Proceedings of the Edinburgh Mathematical Society (1997) 40, 325-330 ©

BIORTHOGONALITY IN THE REAL SEQUENCE SPACES ¢°

by ANTHONY J. FELTON and H. P. ROGOSINSKI*
(Received 14th August 1995)

In this paper we generalise some of the results obtained in {1] for the n-dimensional real spaces £°(n) to the
infinite dimensional real spaces £°. Let p > 1 with p # 2, and let x be a non-zero real sequence in £€°. Let £(x)
denote the closed linear subspace spanned by the set {x}* of all those sequences in £ which are biorthogonal
to x with respect to the unigue semi-inner-product on £ consistent with the norm on £. In this paper we
show that codim £(x) = 1 unless either x has exactly two non-zero coordinates which are equal in modulus,
or x has exactly three non-zero coordinates «, f,y with |a| > |8l = |y| and |«|® > |B}* +|y)’. In these
exceptional cases codim £(x) = 2. We show that {x}* is a linear subspace if, and only if, x has either at most
two non-zero coordinates or x has exactly three non-zero coordinates which satisfy the inequalities stated
above.

1991 Mathematics subject classification: 46C50.

0. Introduction

Throughout this paper, p denotes a real number with p > 1 and p # 2. Consider the
real normed linear space £°, and note that there exists a unique semi-inner-product on
£’ consistent with the norm. In fact for x, y € £

o0

Y xlyil*'sgn y,.

1
X yl=—=5
Iyl &

For a discussion of semi-inner-products and semi-inner-product spaces we refer the
reader to [2] and [3]. The following definitions are given in [1]. If x,y € £ then x and y
are said to be biorthogonal if [x,y] =[y,x]= 0. Further for fixed x e £°(n), ©(x) is
defined to be the number of elements in a maximal linearly independent set of vectors
biorthogonal to x. The following theorem is the main result (Theorem 4.5) of [1].

Theorem 0.1. Let n>2, and let x € £’ (n). Let r be the number of non-zero
coordinates of x.

() If r =0 then 1(x) = n.
() Ifr=1lorr=>=4thent(x) =n-—1.

* This research was funded by the University of Wales.
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(i) If r=2 then ©(x) =n—1 if the two non-zero coordinates have equal modulus,
and 1(x) = n — 2 otherwise.

(iv) If r =3, let {a, B, y} be a permutation of the three non-zero coordinates such that
|l = |B] = |yl. Then ©(x) =n— 1 if |a|® < |BI° + |y|* and ©(x) = n — 2 otherwise.

Definition 0.2. For x € ¢°, define £(x) to be the smallest closed linear subspace in
£7 which contains every vector biorthogonal to x.

Remark 0.3. Let x € £°. Then £(x) € {y: {y, x] = 0}. (This follows immediately from
the left-linearity and left-continuity of the semi-inner-product.)

In the next section we shall show that £(x) has finite codimension, and we shall
determine codim £(x) for all non-zero x in £°.

1. The space £(x)

We introduce the following notation.

Notation. For x = (x,, X5,...,X,) in £’(n), denote by X the sequence (x,,x,,...,
x,,0,0,...)in €. For x = (x,, X,, ...) in £°, denote by x" the sequence (x;, X, . .., X,) in
£°(n).

Theorem 1.1. Let x be a non-zero vector in £°. Then codim £(x) = 1 unless either
(i) x has exactly two non-zero coordinates a and f with |a| # ||

or

(i) x has exactly three non-zero coordinates o, and y with |a| > |B| = |y| and
lal® > 1817 + IyI”.

If either of the conditions (1) or (ii) holds then codim £(x) = 2.

Proof. Let x € £°. Suppose first that x has infinitely many non-zero coordinates.
Choose N so that x™ has at least four non-zero coordinates when n> N. Then by
Theorem 0.1(ii) for n > N, 7(x') = n — 1, and we can find (n — 1) linearly independent
vectors f;,(1 < i < n— 1) in €°(n) which are biorthogonal to x'. The vector x" is not a
linear combination of these vectors since every such linear combination is left-
orthogonal to x". Hence {x",f,,, ..., f,_,,} is a basis for £°(n).

