +
√

5

16
<

9 + 2
√

6

24
< . . .

and also at the ‘artificial’ point . . . < 22
10 (introduced for technical reasons). The explicit

formulae for the P42n and %42n expressions (n = 1, 2, . . .) appearing soon are listed in
the Appendix (or directly in the proofs).

The interval a ∈ (0, (3−
√

5)/16). From (7.10), d is expressed as d 6 P421(a, c)/(2048a2−
768a+ 32), while from (7.9) as d > P422(a, c)/(4096a− 768). By joining these inequalities, d
is eliminated and we get

c 6
−6144a5 + 5120a4 − 2144a3 + 400a2 − 32a+ 1

1536a2 − 256a+ 24
. (7.13)

From (7.8) we obtain d 6 P423(a, c)/2048, which, together with d > P422(a, c)/(4096a− 768)
allows us to eliminate d again and get

c > 1
192 (−768a3 + 512a2 − 144a+ 13). (7.14)

From (7.13) and (7.14) we get (8a − 1)(8a + 1)(16a − 3) 6 0, which is impossible for a ∈
(0, (3−

√
5)/16).

The case when a = (3−
√

5)/16. From (7.10), c can be expressed as c 6 1
128 (2

√
5− 3). But

(7.14) now says 1
384 (1 + 6

√
5) 6 c, a contradiction.
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The interval a ∈ ( 1
16 (3−

√
5), 3

16 ) (containing the unique solution). We now have three lower
estimates: d > P422(a, c)/(4096a− 768), d > P421(a, c)/(2048a2 − 768a+ 32), and (from (7.7))
d > P424(a, c)/4096. We also have the earlier upper estimate d 6 P423(a, c)/2048. By making
three appropriate pairs from these, we eliminate d in each case and get (7.14),

c 6 1
128 (192a2 − 104a+ 11), (7.15)

and 
c 6
−6144a4 + 4608a3 − 1600a2 + 200a− 7

1536a− 128
for

1

16
(3−

√
5) < a <

1

12
,

c >
−6144a4 + 4608a3 − 1600a2 + 200a− 7

1536a− 128
for

1

12
< a <

3

16
.

(7.16)

(It is easily seen that a = 1/12 immediately leads to a contradiction.)
On 1

16 (3−
√

5) < a < 1
12 , (7.14) and (7.16) imply 5

3 (8a−1)(8a+ 1) > 0, which is impossible.

For 1
12 < a < 3

16 , (7.14) and (7.16) imply
c >
−6144a4 + 4608a3 − 1600a2 + 200a− 7

1536a− 128
for

1

12
< a 6

1

8
,

c >
1

192
(−768a3 + 512a2 − 144a+ 13) for

1

8
< a <

3

16
.

(7.17)

On 1
8 < a < 3

16 , (7.15) and (7.17) cannot be true simultaneously. On the other hand, for
1
12 < a 6 1

8 , (7.15) and (7.17) yield a = 1
8 and c = 1

128 , and with d > P424(a, c)/4096 and
d 6 P423(a, c)/2048 we get d = 1/4096.

The interval a ∈ [ 3
16 ,

1
24 (9 + 2

√
6). We will use here the two lower estimates d >

P424(a, c)/4096, d > 1/2(−6a4 + 6a3 − a2 − 2ac) (this second one derived from (7.12))
and the upper estimate d 6 P423(a, c)/2048. Again, by forming two appropriate pairs, d is
eliminated and we obtain two inequalities in a and c. After a rearrangement, we have (7.15)
and c > 1

192 (−768a3 + 768a2 − 160a+ 7), leading to a contradiction.

So far we have examined the region 0 < a < 1
24 (9 + 2

√
6) and proved that the system has a

solution if and only if a = 1
8 .

In the rest of this section, we will show that there are no solutions In the rest of this section,
we will show that there are no solutions for a > 1

24 (9 + 2
√

6).
It can be shown (in a few lines, by using only (7.7), (7.8) and (7.12), but skipping the details

here) that for a > 1
24 (9 + 2

√
6) we have

1
192

(
−768a3 + 768a2 − 160a+ 7

)
6 c 6 1

512

(
−1536a3 + 1728a2 − 424a+ 25

)
,

1
2

(
−6a4 + 6a3 − a2 − 2ac

)
6 d 6 1

2048

(
768a3 − 512a2 − 512ac+ 104a+ 192c− 7

)
(7.18)

or
1

512

(
−1536a3 + 1728a2 − 424a+ 25

)
6 c 6 1

128

(
192a2 − 104a+ 11

)
,

1
4096

(
−384a2 + 224a+ 512c− 25

)
6 d 6 1

2048

(
768a3 − 512a2 − 512ac+ 104a+ 192c− 7

)
.

(7.19)
Let us introduce the abbreviation λ(k, a, c, d) to denote the left-hand side of (7.11).

Lemma 7.3. For each 1
24 (9 + 2

√
6) 6 a 6 22

10 , and any c and d satisfying (7.18), we have
that λ(77, a, c, d) < 0.
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Proof. Since the polynomial ∂dλ(77, a, c, d) = −48P425(a) has a unique root %421 ≈ 1.17854
in the given a-interval, we separate two cases.

The interval a ∈ [ 1
24 (9 + 2

√
6), %421). Here ∂dλ(77, a, c, d) > 0, so by (7.18)

λ(77, a, c, d) 6 λ
(
77, a, c, 1

2048 (768a3 − 512a2 − 512ac+ 104a+ 192c− 7)
)

= 57
128 (8a+ 1)P426(a, c),

from which we see that it is enough to show that P426(a, c) < 0. But for the current a and c
values we have ∂cP426(a, c) = 192(128a2 − 800a+ 925) > 0, so by (7.18)

P426(a, c) 6 P426

(
a, 1

512 (−1536a3 + 1728a2 − 424a+ 25)
)

= 1
8 (8a+ 1)(24576a4 − 139264a3 + 212288a2 − 126000a+ 17575) < 0.

