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IMPROVED BOUNDS FOR THE SPREAD
OF SPORADIC GROUPS
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Abstract

The spread of a group G is the greatest number r such that,
for every set of non-trivial elements {x1, . . . , xr}, there exists
an element y with the property that 〈xi, y〉 = G for 1 � i � r.
In this paper we obtain good upper bounds for the spread
of fourteen sporadic simple groups computationally, and we
determine the value of the spread of M11 by hand.

1. Introduction

It was shown by Binder in [1, 2] that given any two non-trivial elements x1 and
x2 of the symmetric group Sn, n > 4, there exists a third element y such that
Sn = 〈x1, y〉 = 〈x2, y〉. From this Brenner and Wiegold made the following definition
in [6].

Definition 1. Let r be a positive integer. A finite non-abelian group G is said to
have spread r if, for every set {x1, x2, . . . , xr} of distinct non-trivial elements of G,
there exists an element y ∈ G such that G = 〈xi, y〉 for all i, and r is the maximum
value for which this is true. We denote the spread of a group G by s(G).

It is clear from the above definition that s(G) = 0 if G is neither semi-simple
(that is, it has no proper soluble normal subgroup) nor the semidirect product of
two cyclic groups of prime order, as no element can be one of a generating pair if it
is in a normal subgroup with non-cyclic quotient. It is proved in [11] that s(G) � 1
for all finite simple groups G.

The generation properties of finite groups, especially finite simple groups, are
things that have provoked interest from researchers over the years. An example of
such a generation property is the probability of generating a group with a ramdomly
chosen element [11, 15], but there are many others. The concept of the spread is
another such generation property and has been studied, for example, by Guralnick
and Shalev using counting and probabilistic methods [12]. The spread of sporadic
groups has been studied before by Bradley, Ganief, Moori and Woldar; see below.

Pairwise generating sets are studied in [14] and [3]. These papers are concerned
with the maximal size µ(G) of a set of elements of a group G, any two of which
generate the whole group. This number is clearly an upper bound for the spread of
a group. To see this, let S be a maximal pairwise generating set. Then if there were
an element of G \ S that generated G with every member of S, it would contradict
the maximality of S.
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It can be observed from Table 1 that the spread of sporadic groups varies wildly,
and often bears little relation to the size of the group. For instance, the spread of
M23 is much greater than the spread of M24. The groups with a high spread are
often the ones with elements of large prime order contained in only a small number
of small subgroups. For example, the elements of order 23 in M23 are each contained
only in a single subgroup of order 23 × 11, and so to obtain a set of elements as
described in Section 3 we must have an element from each of these subgroups. In
M24, however, the elements of order 23 are contained in one of the 24 subgroups
isomorphic to M23, and so it takes far fewer elements to obtain a set of elements of
the desired type.

In [10] Ganief and Moori computed lower bounds for the exact spread of the
sporadic groups. Breuer et al. used similar methods to improve these bounds in [7].
Upper bounds are given by Moori and the first author in [5].

In this paper we use the computer algebra system Magma [4] to calculate much
improved upper bounds for the spread of some of the sporadic simple groups, and
give a hand proof that s(M11) = 3. The latter result was proved independently
by Woldar [19]. His proof differs substantially from ours, and is less geometric.
Our results are shown in Table 1. The best known lower bound is given in the
second column. The result for M11 comes from our work; the other results come
from [7] and [10], which both give a lower bound of 2 for s(M11). The third column
gives our results. The final column gives the previously known bounds from [5], for
comparison purposes.

In Section 2 we give the computer-free proof that the spread of M11 is 3. Section 3
describes the computational methods used to compute the bounds for the other
groups.

We believe that it is essential that we ensure that our computational results are
replicable. To this end, we have included the programs in Appendix A, together
with the seeds that Magma’s random processes use to give our exact results.

Table 1: Bounds for the spread of sporadic groups.