Let y € £°, and let n > N. Then there exists scalars 4, (0 < i < n— 1) so that

n—-1
Y= 2o+ Y 48 (1)
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By the left-linearity of the semi-inner-product,

[y*, x] = 2, I, @
and so
, X
$w“=mﬁ ®
Let
2,= ) dikin  (B=N). @
=

Then z, € £(x) since each of the vectors f,-.,,. is biorthogonal to x. By (1),
i["\l = lO,n;[\"] + z,

and so, using (3) and the observation that x" — x, and ;ﬁ -y,

: [y. x]
limz, =y --——=x
n—+oo lIx|)?
Hence, since £(x) is closed,
y- 2y ¢ g0, ©)
lIxI

Noting that x # 0, it follows from Remark 0.3 that x ¢ £(x). Since (5) holds for all y
in £°, we deduce that

&= &(x) @ F(x),

where F(x) is the one-dimensional subspace generated by x. It follows that
codim &(x) = 1.

Suppose now that x = (x|, x,,...) has finitely many non-zero coordinates. Choose
n, so that x; = 0 when i > n,. Let 7, = 7(x™), and let 7, = n, — 7,. Then we can find a
basis {f,,f,,...,f,} in £(n,) with f, biorthogonal to x™ when 1, +1 <i<n,. Let
Y = (1, Y2, - - -) € £°. Then there exist scalars 4; (1 < i < ng) so that

00

y= iﬂr + ) ve ©

i=ng+1
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where e, is the i* standard basis vector in £. We can write

Yy=¥+Ys M
where
ng . 0 T .
= Z Afi + Z ye, and y,= Z'lifi'
i=1)+1 i=ng+1 i=1

Since each of the vectors f, (t, + 1 < i < n,) and each of the vectors e, (i > n, + 1) is
biorthogonal to x,

¥ € &(x). ®
If F(x) is the 1,-dimensional subspace of £° spanned by the vectors f<ix< 7,) then
Y, € F(x). ®

Noting that the map z — z™! is a continuous linear map from “? onto £°(n,), and also
that z is biorthogonal to x if, and only if, Z™, is biorthogonal to x™, it is easy to see
that if z € £(x) then 2™ e £(x™). Now let z € £(x) N F(x). Then 2™ belongs to (x™),
and so z™! is a linear combination of the vectors f; (7, + 1 <i < n,). On the other hand,
since z is a linear combination of the vectors f, (1 <i < 1,), Z" must also be a linear
combination of the vectors f; (1 <i < 1,). It follows that z™! is the zero-vector in £°(n,),
and so z(= Z™) is the zero-vector in £°. Hence

E(x) N F(x) = {0}. (10)
By (7), (8), (9) and (10) we see that
£ = &(x) ® F(x),

and hence codim &(x) =dim F(x) =t,. An application of Theorem 0.1 shows that
7, = 1 unless x satisfies either of the conditions (i) and (ii) in which case 7, = 2. ||

Remark 1.2. If E and F are proper linear subspaces of X with codim E =1 and
EC Fthen E=F.

Let [., .] be a semi-inner-product on the normed space X which is consistent with
the norm on X.

Theorem 1.3. (i) Let x be a non-zero vector in X. Then £(X) has codimension 1 in X
if, and only if,
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Ex)={ye X :[y,x] =0}

(ii) If the set of all vectors biorthogonal to x is a linear subspace of X with codimension
1 then every vector which is left-orthogonal to x is also right-orthogonal to x.

Proof. Write {x}* ={y e X : [y, x] = 0}.