The interval a ∈ [%421,
22
10 ]. Here ∂dλ(77, a, c, d) 6 0, so by (7.18)

λ(77, a, c, d) 6 λ
(
77, a, c, 12 (−6a4 + 6a3 − a2 − 2ac)

)
= 12a(8a+ 1)P427(a, c),

so, again, it suffices to show P427(a, c) < 0. But now we observe that ∂cP427(a, c) = 192a2 −
1824a + 2850 is positive for %421 6 a < 1

8 (38 −
√

494), and non-positive for 1
8 (38 −

√
494) 6

a 6 22
10 . By (7.18) again, in the first case, we have

P427(a, c) 6 P427

(
a, 1

512 (−1536a3 + 1728a2 − 424a+ 25)
)

= 1
256 (8a+ 1)(6144a4 − 62976a3 + 174496a2 − 172672a+ 35625) < 0,

and in the second case

P427(a, c) 6 P427

(
a, 1

192 (−768a3 + 768a2 − 160a+ 7)
)

= 19
32 (8a+ 1)(256a2 − 648a+ 175) < 0. 2

Remark 7.4. Mathematica tells us that among the integers 4 6 k 6 1000, exactly members
of the interval 77 6 k 6 98 share the property that λ(k, a, c, d) < 0 for any allowed a, c and d
in the previous lemma.

Lemma 7.5. For each 1
24 (9 + 2

√
6) 6 a 6 22

10 , and any c and d satisfying (7.19), we have
that λ(54, a, c, d) < 0.

Proof. The proof is completely analogous to the previous one. Now ∂dλ(54, a, c, d) =
−24P428(a) has two roots %422 ≈ 0.808208 and %423 ≈ 1.97947 in the given a-interval, so
we again separate two cases.

The interval a ∈ [ 1
24 (9 + 2

√
6), %422) ∪ (%423,

22
10 ]. Now ∂dλ(54, a, c, d) > 0, so by (7.19)

λ(54, a, c, d) 6 λ
(
54, a, c, 1

2048 (768a3 − 512a2 − 512ac+ 104a+ 192c− 7)
)

= 159
256 (8a+ 1)P429(a, c).

We show that P429 < 0. Indeed, ∂cP429(a, c) = 64(192a2 − 832a + 663) is positive for a ∈
[ 1
24 (9 + 2

√
6), %422), so by (7.19) here

P429(a, c) 6 P429

(
a, 1

128 (192a2 − 104a+ 11)
)

= 1
2 (8a+ 1)(12288a4 − 58368a3 + 76160a2 − 35152a+ 4199) < 0.
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On the other hand, ∂cP429(a, c) < 0 for a ∈ (%423,
22
10 ], hence by (7.19) we now have

P429(a, c) 6 P429

(
a, 1

512 (−1536a3 + 1728a2 − 424a+ 25)
)

= 1
8 (8a+ 1)(12288a4 − 46080a3 + 53888a2 − 29328a+ 4199) < 0.

The interval a ∈ [%422, %423]. Here ∂dλ(54, a, c, d) 6 0, so by (7.19)

λ(54, a, c, d) 6 λ
(
54, a, c, 1

4096 (−384a2 + 224a+ 512c− 25)
)

= 3
512 (8a+ 1)P4210(a, c).

By examining the sign of ∂cP4210(a, c) = −512(256a3 − 5088a2 + 16536a − 11713), we prove
finally that P4210 < 0 as well. We see that ∂cP4210(a, c) > 0 for %422 6 a < %424 ≈ 1.00126, but
∂cP4210(a, c) 6 0 for %424 6 a 6 %423. By taking into account (7.19), in the first case we have

P4210(a, c) 6 P4210

(
a, 1

128 (192a2 − 104a+ 11)
)

= 53(8a+ 1)(12288a4 − 58368a3 + 76160a2 − 35152a+ 4199) < 0,

while in the second case

P4210(a, c) 6 P4210

(
a, 1

512 (−1536a3 + 1728a2 − 424a+ 25)
)

= 8a(8a+ 1)(6144a4 − 45312a3 + 102368a2 − 86284a+ 17225) < 0. 2

Remark 7.6. According to Mathematica, k = 54 is the only integer in the interval
[4, 1000] ∩ N such that λ(k, a, c, d) < 0 holds for any admissible a, c and d triples in the
previous lemma.

Lemma 7.7. For each 22
10 < a, and any c and d satisfying (7.18), there exists an integer k > 4

such that λ(k, a, c, d) < 0.

Proof. Let us fix any admissible a, c and d throughout the proof. We first compute
∂dλ(k, a, c, d) = 2P4211(k, a), where

P4211(k, a) = k3− (96a+ 6)k2 + (2304a2 + 288a+ 11)k− 12288a3− 2304a2− 192a− 6, (7.20)

see Figure 9, and show that this cubic polynomial (in k) has three distinct real roots and also
give some bounds on the roots in terms of a.

It is seen that the function k 7→ ∂kP4211(k, a) has two distinct real roots at k = %±425(a) :=
1
3 (96a+ 6±

√
3
√

768a2 + 96a+ 1), being the abscissae of the two strict local extrema of k 7→
P4211(k, a). It is also easily established that P4211(%−425(a), a) > 0 and P4211(%+425(a), a) < 0.
By observing that P4211(4, a) < 0 and 4 < %−425(a), further, by taking into account that the
leading coefficient of k 7→ P4211(k, a) is positive, we get that each of the three disjoint intervals

(4, %−425(a)) ∪ (%−425(a), %+425(a)) ∪ (%+425(a),+∞) (7.21)

contains precisely one root of k 7→ P4211(k, a) = 1
2∂dλ(k, a, c, d).

