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ABSTRACT 
This paper presents an EEG (Electroencephalography) study that explores correlations between the 
neurophysiological activations, the nature of the design task and its outputs. We propose an 
experimental protocol that covers several design-related tasks: including fundamental activities (e.g. 
idea generation and problem-solving) as well as more comprehensive task requiring the complex 
higher-level reasoning of designing. We clustered the collected data according to the characteristics of 
the design outcome and measured EEG alpha band activation during elementary and higher-level 
design task, whereas just the former yielded statistically significant different behaviour in the left 
frontal and occipital area. We also found a significant correlation between the ratings for elementary 
sketching task outcomes and EEG activation at the higher-level design task. These results suggested 
that EEG activation enables distinguishing groups according to their performance only for elementary 
tasks. However, this also suggests a potential application of EEG data on the elementary tasks to 
distinguish the designers’ brain response during higher-level of design task. 
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1 INTRODUCTION 

Neurophysiological measures are increasingly adopted in design cognition studies (Abraham, 2018; 

Benedek et al., 2018) to overcome the limitations of traditional approaches based on observation, 

interviews and questionnaires, which highly depend on the observer’s interpretation. The 

neurophysiological techniques allow obtaining quantitative data measured directly from subjects’ 

brain along with design activities, thereby enable to acquire more objective data to analyse design 

cognition. There are various kinds of apparatus for measuring different neurophysiological signals. 

While each of these techniques provides a different indication of brain activities, they also come along 

with different limitations. Unlike in clinical research, these limitations highly affect the development 

of the experimental protocol in design cognition studies. Functional Magnetic Resonance Imaging 

(fMRI) requires the subjects to stay in the scanning tunnel and react to stimuli by hand or by 

verbalizing the experience after data acquisition. Near-Infrared Spectroscopy (NIRS) is limited to 

frontal regions and surface analysis, with interpretation challenges related to multiple sources of the 

vascular signal.  

Electroencephalography (EEG) was originally used in clinical research, especially to diagnose brain 

dysfunction and study sleeping. Soon enough, thanks to the availability of low-cost devices, the 

simplicity of installation and well-developed basic analysis tools, it started to play a role in 

psychological studies on diverse kinds of behaviour (Arden et al., 2010). EEG measurements are 

spreading in design cognition studies as well, but they are still at an exploratory stage (Göker, 1997; 

Nguyen and Zeng, 2010; Vieira et al., 2020). These efforts revealed some correlation between brain 

activation and design behaviour; however, there are no established experimental procedures yet and 

results are not consolidated. As a matter of fact, the EEG signals can be biased by multiple sources of 

noise and despite different methods of data processing that have been developed, their interpretation 

requires a good deal of art (Jiang et al., 2019).  

Considering the different behaviour of designers with different background in performing design 

activities and the lack of studies with a specific focus on engineering design, the current research 

project targets the study of neurocognition in engineering design tasks starting from subjects with an 

engineering background. In this perspective, the research project aims at establishing a reference 

protocol suitable to identify the relationships between neurophysiological activations, task nature and 

task outputs.  

This paper first briefly introduces what has been achieved in design cognition studies through 

neurophysiological data. Then it presents the experimental protocol of the current research work and 

the adopted data treatment pipeline. After that, the preliminary results from the data collected within 

the first experimental campaign are illustrated. The discussion based on these results closes the paper. 

2 THE STATE OF THE ART 

2.1 Design cognition studies with neurophysiological data 

In design research, human behaviour was originally studied using observation through protocol 

analysis, then sometimes correlating the behaviour to the design outcome e.g., through the assessment 

by experts. Questionnaires and interviews shed a light on some mechanisms to achieve a good quality 

of design, but still can’t reflect the ongoing brain activity along the design process, so that the 

correlation with the time dimension is still lacking. This requires more objective data, such as 

neurophysiological ones, to describe the design cognition while performing the design activity, as this 

could be one of the keys for the exploration of design behaviour. Diagnostic studies about brain 

conditions are tailored for the identification of out-of-the-norm conditions, therefore those 

experimental protocols are not suitable to investigate differences between healthy subjects with no 

brain dysfunctions. Starting from elementary design-related activities, different techniques are under 

investigation in design studies.  