() If £(x) = {x}" then £(x) is the kernel of a non-zero continuous linear functional
on X, and so has codimension 1. Suppose conversely that £(x) has codimension 1. Let
E = £(x) and F = {x}". Applying Remarks 0.3 and 1.2 we see that £(x) = {x}".

(ii) Apply Remark 1.2 with E={y :x+y} and F = {x}". O

2. The subspace problem

For x € £, let {x}* denote the set of all those sequences in £° which are biorthogonal
to x. In this section we consider the problem of characterising those x for which {x}*
is a linear subspace. We begin with the following lemma.

Lemma 2.1. (i) Let x € £°(3). If all of the coordinates of x are non-zero then there
exists a vector in £°(3) which is left-orthogonal but not right-orthogonal to x.

(ii) Let x € £°. If x has at least three non-zero coordinates then there exists a vector
in €7 which is left-orthogonal but not right-orthogonal to x.

Proof. We shall only prove (i) since (ii) then follows as an obvious consequence.

Noting the fact that the semi-inner-product is homogeneous, we can assume without
loss of generality that x = (a, b, 1), with a and b non-zero. Suppose for a contradiction
that every vector which is left-orthogonal to x is right-orthogonal to x. The vector
(1,0, —|a|'sgn a) is left-orthogonal to x, and so by our supposition right-orthogonal
to x. This implies that

a+ |a " sgn(—sgn a) = 0,

and so |a| = |a|(""')z. Hence |a] =1 since p # 2. Similarly the left-orthogonality and
consequent right-orthogonality of (0, 1, —|b|*"'sgn b) to x implies that |b| = 1. Since
la]| = |b| =1, the vector (2sgna, —sgn b, —1) is left-orthogonal to x, and a simple
calculation shows that the right-orthogonality of this vector to x implies that 2°7' = 2.
Since p # 2 we obtain the desired contradiction. O

Theorem 2.2. For given x € £°, {x)}* is a linear subspace if, and only if, either x has
at most two non-zero coordinates or X has exactly three non-zero coordinates a, B, y with

lel = |8l = Iyl and la}® > 181" + |yI".

Proof. If x = 0 then {x}* = £”. If x has exactly one non-zero coordinate x, then
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XY ={0y..) ey, =0}
If x has exactly two non-zero coordinates x, and x,, then it is easily verified that

{x}i = {(yl’ Yas o ) € y"l = y,.2 = O} if lxm' # Ixnzl’
and

X

{x}* = {(yl,yz, L)EL Ly, = —sgn(l)ynz} if  |x, | = x,).

Xpy
Hence {x}* is a linear subspace if x has at most two non-zero coordinates. If x has
exactly three non-zero coordinates x,,x,, and x, with |x,|>|x,]>Ix,| and
1%, ° > [x,,]° 4 1x,,|° then t(x, , x

ny n3 I

x,)=1and

ny?

XY ={(y1, y2r .. ) € €7 (Ym» Ynp» V) € V),

where V is the one-dimensional linear subspace of £°(3) consisting of all those vectors
which are biorthogonal to (x,,,x,,,x,). Hence also in this case {x}* is a linear
subspace.

In all of the remaining cases, Lemma 2.1 shows that there exists a vector which is
left-orthogonal but not right-orthogonal to x. Moreover in all of these cases
Theorem 1.1 shows that codim &£(x) = 1. Hence {x}* is not a linear subspace, since
otherwise £(x) = {x}* and Theorem 1.3(ii) leads to a contradiction. O

ny?

Acknowledgement. We would like to thank the referee for his helpful comments
concerning the presentation of this paper.

REFERENCES

1. ANTHONY J. FerTON and H. P. RoGosINSKI, Biorthogonality in the Banach Spaces £°(n),
Proc. Edinburgh Math. Soc. 39 (1996), 325-336.

2. J. R. Giugs, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967),
436-446.

3. G. LuMER, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WALES, SWANSEA

SINGLETON PARk, SA2 8PP
WALES

https://doi.org/10.1017/50013091500023762 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023762