By denoting these roots by %426(a)1 < %426(a)2 < %426(a)3, we also see from the properties
of the cubic polynomial that for k ∈ (%426(a)2, %426(a)3), ∂dλ(k, a, c, d) < 0. (Note that for any
such k, k > 4 holds.) Also referring to (7.18), this means that for k ∈

(
%426(a)2, %426(a)3

)
we

have

λ(k, a, c, d) 6 λ
(
k, a, c, 12 (−6a4 + 6a3 − a2 − 2ac)

)
= 6a(8a+ 1)P4212(k, a, c),
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Figure 9. Graphs of the functions k 7→ P4211(k, a) for some values of the parameter a > 22
10

in the

Π̂4/4,2 class. Each curve has three real roots, denoted by %426(a)1 < %426(a)2 < %426(a)3, and two local
extrema, denoted by %−425(a) < %+425(a).

where

P4212(k, a, c) = k2(4a3 − 5a2 + a+ c) + k(−192a4 + 212a3 − 27a2 − 48ac− 2a− 3c)

+ 1536a5 − 1344a4 + 104a3 + 384a2c+ 18a2 + 48ac+ a+ 2c.

Clearly, in order to finish the proof, it is sufficient to show that there is an integer k ∈(
%426(a)2, %426(a)3

)
such that P4212(k, a, c) < 0.

Let the two roots of k 7→ ∂cP4212(k, a, c) = k2 − (48a+ 3)k+ 384a2 + 48a+ 2 be denoted by
%±427(a) := 1

2 (48a+ 3±
√

768a2 + 96a+ 1), then ∂cP4212(k, a, c) < 0 for k ∈
(
%−427(a), %+427(a)

)
.

We will show next that

(%426(a)2, %426(a)3) ∩ (%−427(a), %+427(a)) = (%426(a)2, %
+
427(a)). (7.22)

In fact, we have seen in (7.21) that %−425(a) < %426(a)2, and an elementary calculation shows
that %−427(a) < %−425(a). An analogous argument tells us that %+427(a) < %+425(a) < %426(a)3,
verifying (7.22).

Thus, by picking any k ∈
(
%426(a)2, %

+
427(a)

)
, we can conclude (with the help of (7.18) also)

that

P4212(k, a, c) 6 P4212

(
k, a, 1

192 (−768a3 + 768a2 − 160a+ 7)
)

= 1
192 (8a+ 1)(k − 1)((7− 24a)k + 768a2 − 96a− 14),

from which we see that the proof is finished if we find any k ∈ (%426(a)2, %
+
427(a))∩N such that

(7− 24a)k + 768a2 − 96a− 14 < 0, or, in other words, k > (768a2 − 96a− 14)/(24a− 7).
We aim to show now that %426(a)2 < (768a2 − 96a− 14)/(24a− 7). (Notice that this time

both %426(a)2 < %+425(a) and (768a2 − 96a− 14)/(24a− 7) < %+425(a) are true, so we have to
take an extra step.) But by referring to (7.21) we have %426(a)1 < %−425(a), and an elementary
computation yields that %−425(a) < (768a2 − 96a− 14)/(24a− 7), further, it is not hard to see
that

P4211

(
768a2 − 96a− 14

24a− 7
, a

)
= −48a(8a+ 1)(16a− 3)(9216a3 − 1512a+ 49)

(24a− 7)3
< 0.
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However, we already know that P4211(·, a) < 0 if and only if k ∈ (−∞, %426(a)1) ∪
(%426(a)2, %426(a)3), so these force %426(a)2 < (768a2 − 96a− 14)/(24a− 7).

Summarizing, it is enough to prove as a last step that ∅ 6= ((768a2 − 96a− 14)/(24a− 7),
%+427(a)) ∩ N, being true, since %+427(a)− (768a2 − 96a− 14)/(24a− 7) > 9 for a > 22

10 .

Remark 7.8. Similarly to Remark 6.5, the bound 9 could not be replaced by, say, 10 on
a ∈ (22/10,+∞).

Remark 7.9. The proof we have just presented for Lemma 7.7 (as well as the one we will
present for the next lemma) would break down on the larger interval a > (9 + 2

√
6)/24. This

explains why we have chosen the finer subdivision a ∈ [ 1
24 (9 + 2

√
6), 2210 ] ∪ ( 22

10 ,+∞).

Lemma 7.10. For each 22
10 < a, and any c and d satisfying (7.19), there is an integer k > 4

such that λ(k, a, c, d) < 0.

Proof. We have seen in the preceding proof that ∂dλ(k, a, c, d) > 0 for k ∈ [%426(a)1, %426(a)2]
⊂ (4,+∞), so, by (7.19), for these k values we have

λ(k, a, c, d) 6 λ

(
k, a, c,

1

2048
(768a3 − 512a2 − 512ac+ 104a+ 192c− 7)

)
=

(8a+ 1)(k − 1)

1024
P4213(k, a, c),

where

P4213(k, a, c) = k2(768a3 − 768a2 + 160a+ 192c− 7)

+ k(−49152a4 + 39168a3 − 5376a2 − 12288ac− 128a− 960c+ 35)

+ 589824a5 − 294912a4 + 29184a3 + 147456a2c+ 3840a2

+ 24576ac− 384a+ 1152c− 42.

To show that P4213(k, a, c) < 0 for a suitable k ∈
[
%426(a)1, %426(a)2

]
∩ N, we first compute

∂cP4213(k, a, c) = 192
(
k2 − (64a+ 5)k + 768a2 + 128a+ 6

)
,

and denote the roots of k 7→ ∂cP4213(k, a, c) by %±428(a) := 1
2 (64a + 5 ±

√
1024a2 + 128a+ 1).