Favoured by its high spatial resolution, fMRI was used for mapping the cognitive activities across the 

whole brain. For instance, Knyazev (2007) explored neural networks involved in artistic creativity, 

asking the subjects to imagine a new design for a pen. He observed the degree of dominance of the right 

over the left prefrontal cortex among experts and novices and found differences in brain activation also 

within each group. Alexiou, et al. (2011) investigated brain activities of design experienced participants 

with fMRI. They observed different patterns of functional interactions between brain regions along with 
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the execution of design and problem-solving tasks, suggesting that design and problem-solving involve 

distinct cognitive functions associated with distinct brain networks. Chávez, et al. (2004) used Single-

Photon Emission Computed Tomography (SPECT) to investigate figural and verbal creativity with the 

Torrance Test for Creative Thinking (TTCT, (Torrance, 1968)) and found correlations with cerebral 

blood flow at different Brodmann Areas. While fMRI and SPECT techniques limit the movements of the 

subject, NIRS and EEG instruments allow the subject to stand up or sit down and designing in a close-to-

real environment. By NIRS, Gibson, et al. (2009) studied creativity with the Remote Associates Test 

(Mednick, 1968). The data showed greater bilateral frontal activity in musicians during divergent 

thinking compared with non-musicians. Similarly, Martindale and Hines (1975) tested creative 

behaviour through an early EEG exploration and they discovered that groups with higher and lower 

creativity scores also had different brain behaviour.  

Among different types of neurophysiological data, EEG signal, which describes the voltage fluctuations 

within the neurons of the brain, can provide an excellent temporal resolution. This allows exploring the 

brain activation at the level of a millisecond (Kounios and Beeman, 2014), but also through longer time 

frames from minutes to the whole time required for a design task (Vieira et al., 2020). 

2.2 EEG studies in psychology research 

EEG measurement is commonly used in cognitive psychology studies for exploring the reaction to 

different stimuli through brain activation, e.g. music vs. text (Bhattacharya and Petsche, 2005), image 

vs. text (Appelbaum et al., 2010). Another research topic deals with the different brain functional areas 

involved within an elementary task, e.g. in memory tasks (Klimesch et al., 1999), or selective attention 

(Foxe and Snyder, 2011) and with measuring the mental load (Smith et al., 2001). Differences in terms 

of EEG activation appear between groups characterized by different gender (Razumnikova, 2004), 

years of experience (Fink et al., 2009) and age (Privodnova et al., 2017). The reaction to the trigger 

usually appears quickly after the stimulation and lasts within a few seconds, so that the experiments 

usually consist of several repetitions of one single request. The classic task designed by Guilford 

(1967), namely Alternative Uses Task (AU or AUT), has been commonly used as a reference test to 

collect diverse kind of neurophysiological data and check for correlates with divergent thinking. The 

test asks the participant to think of as many uses as possible for a simple object so that it allows each 

subject to repeat the test with different objects by thinking aloud. Torrance’s TTCT is a well-

established test for assessing creativity. This includes both verbal and non-verbal tests, allowing the 

subject to generate ideas by sketching in silence.  

The EEG signal is by nature sensitive to many sources of electromagnetic perturbation, which include 

the nerve’s stimulation of the muscles, as well as eye movements. These perturbations, namely 

“artefacts”, should be avoided for a good quality of EEG signal acquisition and therefore tasks of short 

duration are preferable as they limit the perturbation due to eye movements.  

Both AU and TTCT tests provide methods to assess creativity, but it should be noted that designing 

substantially differs from creativity tasks as commonly referred to in psychological literature. Within a 

design activity, one might carry on multiple cognitive functions, in a loop between divergent and 

convergent thinking. When shifting from creativity study to design research with EEG-based data, the 

nature of the task complicates the signal composition by involving more body movements. For 

instance, sketching involves neck and arm movements, the verbalization of ideas with details involves 

facial expression, and limiting the eye movements would make the behaviour unnatural. Therefore, the 

development of an experimental protocol to study design behaviour with EEG, requires establishing a 

careful signal processing pipeline that is able of removing different types of artefacts without 

constraining the subjects’ movements excessively.  