Group Lower bound Upper bound Old upper bound

M11 3 3 16
M12 3 9 211
M22 21 26 720
M23 1525 8064 41020
M24 12 56 3152
J1 77 179 5690
J2 5 24 1071
J3 78 597 43792
McL 71 308 31184
HS 19 33 1280
He 199 1223 275125
Co3 99 1839 829200
Suz 41 956 532035
Fi ′2422 14 186 210897
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2. The exact spread of M11

2.1. Background

The five sporadic simple Mathieu groups, M11, M12, M22, M23 and M24, were
discovered in the 19th century by E. Mathieu [16, 17]. The largest of the five
groups is M24, which can be defined to be the automorphism group of the unique
Steiner system (5,8,24) — that is, a set of 759 subsets of size 8 of a set Ω of size
24 such that any five of the 24 points lie together in exactly one of the sets of
size 8. We call these sets of size 8 octads. M24 is a 5-transitive permutation group
on 24 points. The binary Golay code is a twelve-dimensional code of length 24
over the field of order 2 spanned by the 759 octads, with addition defined as the
symmetric difference of two sets. This code contains: the vectors of weight 0 and
24, 759 vectors of weight 8 (that is, the octads), 759 vectors of weight 16 (that
is, the complements of the octads) and 2576 vectors of weight 12. These sets of
size 12 are called dodecads. Sets corresponding to a vector in the Golay code are
called C-sets. More information about the group M24 can be found in [8] and [9].
In [9, Chapter 12], detailed information can be found about M24 and its subgroup
structure, including a way of easily determining whether a given set is a C-set.

The stabiliser of a dodecad (and hence also the complementary dodecad) in
M24 is M12. The stabiliser of a dodecad and a point in the dodecad is the group
M11. Then M11 is a permutation group on the eleven non-fixed points in one of
the dodecads and the twelve points in the complementary dodecad. The point
stabiliser in the eleven-point action is M10

∼= M6
·2, and in the twelve-point action

the stabiliser is L2(11).

2.2. The main result

Theorem 1. s(M11) = 3.

Proof. By checking the orders of the maximal subgroups of M11, we see that the
only maximal subgroups containing an element of order 11 are the ones isomorphic
to L2(11). Furthermore, by a counting argument, or by observing that each L2(11)
is a stabiliser of a point in the twelve-point action and elements of order 11 act
with cycle shape 11111, we can see that each element of order 11 is contained in
precisely one of these subgroups. Therefore, if y is an element of order 11 fixing the
point p in the twelve-point action and x is any element not fixing p, then x does
not lie in a maximal subgroup with y and hence 〈x, y〉 = M11. In light of this, we
seek to prove that for any set of three non-trivial elements {x1, x2, x3} of M11 there
is a point p in the twelve-point action not fixed by any of the three elements. Then
we choose an element y of order 11 fixing p, and since the only maximal subgroup
containing y is the stabiliser of p isomorphic to L2(11), not containing x1, x2 or x3,
we will have 〈x1, y〉 = 〈x2, y〉 = 〈x3, y〉 = M11, and hence s(M11) � 3.

Looking at the character table of M11 we see that involutions fix four points
in the twelve-point action, and all other non-trivial elements fix fewer than that.
This means that if we have a set of three non-trivial elements, unless they are all
involutions there must be a point not fixed by any of the three elements. The only
possibility is a set of three involutions whose fixed-point sets are pairwise disjoint.
Let us assume, without loss of generality, that D is a dodecad containing the point
p, and that the copy of M11 that we are dealing with is the stabiliser in M24 of D
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and the point p ∈ D. Let x1, x2, x3 ∈ M11 be three involutions, with fixed-point sets
O1, O2 and O3 respectively, such that every point in Ω/D, the complement of D, is
in one of O1, O2 or O3. Now O1, O2 and O3 are octads, so O1 +O2 +O3 is a C-set.
By construction, O1+O2+O3 contains the dodecad Ω/D, and also the point p ∈ D.
The only C-set to strictly contain a dodecad is Ω, and hence O1 + O2 + O3 = Ω.
But this is a contradiction, since |Ω| = 24 and |Oi| = 8 and p ∈ Oi for i ∈ {1, 2, 3}.
Hence s(M11) � 3.

In order to show that s(M11) = 3, we must show that there exists a set of four
non-trivial elements {x1, x2, x3, x4} such that one cannot find y ∈ M11 such that
〈x1, y〉 = 〈x2, y〉 = 〈x3, y〉 = 〈x4, y〉 = M11.

We note from the character table that any element of M11 fixes either a point
in the eleven-point action or a point in the twelve-point action. Therefore, if we
can find a set of four elements of M11 such that every point in Ω is fixed by one of
them, then any element y lies in a maximal subgroup of M11 with at least one of
our elements (that is, the point stabiliser of one of the points fixed by y). In order
to prove that such sets of four elements exist, we first prove a lemma.