Note that ∂cP4213(k, a, c) < 0 for %−428(a) < k < %+428(a). Now by using formulae (7.21) and
(7.20), one easily shows that %−425(a) < %−428(a) < %+425(a) and

P4211

(
%−428(a), a

)
= 32a(8a+ 1)

(√
1024a2 + 128a+ 1− 16a− 1

)
> 0,

implying %426(a)1 < %−428(a) < %426(a)2. Hence if k ∈
(
%−428(a), %426(a)2

]
∩ N, then, also by

(7.19),

P4213(k, a, c) 6 P4213

(
k, a, 1

512

(
−1536a3 + 1728a2 − 424a+ 25

))
= 1

8 (8a+ 1)P4214(k, a),

with

P4214(k, a) = k2
(
192a2 − 144a+ 19

)
+ k
(
−12288a3 + 2112a2 + 1296a− 95

)
+ 147456a4 + 110592a3 − 27264a2 − 2016a+ 114.

Now the leading coefficient, 192a2−144a+19 of k 7→ P4214(k, a) is positive, and its discriminant,

∆42(a) := 37748736a6 − 51904512a5 + 46043136a4 − 14751744a3 + 2101632a2 − 27360a+ 361
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is also positive. (This last statement can easily be shown by noticing that ∆′′′′42 (a) > 0 for all
a ∈ R, and ∆′′′42( 22

10 ) > 0, so ∆′′′42(a) > 0 for a > 22
10 . Repeating this recursively and similarly

for the lower order derivatives we get that ∆42(a) > 0 for all a > 22
10 .) This means that we

can denote by %±429(a) the two real roots of the quadratic polynomial k 7→ P4214(k, a). Clearly,
%−429(a) < k < %+429(a) implies P4214(k, a) < 0.

In light of the above, in order to finish the proof it is enough to show that

∅ 6= (%−429(a), %+429(a)) ∩ (%−428(a), %426(a)2] ∩ N.

More specifically, we can prove that the following sufficient condition

%−428(a) < %−429(a) < 16a+ 19 < 16a+ 24 < %426(a)2 < %+429(a) (7.23)

holds: the first inequality is true because of

P4214

(
%−428(a), a

)
= 128a

(
(24a− 7)

√
1024a2 + 128a+ 1 + 136a+ 7

)
> 0

and

∂kP4214

(
%−428(a), a

)
= −6144a2 + 1792a−

(
192a2 − 144a+ 19

)√
1024a2 + 128a+ 1 < 0;

the second inequality is a consequence of

P4214(16a+ 19, a) = −16
(
576a3 − 1264a2 + 1209a− 323

)
< 0;

the fourth inequality follows from P4211(16a+ 24, a) = 4096a3 + 768a2 − 25360a+ 10626 > 0
and 16a+ 24 < %+425(a); while the fifth inequality is derived from the fact that

%−425(a) < %+429(a) =
12288a3 − 2112a2 − 1296a+ 95 +

√
∆42(a)

2
(
192a2 − 144a+ 19

)
and

P4211

(
%+429(a), a

)
= − 96a(

192a2 − 144a+ 19
)3

× (301989888a8 − 622854144a7 + 474218496a6

− 1089110016a5 + 816156672a4

− 250172928a3 + 31469760a2 − 960184a+ 9025

+
(
98304a5 − 135168a4 − 132096a3 + 106880a2

− 19464a+ 475
)√

∆42(a)) < 0. 2

Remark 7.11. In the proof of this lemma, in order to establish λ(k, a, c, d) < 0, one would
have four initial possibilities to choose from according to the signs of the appropriate ∂d and ∂c
partial derivatives. It turns out that if one chooses a certain two out of these four possibilities,
then the proof could not be completed. On the other hand, the remaining two feasible directions
(out of which we have presented one) require approximately the same amount and type of
computations.

Remark 7.12. The motivation for (7.23) came from the fact that

lim
a→+∞

%−429(a)

a
= 16 < lim

a→+∞

%426(a)2
a

= root2(1,−96, 2304,−12288) ≈ 26.4432.

In fact, for a > 22
10 , we have %426(a)2 − %−429(a) > 6, but . . . > 7 does not hold.
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8. Further results and questions

In this section we present some intermediate results that may prove useful in future studies of
the radius of absolute monotonicity.

The motivation for § 8.1 came from Conjecture 1.5. Let A, b denote the coefficients of an
arbitrary RK method; then R(A, b) > 0 =⇒ A > 0 (again, matrix inequalities are understood
componentwise). The trace inequality (8.3) for non-negative matrices is used to derive a certain
non-linear relation (8.4) between the first few coefficients of the polynomial appearing in the
numerator of the stability function (1.1).

Next we turn our attention to Conjecture 1.6. Let us fix s > 3 and p = 2, choose an arbitrary
SDIRK method with coefficients A, b, and consider its stability function ψ ∈ Π̂s/s,2 as described
by formula (2.5). Let a0, a1 and a2 denote the first few coefficients of the numerator of ψ, that
is a0 := 1, a1 := 1 − a

(
s
1

)
and a2 := 1

2 − a
(
s
1

)
+ a2

(
s
2

)
, then a simple computation shows that

(8.4) is satisfied, in fact, with equality, despite the fact that the non-negativity condition A > 0
here is not assumed. For 3 6 s 6 8, Lemma 8.7 in § 8.2 gives a remarkable uniqueness result for
polynomials: the unique polynomial given by Lemma 8.7 is identical to the numerator of the
conjectured optimal and unique ψ function appearing in Theorem 2.2 (or in Conjecture 1.6).
Apart from the fact that we could prove Lemma 8.7 only for 3 6 s 6 8, the missing link is the
following: the uniqueness result in Theorem 2.2 is essentially obtained under the condition

ψ(k)(−2s) > 0 for k ∈ N, (8.1)

whereas in Lemma 8.7 we assumed

P (k)(−2s) > 0 for k = 0, 1, . . . , s. (8.2)

We are very curious whether a result similar to Lemma 8.7 could lead to a proof of Theorem 2.2
for general s values, that is, to a proof of Conjecture 1.6.