Studies across different research fields of the waveform of EEG discovered that brain oscillations exist 

over a number of functional domains (motor, visual…), with different frequency rhythms associated 

with each domain (Knyazev, 2007). Among these, the alpha oscillations (7-13 Hz) are the most salient 

EEG band, and thus they were studied the most. Synchronization and localization of the creative 

cognition within frontal, posterior, or lateralized hemispheric cortices are often claimed, e.g. Arden, et 

al. (2010). In addition, individual differences in brain structure and volumes, condition of hair and 

scalp, mental fatigue states can induce a different level of activation in terms of the absolute power of 

EEG (Jackson and Bolger, 2014). The wide variety of conditions that characterize the way the brain 

behaves also requires the selection of a baseline to calculate event-related power (ERP) in EEG data 

analysis. 
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2.3 The goal of the current research work 

This paper presents the preliminary results of a larger experiment that aims to explore the relationships 

between neurophysiological activations, the nature of the design task and its outputs. The analysis 

reported in this paper focuses on novice engineering students’ neurophysiological activations collected 

with an EEG headset while addressing a sequence of tasks of different nature also including a typical 

design task. It explores the degree of activation during the execution of those different tasks. It also 

analyzes the opportunities that emerge from clustering subjects according to their design outcome or 

EEG activations and the coherence between these different approaches. Overall, it aims at 

understanding how EEG data can inform the analysis of design cognition processes. 

3 METHOD 

3.1 Experimental protocol 

The development of the current experimental protocol leveraged early evidence from a set of pilot 

tests that aimed at finding the best trade-off between the quality of the EEG signal and real-like 

working condition for a design session carried out individually. 

Before each experiment starts, the subject receives information about the EEG device used for data 

acquisition, an informed consent form to sign and the data treatment policy, as approved by the ethical 

committee of the authors’ research institution. Then, the subject sits in front of a computer. The 

experiment supervisor properly places the headset on the subject’s scalp to ensure good contact quality. 

The subject then proceeds through five tasks (Figure 1), each preceded by a Wisconsin Card Sorting 

Test (WCST, (Heaton et al., 1993)) that lasts for 36 seconds (at most). In WSCT, the subject must 

select the only card out of four that shares the same feature (e.g. shape, colour…) with a randomly 

displayed card. Due to the low cognitive workload it requires, it allows the subject to relax and have a 

basic cognitive activation before each task. This also serves as a baseline for the estimation of task-

related activation and, due to the duration of the experiment (approximately 30 minutes), to clearly 

separate cognitive activities between two subsequent tasks.  

Each participant starts with the same warm-up task (n-back, (Kirchner, 1958)) to get familiar with the 

laboratory setting and the keyboard operation (duration: 20 seconds). The subject sees a series of 

letters as stimuli and, from the third letter on, it also has to type the letter seen two steps before. This 

also distracts the subject from the presence of the headset before it addresses the next tasks. Then, the 

protocol has three other tasks that entail more fundamental thinking and one that requires higher-order 

thinking, which is more typical of design activities. In general terms, the latter requires the subject to 

generate a design solution that satisfies a set of requirements with the help of a morphological table 

(DwMT); the former three include a problem-solving task where the subject has to exploit her/his 

knowledge in physics (PS), the AU task and the TTCT (in its figural variant). The last two tasks aim at 

confirming the validity of data acquisition with reference to existing studies in the literature, also 

considering the differences among the devices used in experiments carried out by other scholars. 

Figure 1. Experimental protocol. AU- Alternative Uses test, TTCT - Torrance Tests of 
Creative Thinking, PS - problem solving, DwMT - Design with Morphological Table.  

Both DwMT and PS enabled the study to challenge the subjects (novice engineering designers) and to 

differentiate their brain activities as these two tasks entail different cognitive processes. The DwMT 
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(duration: 10 minutes) asks the subject to design an amphibious bike; the subject is provided with a 

morphological table, which includes several options per product feature/function (e.g. propulsion 

system, number of allowed passengers...).  

The PS task (duration: 3 minutes) requires the subject to generate and verbalize as many solutions as 

possible to empty a glass of water placed on top of a large heavy table without touching it. 