Lemma 1. Consider the subgroup M11 of M24 fixing the dodecad D and the point
p ∈ D. If O is an octad containing p and meeting D in four points, then there is
an involution π ∈ M11 fixing O pointwise.

Proof. Consider the fixed-point set of an involution in our copy of M11. It is cer-
tainly an octad, it certainly contains p and since it contains three fixed points in
the eleven-point action and four in the twelve-point action, it is an octad satisfying
the conditions of the lemma. Now let O be an octad satisfying the conditions of
the lemma. Since M11 is 4-transitive (and hence 3-transitive) on the eleven points,
there is an involution π ∈ M11 fixing the three points of O which lie in D/{p}. Let
Oπ be the fixed point set of π. The set O+Oπ is a C-set. It is also strictly contained
in Ω/D. This means that O + Oπ is the empty set, and hence O = Oπ, completing
the proof of the lemma.

We now look at a particular copy of M11. Here we use the notation of [9, Chapter
12]. We take our copy of M11 to be the stabiliser of the following dodecad

× × ×

× × ×

× × ×

× × ×

and the point 0, corresponding to the point in the top left of the array. Consider
the following element, well known to be in M24.

� � � � � �

� � � � � �

� � � � � �

� � � � � �� � � � � � .

It clearly fixes the point 0 and stabilises the above dodecad, so it is in our copy of
M11. In view of Lemma 1, to prove the theorem we need to exhibit three octads all
containing 0, all meeting the dodecad in four points, and such that all 24 points lie
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either in one of our octads or in the fixed-point set of the element of order 3 above.
The following three octads will suffice.

×

× ×

×

× × × ×

×

× × × ×

× ×

×

×

×

× × × ×

× ×

3. Computational methods

We use Magma [4] Version 2.18 to obtain upper bounds for the spread of fourteen
of the sporadic groups. This section describes the methods used; the programs
themselves are in Appendix A.

3.1. Using coverings
This section uses the concept of a covering. A set S of proper subgroups of a

group G is a covering of G if G =
⋃

s∈S s. A minimal covering is a covering of
minimal size. The size of a minimal covering is denoted by σ(G). We use small
and minimal coverings in this section. Minimal coverings of the sporadic groups are
studied in [13] and [14].

Table 2 gives σ(G) for the sporadic groups studied in this paper. These are all
the sporadic groups that have an upper bound for σ(G) of less than a million. We
provide a single figure when σ(G) is known. Otherwise an interval containing σ(G)
is given.

We use the following lemma.

Table 2: Bounds for the covering numbers of sporadic groups.

G σ(G)

M11 23
M12 [12, 210]
M22 771
M23 41709
M24 3336
J1 [5165, 5415]
J2 [907, 1154]
J3 [23648, 44100]
Fi22 221521
Co3 [505288, 832835]
Suz [338625, 540333]
McL [24541, 24553]
He 464373
HS 1376
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Lemma 2. Let S be a covering of G, and X a set of elements of G such that X ∩ s
is non-empty for each s ∈ S. Then |X| − 1 is an upper bound for the spread of G.

Proof. Suppose that an element g ∈ G exists with 〈x, g〉 = G for all x ∈ X. By the
definition of a covering, g is contained in some member of S, say s. The lemma states
that s ∩ X is non-empty, and so contains some element x. So 〈g, x〉 � s < G.

We consider groups with different types of minimal coverings. Each type of
covering requires a different approach, and so do different sizes of group. These
approaches are described below.

3.2. The easy case

The simplest case is when G is fairly small (in this case |G| � |M24|), has
a minimal covering that is the union of conjugacy classes of low-index maximal
subgroups of G, and Magma [4] stores a list of its maximal subgroups. In this case
we use the function DoFullClassGroupStrong. The groups successfully treated in
this way are M11, M22, M24 and HS.

We note that this method gives s(M11) � 3, which Section 2 shows is the actual
value of s(M11). This demonstrates the effectiveness of the program in at least that
case.

We use M22 to illustrate the method. By [13] it has a minimal covering consisting
of all maximal subgroups isomorphic to M21, L2(11) or 24 :A6. This covering has
size 771.

The first task is to compute the permutation representation of G on the 771
cosets of subgroups in the covering. This is done by the function MakeGroup, which
also returns the images in this representation of a representative of each conjugacy
class of elements.