In § 8.3 we give a formula for the elements of the Π̂s/s,p class for general s and p values,
together with some additional remarks and questions.

Remark 8.1. We have found the following conjecture whose assumption, with pm =
P (m)(x)/m!, q = Q(x) and q̃ = Q′(x) = −a for some x ∈ [−2s, 0], is similar to the sum
in (2.7) apart from the factor (−1)k−m and the fact that the pm quantities can be independent
of one another. The conjecture has been proved by Mathematica for 1 6 s 6 10, and we have a
‘manual’ proof for s = 2. We do not know whether the conjecture could be used in a transition
from conditions (8.1) to (8.2).

Conjecture 8.2. Fix any s ∈ N+, 0 6= q ∈ R, 0 < q̃ ∈ R and pm ∈ R (m = 0, 1, . . . , s+ 1),
and suppose that for each k = 0, 1, . . . , s+ 1 we have

min(k,s)∑
m=0

(
s− 1 + k −m

s− 1

)
· pm · qm · (−q̃)k−m > 0.

Then p0 > 0 and for m = 1, 2, . . . , s+ 1, we have pm = p0
(
s
m

)
· ( q̃

q )m. Moreover, the above sum
is equal to p0 for k = 0, and to 0 for k = 1, 2, . . . , s+ 1.

8.1. Trace inequalities for non-negative matrices and the numerator of the stability function

Conjecture 1.5 in the s = 3, p = 2 case claims that R(A, b) 6 6 for any RK method
with coefficients A, b. The following general lemma was discovered while investigating this
conjectured bound. Due to the remark in the beginning of § 8, A > 0 will be assumed
throughout the current § 8.1.
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Let us fix a positive integer s > 2 and apply the following notation: if A is an s-by-s matrix,
then τ := tr(A) and τk := tr(Ak) for any integer k > 2.

Lemma 8.3. Fix a positive integer n > 2 and suppose that A is an s-by-s (componentwise)
non-negative matrix. Then

sn−1τn > τn. (8.3)

Moreover, in the n = 2 case equality holds if and only if ak,k = a1,1 for k = 2, 3, . . . , s and
ai,jaj,i = 0 for all i 6= j, further, if n > 3 and sn−1τn = τn, then ak,k = a1,1 for k = 2, 3, . . . , s.

Proof. If A and B are non-negative s-by-s matrices, then (AB)k,k > ak,kbk,k. Applying this
recursively, we get that tr(An) >

∑s
k=1 a

n
k,k. Then the inequality between the nth power mean

and the arithmetic mean shows that

n

√
tr(An)

s
>

n

√∑s
k=1 a

n
k,k

s
>

∑s
k=1 ak,k
s

=
tr(A)

s
,

proving the trace inequalities. Now if n > 3 and sn−1τn = τn, then we have equality in the
power mean inequality, which implies ak,k = a1,1 for k = 2, 3, . . . , s. Finally, suppose that
n = 2. Then sτ2 = τ2 holds if and only if we have equality in the power mean inequality and
tr(A2) =

∑s
k=1 a

2
k,k. But the former holds if and only if ak,k = a1,1 for k = 2, 3, . . . , s, while

the latter holds if and only if ai,jaj,i = 0 for all i 6= j.

Remark 8.4.

• If s = 2, n = 3, a1,1 = a2,2 = 0 and a1,2 = a2,1 = 1, then sn−1τn = τn, but a1,2 a2,1 6= 0.

• The constant sn−1 is the best possible (as shown by A = I).

• We cannot expect a ‘converse’ trace inequality, since for the matrix A with zeros in the
diagonal and with all other entries 1, we have tr2(A) = 0 and tr(A2) > 0.

• For the conjectured optimal RK method satisfying R(A, b) = 6, we have equality in (8.3)
for n = 2.

Let us now fix any s > 3. By repeatedly using the formulae for the derivative of the
determinant and the trace

(det Φ(·))′ = (det Φ(·)) · tr(Φ−1(·)Φ′(·)) and (tr Φ(·))′ = tr(Φ′(·)),

where Φ : R → Rs×s is a smooth, and for the first formula, invertible, matrix function,
the cyclic invariance of the trace together with the p = 2 order conditions, we see that the
numerator of the stability function (1.1), det(I − zA+ z1b>), can be written in the form

P (z) = 1 + (1− τ)z +
1

2

(
(1− τ)2 − τ2

)
z2 +

s∑
k=3

akz
k,

with suitable real parameters ak (there may be further restrictions on the ak parameters
which are ignored here). Let us introduce a0 := 1, a1 := 1 − τ , a2 := 1

2 (a21 − τ2). Then,
due to A > 0, we have τ > 0 and τ2 > 0, so (8.3) with n = 2 implies −τ2 6 −τ2/s, thus
a2 = 1

2 (a21 − τ2) 6 1
2 (a21 − τ2/s), but τ = 1− a1, hence we have derived a non-linear condition

1

2

(
a21 −

(1− a1)2

s

)
> a2. (8.4)
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8.2. Uniqueness results for polynomials closely related to the class Π̂s/s,2

In this section, the main lemma is Lemma 8.7, although Lemma 8.5 can be of independent
interest, giving lower and upper bounds on the coefficients of a general polynomial P with
P (0) = 1 that is absolutely monotonic at a point −r < 0, together with a uniqueness result.

Lemma 8.5. Let s denote a fixed positive integer and set P (z) := 1 +
∑s

n=1 anz
n with some

real coefficients an. Fix any r > 0 and suppose that P (k)(−r) > 0 for all k = 0, 1, . . . , s. Then
for each index 1 6 n 6 s we have 0 6 an 6

(
s
n

)
/rn. Moreover, if there is at least one n

(1 6 n 6 s) with an =
(
s
n

)
/rn, then P (z) = (1 + z/r)s.