The TTCT-figural (duration: 3 minutes) requires the subject to complete a figure, initially composed 

just of two vertical lines, by sketching on top of them and assign the sketch a name that clarifies its 

meaning. The subject can repeat this within the given time as many times as one wants. Besides, the 

TTCT allows the evaluation of the subject’s sketching skills and, therefore, data triangulation with 

DwMT results. Eventually, during the AU task (duration: 3 minutes) the subject has to verbalize 

alternative uses for a cork. This also allows potential triangulation for the presence of artefacts during 

the PS task.  

These 4 tasks are randomly ordered, so that any potential bias due to cognitive fatigue decreases its effect 

across multiple-subjects aggregated data, to check for general design/brain activation correlations. 

All the experiment sessions are audio/video recorded to facilitate data-processing activities, such as 

the detection of body movements triggering EEG artefacts and the distinction of different stages 

within the same task (e.g. reading the assignment, sketching/drafting, analysing and selecting options 

from the morphological table). Especially with reference to DwMT, which lasts for a longer time and 

requires the subject to carry out several activities, different cognitive functionalities might be involved 

in sub-stages of the same task. Therefore, different kinds of brain activations are likely to characterize 

these sub-stages, thus defining different epochs to be analysed separately. 

The experimental process is programmed by Psychopy 3 (Peirce et al., 2019), whose log file enables 

the synchronization of the whole dataset (EEG, video recording and keyboard operation). The subject 

receives information about the task and its execution through the screen of the computer and can ask 

clarification questions before starting the task. There is no time limit for reading the instructions. The 

subject also receives on-screen feedback for the time left or, just for tasks requiring sketching, sound 

notifications.  

3.2 Criteria for the assessment of task outcomes 

As each task returns different outcomes, they require different metrics. This assessment allows the 

clustering of subjects according to the results they had after each task.  

The set of figures sketched during TTCT are measured according to fluency (estimator: number of 

completed figures), originality (estimator: number of ideas that are least proposed within the cohort) 

and variety (estimator: number of categories of ideas). Similarly, the PS task returns a set of generated 

and verbalized ideas that are also measured in terms of fluency (estimator: number of solutions) and 

variety (estimator: number of physical effects in the subject’s solution set). The DwMT task returns a 

sketch with annotation about the final design for the amphibious bike. The metrics used for this unique 

idea are the level of detail/clarity and viability of the solution, both assessed with a 4-level Likert 

scale. The reliability of these assessments is obtained through consensus among two experts. The AU 

is the least design-related task and there is no assessment for its outcomes, as it was just used to 

confirm the validity of EEG data with reference to other studies in the literature. 

3.3 EEG Data Processing Pipeline 

EEG data collection should be carried out with a sampling frequency of a minimum of 128 Hz, 

coherently with the Nyquist-Shannon sampling theorem, to allow studying all the sub frequency bands 

that are potentially relevant for neurocognition (from the delta-band [0.1 - 4] Hz to the lower gamma-

band [24 - 40] Hz). However, having noticed that the delta band (0.1-4Hz) is highly contaminated by 

noise and muscular artefacts, it is no longer considered in the current research. Figure 2 describes the 

data processing pipeline as a flow chart. Initially, an Infinite Impulse Response (IIR) filter removes the 

DC offset that is typical of the headset used for the experiment. Then, a bandpass filter cut-off 

frequencies outside the 4-45 Hz range, coherently with what has been stated above. The third step 

addresses the removal of muscular artefacts via the blind source separation (BSS) technique, based on 

the canonical correlation analysis (CCA) (Borga and Knutsson, 2001; De Clercq et al., 2006). The 

BSSCCA algorithm is adapted to remove the short Electromyography (EMG) bursts due to the 

articulation of spoken language and further attenuate the contamination of EEG data by muscular 

artefacts recordings (Vos et al., 2010). The fine-tuning of BSSCCA filtering parameters (window length 
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2.5 seconds, window shift 1.2s and removal of the 4 least correlated components) was done through the 

analysis of EEG data collected during pilot tests and intentionally contaminated with muscular artefacts 

taking place during the above 5 tasks (e.g. hand movements, neck rotations and eye movements). An 

additional stage for the removal of segments with muscular artefacts is possible through the analysis of 

audio and video recordings, as well as outliers in terms of moving average exceeding the threshold of 

200 µV, above which the amplitude of the contamination is too high to be removed by the previous 

steps. Eventually, a set of bandpass filters divides the data into sub-frequency bands. Among them, this 

paper focuses on the alpha band (7 – 13 Hz). The normalization of data was done according to the 

following formula for Task Related Power (TRP) estimation, one estimator per each of the five tasks. 