Next, the function MakeElts computes a set F consisting of all non-trivial max-
imal fixed-point sets in this representation. By this we mean all maximal subsets
of points s such that there exists a non-trivial element of G that fixes s pointwise,
and s is not the full set. This is all we need, by Lemma 2.

Finally, StrongSearch searches for a small set X ⊂ F , where
⋃

x∈X x is the
whole set of points. With each pass through the loop, it collects from F all optimal
candidates for the next member of X, and adjoins a random one of these to X.

3.3. Variations on the theme

When the group is larger, then there are likely to be a large number of maximal
fixed-point sets. In this case, we cannot store them all, so we use one of the functions
DoXXXClassGroupFast. These two functions call FastSearch instead of
StrongSearch. This function does not search the whole of F for optimal candidates
each time. Instead, it takes a small sample F ′ from F , and then adjoins an optimal
choice from F ′ to X.

Additional savings in space and time are given by not explicitly computing the
whole of F . The function MakeEltsWeak computes at least one maximal fixed-point
set from each G-orbit, and possibly some which are not maximal. The responsibility
for making other members of the G-orbits is passed to FastSearch, which makes
only those that it needs for creating the sets F ′.

We use DoFullClassGroupFast for the groups M23 and J3.
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Sometimes, G has a minimal covering C that is not a union of conjugacy
classes of maximal subgroups. This case is dealt with using the functions
DoPartialClassGroupXXX. This begins by assuming that the covering is in fact
C̄, the smallest covering that contains C as a subset but is closed under conjugacy
in G. It then calls MakeNeeds to create a subset P of the points, where the set of
the point stabilisers in P is a covering of G. It passes this set to one of the two
Search functions, where it is used instead of the full point set. All members of F
are replaced by their intersections with P .

The groups that needed DoPartialClassGroupStrong were M12, J1 and J2. For
McL, we used DoPartialClassGroupFast.

When a minimal covering C for G is too large for the above methods, then we
can use the orbits of a subgroup. (At the time of writing, ‘too large’ means ‘over
100 000 subgroups’.) We look at the orbits of subgroups in their action on P . We
choose a subgroup K that has n orbits on P for some n < 100 000, and where most
of these orbits are regular. The functions XXXWithOrbits use the above methods
to find P ′ ⊂ P such that P ′ intersects every K-orbit non-trivially and P ′ =

⋃
X

for a small set X ⊂ F . Then it is clear that

P =
⋃

x∈X

xK ,

so |K|.|X| − 1 is an upper bound for the spread of G.
The function DoFullClassGroupWithOrbits dealt with the groups Fi22, Co3,

Suz and He. The subgroup K is a cyclic group of order 11, 23, 11 and 17 respectively.

3.4. Obtaining the larger groups
If readers wish to verify our calculations, then it is important that they use

identical input. Not all the permutation groups that we use are available with their
maximal subgroups in Magma, so this section gives the necessary details for the
reader to recreate these representations. The groups concerned are Fi22 and Suz.

All representations are taken from the Web Atlas [18]. The input to Magma

was an eight-generator group for Suz and a ten-generator group for Fi22. In both
cases, the first two generators were the group generators in the smallest permutation
representation as given in the Web Atlas. The other generators come in pairs, and
each pair generates a maximal subgroup. These were obtained by using the words
for maximal subgroups given in the Web Atlas.

The extra generators for Suz generate 21+6.U4(2), U5(2) and J2 :2, in that order.
The subgroups of Fi22 given by the extra generators are U6(2), O7(3), O+

8 (2).S3

and 210 :M22.

4. Conclusions

We have given a hand proof that s(M11) = 3. Computational methods have given
us good upper bounds for s(G) for thirteen of the other sporadic groups.

This deals with all sporadic groups known to have a covering of size less than a
million. The two groups that seem most open to attack next are Co2 and Ru, as
these have minimal coverings of sizes at most 5 and 12 million respectively.

We note that better results were obtained for some of the groups in trial runs,
but our table gives only the results that were given by known seeds.
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Appendix A. Links to Mathematica notebooks

The programs used to generate the results presented in the paper, together with
the seeds used by Magma’s random processes to give the exact results, can be
found at:

http://www.lms.ac.uk/jcm/10/lms2006-022/appendix-a.
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