Proof. By assumption, with γk := (P (k)(−r)/k!)rk we have γk > 0 for k = 0, 1, . . . , s. Taylor
expansion, the binomial theorem and interchanging the order of summations show that

P (z) =

s∑
k=0

γk

(
1 +

z

r

)k

=
s∑

k=0

k∑
n=0

γk

(
k

n

)
zn

rn

=

s∑
n=0

s∑
k=n

γk

(
k

n

)
zn

rn
=

s∑
n=0

(
1

rn

s∑
k=n

γk

(
k

n

))
zn.

Now fix 1 6 n 6 s. By equating the coefficients of zn we get an = (1/rn)
∑s

k=n γk
(
k
n

)
, and,

from the equality of the constant terms

s∑
k=0

γk = 1. (8.5)

Non-negativity of the γk coefficients implies an > 0 and (8.5) shows 0 6 γk 6 1 for all
0 6 k 6 s. Finally we seek the maximum of

∑s
k=n γk

(
k
n

)
knowing 0 6 γk and (8.5). Suppose

that γm > 0 for some m with 0 6 m 6 s − 1. Then we define γ̃s := γs + γm, γ̃m := 0 and
γ̃k := γk for s 6= k 6= m. Clearly, 0 6 γ̃k for each 0 6 k 6 s and

∑s
k=0 γ̃k = 1, but (by using

the convention that
(
m
n

)
= 0 for m < n)

s∑
k=n

γ̃k

(
k

n

)
−

s∑
k=n

γk

(
k

n

)
=

(
s

n

)
γm +

(
m

n

)
(−γm) = γm

((
s

n

)
−
(
m

n

))
,

and this last expression is strictly positive, because 1 6 n 6 s is fixed, s > m and γm > 0. We
can therefore conclude that (for fixed s > 1 and 1 6 n 6 s) the value of

∑s
k=n γk

(
k
n

)
over all

0 6 γk (k = 0, 1, . . . , s) and under condition (8.5) is maximal if and only if γ0 = γ1 = . . . =
γs−1 = 0 and γs = 1. This property establishes the upper bound on an and the uniqueness
part as well.

Next we present an interesting lemma about representing a certain linear combination of the
three lowest order coefficients of a general polynomial of degree at most s in terms of another
linear combination of its derivatives evaluated at −2s.

Lemma 8.6. Fix any integer s > 2 and choose an arbitrary P (z) := 1 +
∑s

k=1 akz
k (with

complex coefficients). Then

s∑
k=0

(2s)k(s− k)(s− k − 1)

k!s(s− 1)
P (k)(−2s) = 1− 4a1 +

8s

s− 1
a2.
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Proof. Direct comparison of the am coefficients on both sides by using some simple binomial
identities (that can be obtained, for example, after (successively) differentiating the binomial
expansion of x 7→ (1 + x)n).

The preceding two lemmas are used in proving the following uniqueness result in a class of
polynomials of degree at most s (unfortunately only in a restricted range s 6 8) which are
absolutely monotonic at −2s and whose lowest order coefficients satisfy a certain non-linear
relation. The origin of condition (8.6) is of course inequality (8.4) in a slightly different context.

Lemma 8.7. Let us pick an integer s with 3 6 s 6 8, and set P (z) := 1 +
∑s

k=1 akz
k with

some real coefficients ak. Suppose P (k)(−2s) > 0 for all k = 0, 1, . . . , s, further, that

1

2

(
a21 −

(1− a1)2

s

)
> a2. (8.6)

Then P (z) = (1 + z/2s)s.

Proof. By Lemma 8.5 with r = 2s, we have an > 0 for all n = 1, 2, . . . , s. On the other hand,
since now P (k)(−2s) > 0 by assumption, by applying Lemma 8.6 we get that

1− 4a1 +
8s

s− 1
a2 > 0.

From this inequality we estimate a2 as a2 > ((s− 1)/8s)(4a1 − 1), so 1
2 (a21 − (1− a1)2/s) >

((s− 1)/8s)(4a1 − 1), which can be factorized as(
2a1 − 1

)(
2a1(s− 1) + 5− s

)
8s

> 0,

showing (by using s > 1 only) that either

a1 6
1

2
and a1 6

s− 5

2(s− 1)
(8.7)

or

a1 >
1

2
and a1 >

s− 5

2(s− 1)
. (8.8)

We now show that (8.7) cannot occur for 3 6 s 6 8: indeed, for any 1 < s < 9, we have
(s− 5)/(2(s− 1)) = 1

2 − 2/(s− 1) < 1
4 , therefore a1 <

1
4 . But then (8.6) says that

0 6 a2 6
1

2

(
a21 −

(1− a1)2

s

)
=
a21(s− 1) + 2a1 − 1

2s
,

so a21(s − 1) + 2a1 − 1 > 0, implying either a1 6 1/(1−
√
s) < 0 or a1 > 1/(1 +

√
s) >

1/(1 +
√

9) = 1
4 . The first case is ruled out by a1 > 0, and the second one is by a1 <

1
4 .

Hence the only possibility is (8.8) above. But then 1
2 6 a1 6

(
s
1

)
/r1 = s/2s = 1

2 by
Lemma 8.5, and so, again by the same lemma, we have P (z) = (1 + z/2s)s.