𝑇𝑅𝑃𝑖𝑗  =  
𝑃𝑂𝑊𝑖𝑗(𝑡𝑎𝑠𝑘)

𝑃𝑂𝑊𝑖𝑗(𝑟𝑒𝑓)
                                                                                                                     (1) 

Where POW is the average power of the electrode i, from subject j across one task (numerator) or 

across the reference WCST (denominator). The use of the logarithmic scale for TRP facilitates the 

visualization of brain activation. In such a case, a positive TRP indicates that the subject had stronger 

brain activation during the task than the reference WCST and vice versa. 

Figure 2. Signal processing pipeline 

The whole data processing pipeline leverages an original Matlab script and the EEGLab toolbox 

(Delorme and Makeig, 2004). 

3.4 Criteria for the statistical analysis of differences between clusters of subjects 

The detection of differences in EEG data between individuals is typical of medical diagnostics to check 

whether an individual is ill or not. The search for correlates between EEG activation and design 

activities, in turn, requires a higher degree of generalization in order to generate more universally valid 

conclusions. This means that the analysis should involve clusters of subjects that show similar behaviour 

with each other. After filtering for outliers, the procedure to cluster subjects into homogeneous subsets 

can be either based on their brain activation level calculated by the unweighted average distance using 

Matlab linkage function or based on the assessment of their task outcomes. Then, the comparison 

between the two (or more) clusters for the search of correlates should be carried out with the dataset that 

was not used for clustering. E.g. if clusters of subjects are created according to EEG data, the search for 

correlates between brain activation and task outcome should be done by checking if the two clusters are 

also statistically different according to the metrics used to assess their task outcomes, and vice versa. 

Both the clustering approaches appear to be equally valid for this exploratory study.  

The statistical testing of hypotheses uses parametric tests (two-sample t-test for the mean, 

homo/heteroskedastic, depending on the dispersion of data in the two clusters) if the data in clusters 

are normally distributed. On the other hand, non-parametric tests should be used for hypothesis testing 

and, in such a case; the two clusters are compared against each other with the Kolmogorov-Smirnov 

test. 

4 RESULTS 

4.1 Participants and EEG acquisition device characteristics 

A subset of already acquired EEG data for homogenously characterized subjects can be considered for 

this exploratory study. This subset comprises 19 undergraduate engineering students, all of them were 

male, right-handed and novice engineers (experience M = 1.14, SD = 0.51), aged 18-21 (M = 18.96, 

SD = 0.73).  

The headset used for EEG data collection is Emotiv EPOC+. It has a pre-mounted frame with 14 

electrodes (AF3/4, F7/8, F3/4, FC5/6, T7/8, P7/8, O1/2), sampling at 128Hz. The raw data is 

accessible to run signal processing according to the needs.  
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4.2 Statistical Analysis and Clustering Approach 

4.2.1 Clustering according to the score based on the assessment of task outcomes 

For each task, the subjects were firstly clustered into two groups according to the scores they got for 

their task outcomes (sect. 3.2). Group A is for top-score subjects, group B is for the residuals. In such 

a way, clusters of subjects possibly have a different composition for each task. For TTCT group A and 

B have 10 and 9 subjects respectively. Because of an EEG activation beyond the 95% confidence 

interval, 5 subjects have to be removed before clustering them for the PS task according to their 

outcomes. Then, group A and B have 6 and 8 subjects in each. For the same reason, 2 outliers were 

excluded before clustering subjects for DwMT. Here group A and B respectively have 6 and 11 

subjects. The statistical analysis thereby was performed separately for each task. None of the datasets 

within each cluster is distributed normally. Thereby, Table 1 presents the p-values for the TTCT and 

PS tasks, according to a two-sample Kolmogorov-Smirnov test based on the EEG data, under the null 

hypothesis that there is no difference between the clusters. For TTCT, the two groups present 

statistically significant differences for the F7 (p=0,047) and FC5 (p=0,002) channels. For task PS, only 

the channel P7 (p= 0,034) shows statistically significant differences between the groups. The full task 

analysis for DwMT returned no statistically significant differences at all. 