Remark 8.8. Notice that [10] contains many uniqueness results for polynomials with
maximal radius of absolute monotonicity, but those polynomials should approximate the
exponential function near the origin to at least first order, that is, P (0) = P ′(0) = 1 should
hold. In Lemma 8.5, only P (0) = 1 is required, whereas in Lemma 8.7 we assume P (0) = 1
together with the non-linear condition (8.6).
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8.3. Various remarks and questions

Remark 8.9. Let us fix s > 3. Regarding the structure of Π̂s/s,p, we make the following
observations. The non-trivial p values are 2 6 p 6 s + 1, but the p = s + 1 case is special,
because then Π̂s/s,p contains only finitely many functions. For 2 6 p 6 s, the general form of

ψ ∈ Π̂s/s,p reads as

ψ(z) =

∑p
m=0

(∑m
k=0

(−1)kak

(m− k)!

(
s

k

))
zm +

∑s
m=p+1 amz

m

(1− az)s
, (8.9)

with suitable real parameters a, ap+1, . . . , as, and, of course, with the usual convention that∑N
m=n(·) = 0 for n > N . Formula (2.5) is recovered if we choose p = 2 in (8.9).

Remark 8.10. The conjectured optimal ψ (that is, the one with maximal radius of absolute

monotonicity) in the Π̂s/s,2 class satisfies (8.9) with a = 1/2s, whereas the choice a = 1
2 (1 −√

(s− 1)/(s+ 1)) yields the optimum in the Π̂s/s,3 class. In view of § 2.3, these values have
been verified for 3 6 s 6 4. See [3, formulae (3.1) and (3.2)] also.

Remark 8.11. The optimal ψ rational function in the Π̂s/s,2 class for 1 6 s 6 4 satisfies
the relation ψ(−z) = 1/ψ(z).

Remark 8.12. In [5, Theorem 4.4], a necessary and sufficient condition is formulated for
a general rational function ψ satisfying assumptions À–Â (see our § 1.1) to be absolutely
monotonic on an interval [x, 0] ⊂ (−B(ψ), 0] (x < 0). This condition, among others, requires
checking the positivity of the ‘dominant coefficient’ c(α0, µ(α0)), being the numerator in the
partial fraction decomposition of ψ corresponding to the positive real pole α0 in Definition 1.10
in our work, and having the highest pole order. It can be seen that c(α0, µ(α0)) > 0 is equivalent

to our necessary condition (2.6) formulated in the Π̂s/s,2 class, if ‘>0’ is replaced by ‘>0’ in
(2.6). Moreover, ‘=0’ in (2.6) holds precisely if the numerator and denominator of ψ have a
common root. We add that we have not used [5, Theorem 4.4] directly, because the explicit
construction of its functions F (k, x), L(x) and K(x) (cf. our Remark 1.15 also), now possibly
depending on an additional parameter, would not be straightforward. Instead, we reproduce
the ‘partial fraction decomposition + factoring out the dominant term + checking the sign of
the remainder in finitely many cases’ idea behind the proof of [5, Theorem 4.4] only after the

optimal parameter value a∗ and the optimal radius of absolute monotonicity Rs/s,p (or R̂s/s,p)
have been conjectured.

Remark 8.13 (On the explicit computation of ψ(k)). The sum in (2.7) has a bounded
number of terms for all k ∈ N, yielding a nice representation of the derivatives of functions in
Π̂s/s,2. For ψ ∈ Πs/s,p, a similar representation would require a sum with unbounded number

of terms as k increases, which precludes the extension of our analysis for ψ ∈ Π̂s/s,2 to the

more general class. Fortunately, the optimal ψ ∈ Π2/2,3 is also an element of Π̂2/2,3.

Remark 8.14 (On the Mathematica implementations). This work could not have been
completed without Mathematica, and especially, without one of its key commands in
polynomial algebra, Reduce. Both in the conjecture and proof phase, Mathematica’s abilities
to manipulate high-order root objects symbolically, numerically or graphically played a crucial
role. Throughout our investigations, we tried to apply symbolic methods to the fullest extent
possible. At the same time, each pivotal formula was tested numerically with several parameter
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values (some by using different Mathematica algorithms). For typical checks we have used 25
digits of precision, but when huge coefficients were involved, we switched to 100 or 1000
digits of precision. Results of the symbolic computations and those given by the numerical
algorithms were also compared graphically, and found to be in perfect agreement. In fact, as
a by-product of our investigations we have discovered and reported a few minor Mathematica
bugs, occurring with very low probability, in contexts when certain algebraic relations between
different parameter values are satisfied.

In addition, most of the key computations performed by Reduce were later reproduced and
checked ‘manually’. Let us give here only one example. In § 4.2, Reduce was able to solve the
equation B′(a) = 0 within 2 s. When we solved the same equation by elementary techniques
without Reduce, the corresponding Mathematica notebook with all the details written out
fully and saved as a PDF file occupied 280 pages. The final integer polynomial with both root
objects %351(a) and %353(a) eliminated had degree 162 and leading coefficient ≈4 · 10311. In
view of the above, it is very surprising that the algebraic number a∗35 is so simple: the reason
is that the final polynomial of degree 162 admitted a nice factorization.

Let us close this section by posing two natural questions.

Question. What properties, for example, what geometrical configuration of the roots and
poles, of the rational function ψ determine whether R(ψ) = B(ψ) or R(ψ) < B(ψ)? If R(ψ) <
B(ψ), then which roots of which derivatives of ψ will limit the value of R(ψ) in the sense of
Theorem 1.13?

Question (cf. the uniqueness of the optimal polynomials in [10], and our § 2). Let us consider
a given (s, p) pair (s > 1, p > 2). Is there always a unique rational function ψ = P/Q ∈ Πs/s,p

(or ψ = P/Q ∈ Π̂s/s,p) with P (0) = Q(0) = 1 such that R(ψ) = Rs/s,p (or R(ψ) = R̂s/s,p)?

Appendix

In this section we list some auxiliary algebraic numbers, polynomials or functions that have
appeared in certain more involved proofs.