 

Table1. Significance level (p<0,05 in bold) for hypothesis testing under the null hypothesis 
of no difference between clusters for EEG data. 

After splitting DwMT into 3 stages (reading, analysing and selecting options, sketching), still none of 

the channels shows statistically significant differences between the groups. However, from the 

topographic heat map that plots the mean log-scale TRP across each cluster of subjects (Figure 3), 

some interesting activation differences, despite not statistically significant, between the two clusters 

along the design process emerge. The group with a lower assessment score (second row) had a 

stronger power demand in the left frontal-central area while reading the contents of the task. 

Moreover, a reversed hemispherical asymmetry (group A and group B are highly activated in opposite 

hemispheres) appears across all the stages between the two groups. 

Figure 3. TRP for DwMT in the alpha band (7-13Hz). Stage 1 - reading, stage 2 - analysing 
and making the selection, stage 3 - illustrating. Top row: Group A, Bottom row: Group B  

4.2.2 Clustering based on the EEG activation 

Subjects were also clustered according to their brain activation as measured via EEG data. Coherently 

with section 4.2.1, Group A collects the subjects that have stronger brain activation, group B collects 

the residuals. Consistently with the analysis of outliers in section 4.2.1, there are no outliers for TTCT, 

Left Hemisphere AF3 F7 F3 FC5 T7 P7 O1 

TTCT 0.603 0.047 0.112 0.002 0.314 0.148 0.352 

PS 0.603 0.603 0.603 0.603 0.278 0.034 0.789 

Right Hemisphere AF4 F8 F4 FC6 T8 P8 O2 

TTCT 0.112 0.438 0.603 0.166 0.176 0.375 0.249 

PS 0.278 0.249 0.747 0.980 0.878 0.689 0.154 

https://doi.org/10.1017/pds.2021.77 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.77


778  ICED21 

5 for PS and 2 for DwMT. Then, group A and B are composed of 10 and 9 subjects for TTCT. For the 

PS task, group A has 8 subjects and group B 6. Eventually, for the DwMT task, 8 and 9 subjects are 

respectively in group A and B. 

Not surprisingly, this clustering approach boosts the identification of statistically significant differences 

of EEG activation between groups across multiple channels, with an increasing number along the design 

stages of task DwMT (Figure 4). However, testing the hypothesis that the two clusters are also different 

in terms of the scores they received for their task outcomes (null hypothesis of equal distribution 

between the two clusters) produced results with no statistical significance. However, the score about 

variety in task TTCT and the degree of EEG activation for the whole task DwMT (Table 2) show a 

moderate positive correlation between the two (rho=0.4845, p=0.036) and it is worth recalling that both 

these activities require the subjects to communicate their task outcomes through sketches. 

Figure 4. TRP for DwMT in the alpha band (7-13Hz), stage 1 - reading, stage 2 - analysing 
and making the selection, stage 3 - illustrating. 

 Assessment of the task outcomes 

 TTCT 

(variety) 

TTCT 

(fluency) 

DwMT 

(clarity) 

DwMT 

(viability) 

PS 

(variety) 

PS 

(fluency) 

EEG 

activation  

TTCT  0.595 0.471 - - - - 

DwMT 0.036 0.471 0.940 0.413 0.736 0.753 

PS - - - - 0.492 0.564 

Table 2. p-values for Pearson’s correlation between scores of outcome assessments from 
each task, and the degree of EEG activation along with each task (p < 0.05 in bold). 

5 DISCUSSION 

The experimental protocol in the current research project is developed after the experience gained with 

multiple pilot tests. They enabled exploring the impact of relevant experimental factors, such as the 

nature of the task for EEG data collection (also with reference to the target subjects’ profile); the 

readability of the text; the performance of the EEG apparatus and the efficiency of the originally 

developed algorithm for data cleaning. The data processing pipeline for cleaning the artefacts is 

adopted also in other research projects (Vieira et al., 2020), no excessive artefacts of different 

perturbing factors remained in the final datasets for running statistical analysis. 