A.1. Algebraic expressions in the proof of R4/4,7

%471 = root1(252105, 936390, 1441629, 1175608, 534576, 128352, 12704) ≈ −0.843194,

%472 = root2(252105, 936390, 1441629, 1175608, 534576, 128352, 12704) ≈ −0.471357,

%473 = root2(1,−30, 390,−2760, 11160,−25200, 25200) ≈ 7.64527,

%474 = root1(1,−15, 90,−210) ≈ 5.64849,

P471(a) = 4593387934777490821322994a10 − 23474176816503998442760098a9

+ 54351276637181597088697031a8 − 75708182541462463946985360a7

+ 71791544313152743211806464a6 − 51339236908163135191695540a5

+ 32383499796235996766706978a4 − 22447171953065668650772896a3

− 31555722050640962925153690a2 − 13278623731050880370830074a

− 1667865061502294482628289,

%475 = root1(2914539265575, 14876524399779, 33497711997246, 43683499824678,

36368607954483, 20052618149655, 7324770907832, 1709817444048,

231520801344, 13859993824) ≈ −0.850052,
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%476 = root2(2, 0,−570,−6360,−28755,−58950,−44775) ≈ 21.5907,

%477(a) = root1(343a3 + 441a2 + 189a+ 27,−6174a3 − 7644a2 − 3150a− 432,

47334a3 + 55860a2 + 21882a+ 2844,−197568a3 − 219912a2 − 80976a

− 9856, 478485a3 + 500535a2 + 173460a+ 19950,−648270a3 − 643860a2

− 215460a− 24480, 385875a3 + 368235a2 + 120960a+ 13440),

%478 = root1(1525366344600, 8651006268660, 22401405617094, 35008454688795,

36765395913141, 27330042736584, 14744440158000, 5816571277965,

1665232178673, 337417309264, 45932541984, 3771903744, 141310592)

≈ −0.469514,

%479 = root3(1715, 2793, 1428, 232) ≈ −0.358565,

%4710 = root1(3675, 3507, 1152, 128) ≈ −0.274796,

%4711(a) = root1(7a+ 3,−84a− 32, 420a+ 120,−840a,−840),

%4712(a) = root2(7a+ 3,−84a− 32, 420a+ 120,−840a,−840),

a∗47 = root1(3690134492416632557532940385381064525,

61029736485482612404619408048530290750,

486403976093629932677089384897095046935,

2487196669730164018264503869937911017740,

9165142322735094610456262590295894934837,

25915196147894075773838728122892827040386,

58458916104726476816514027882738196455735,

107979092136285121513038059062379021459880,

166321122780685405075074427832862986958975,

216449429305753337078085597912060934057890,

240240731812681651181007922270907964916605,

228911785323865533798715657213902093130380,

188040840503767270695413477386184055716415,

133446371333215106255009916213506161760670,

81810565480540039001637010346621868861045,

43219005242542299485983226045186624870400,

19562352897200734179995371112351361862080,

7506336744004524872039975974458313909440,

2394351571156175328455192580869480281280,

610166214096532168321831058806216604160,

112156289536490108521784144024335180800,

8974819895289125868510161871145369600,

−2895655868721204798705192374322355200,

−1556648822533171464739057080454594560,

−420567479322606922282373395209093120,

−79380339166868822139598939104215040,

−11057440115321274264887170064056320,
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−1128821021046790224548013859143680,

−80578528495036917551879568752640,

−3612945212567877804734004854784,

−76850622516036469593789693952) ≈ −0.439849,

B(a∗47) = root2(4191472, 370695456, 15701398968, 423572490288, 8166117227943,

119697694352106, 1385540391042992, 12982888147808790,

100093600309232610, 641253042735937920,

3429070908298155495, 15292307228951973150,

56488604555080263600, 170258230386661619700,

405691319555093173950, 698620766882164002000, 475967180133964116000,

−2768737485607368840000,−19171364099094461844000,

−83177899383693915360000,−273285810570616506720000,

−658873655023431060000000,−1076077292526138186000000,

−1039429806316804224000000,−402385174364630880000000,

1632495959008528320000000, 15171036284831515200000000,

63475278812225280000000000, 141035850392839718400000000,

165407760061818624000000000, 81912466393111872000000000) ≈ 2.743911.

A.2. Algebraic expressions in the proof of R̂4/4,2

P421(a, c) = 1536a5 − 1280a4 − 512a3c+ 436a3 + 576a2c− 54a2 − 72ac+ 2a+ c,

P422(a, c) = 2304a4 − 1728a3 − 1024a2c+ 480a2 + 768ac− 48a− 48c+ 1,

P423(a, c) = 768a3 − 512a2 − 512ac+ 104a+ 192c− 7,

P424(a, c) = −384a2 + 224a+ 512c− 25,

P425(a) = 512a3 − 7296a2 + 22800a− 17575,

%421 = root1(512,−7296, 22800,−17575) ≈ 1.17854,

P426(a, c) = 98304a5 − 679936a4 + 1266432a3 + 24576a2c− 827264a2

− 153600ac+ 156400a+ 177600c− 6475,

P427(a, c) = 768a5 − 8064a4 + 20072a3 + 192a2c− 15853a2 − 1824ac+ 2888a+ 2850c,

P428(a) = 1024a3 − 10176a2 + 22048a− 11713,

%422 = root1(1024,−10176, 22048,−11713) ≈ 0.808208,

%423 = root2(1024,−10176, 22048,−11713) ≈ 1.97947,

P429(a, c) = 49152a5 − 245760a4 + 365312a3 + 12288a2c− 210496a2

− 53248ac+ 38272a+ 42432c− 1547,

P4210(a, c)=5406720a5 − 28110848a4 − 131072a3c+ 44025856a3 + 2605056a2c

− 26966400a2 − 8466432ac+ 5517512a+ 5997056c− 292825,

%424 = root1(256,−5088, 16536,−11713) ≈ 1.00126.
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