From the data collected so far, the experimental protocol and the data processing pipeline proved to be 

suitable for distinguishing differences between cognitive behaviour based on EEG data. In fact, the 

number of subjects in each cluster created according to the degree of EEG activation (based on TRP) 

is generally balanced. Moreover, these clusters show several statistically significant differences across 

multiple channels. The location of these channels is aligned with previous findings mentioned in the 

literature, as there is an emergent, despite not statistically significant, the difference between the 

clusters of subjects for both hemispheres at the frontal and right parietal area (Figure 3). 

By assessing the outcome of each task, it is possible to cluster the subjects from the performance point 

of view. However, the assessment criteria adopted so far, cannot fully cover the different aspects of 

design. The groups clustered based on the current approach requires further verification. 
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When study neurocognition behaviour, the groups for comparison are usually clustered by gender 

(Razumnikova, 2004), background (Vieira et al., 2020)or year of experience (Fink et al., 2009). On the 

other hand, clustering subjects according to their EEG activation is a new approach that apparently 

does not have antecedents in the design literature. The paper checks if the EEG data also explains (or, 

more simply, is correlated) to the different outcomes rated and scored with traditional approaches. 

However, with the data collected so far, it was not yet possible to recognize any significant correlation 

between the EEG activation and the corresponding scores of assessment. That is, the statistical 

approach returned a non-significant difference between the average score for the outcome of each task 

once the subjects participating in the experiment get clustered into two groups according to their 

similar degree of EEG activation. Besides, this lack of statistical significance persists also when more 

design-related tasks (i.e. that requiring higher-order thinking) like DwMT are not considered as a 

whole, but in terms of its internal sub-stages (reading, analysing and selecting, sketching), thus 

changing the clustering into groups and their relationship with the task outcomes.  

From this perspective, the correlation between the variety index measured with the outcomes of TTCT 

and the EEG activation along the stages of task DwMT is promising. In fact, the similarities between 

these two tasks do not only consist in the way of illustrating the outcome (by sketching). But both 

require utilizing the given material and making further development. That is, for the TTCT task one 

should include the two vertical lines in the final sketch. While, for the DwMT task, it is required to 

combine all the selected feature into a unique idea and visualize the final assembly. 

6 LIMITATIONS AND FUTURE DEVELOPMENT 

Due to the small number of subjects involved because of the COVID pandemics, this analysis just 

provides preliminary results. A much richer dataset including more subjects for the test is necessary to 

further validate and reinforce the observed results. All the subjects participating in the experiment 

have a background in engineering, but with only one year of experience on average. The difference 

between novices and experts is one of the next targets. Still, because of the lack of subjects, the 

originality of the ideas could not be used for assessing the outcome of the task TTCT. Nevertheless, 

the importance of such a factor could not be overlooked in design studies. More experiments are 

needed to improve the understanding of the correlation between the degree of activation and 

performance, despite promising results have started to surface. As EEG differences in the design field 

still suffer from a generic lack of knowledge, it is in the authors’ intention to continue the exploration 

of the correlation between the EEG activation and the outcome of tasks requiring fundamental 

thinking, as well as the ones with more complex activities that are typical of designing. The already 

established experimental protocol covers some fundamental thinking tasks, as idea generation, 

problem-solving, but it also includes a constrained design task that requires higher-level reasoning. By 

clustering the subjects based on the outcome assessment results, it was possible to distinguish 

statistically significant differences in the EEG alpha band activation, especially for the channels 

located on the left frontal and occipital area for the fundamental thinking tasks (Problem solving and 

TTCT). Further development could include more frequency bands into the analysis to gain a more 

comprehensive understanding. As no clear difference emerged for EEG activation between the two 

clusters of subjects when analysing the higher-level design task, a more thorough analysis of the 

activities the subjects carried out during design with the morphological table is necessary to avoid 

using just the results of its last stage (sketching). The extension of the experimental campaign with the 

involvement of additional subjects will also shed light on the potential, yet to be discovered, the 

correlation between the assessment of activities requiring fundamental thinking (elementary ones) and 

the degree of EEG activation during constrained design tasks. 
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